Modulo 0.1 Richiami e introduzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modulo 0.1 Richiami e introduzione"

Transcript

1 Corso di Strumentazione e Automazione Industriale Modulo 0.1 Richiami e introduzione Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini, PhD Ing. Alessandro Guzzini Department of Industrial Engineering (DIN) - University of Bologna

2 Agenda Equazione energetica del moto dei fluidi Perdite di carico Diametro e spessore di una tubazione Riferimenti 2/24

3 Equazione energetica del moto dei fluidi Con riferimento alla figura sottostante, si consideri un condotto fisso in cui un fluido sia in moto stazionario e siano C 1 e C 2 le velocità medie nelle due sezioni, z 1 e z 2 le quote dei baricentri delle sezioni stesse. Con riferimento all unità di massa del fluido, l equazione energetica del moto dei fluidi in forma meccanica si scrive: C C g z 2 z 1 + න In forma differenziale: c dc + g dz + v dp + R + δl = v dp + R + δl = 0 [J/kg] [J/kg] R rappresenta l energia specifica dissipata a causa delle resistenze interne al fluido nel tratto di condotto considerato. L rappresenta il lavoro specifico scambiato tra il fluido e gli elementi meccanici in moto presenti nel condotto (ad L è attribuito il segno positivo quando risulta ottenuto dal fluido, uscente). 3/24

4 Equazione energetica del moto dei fluidi Dalla forma meccanica alla forma termica: Definizione di entalpia) h = u + p v dh = du + p dv + v dp 1 principio termodinamica) δq = du + p dv dh = δq + v dp (1) Inoltre: q = Q e + R (2) Mentre Q e rappresenta l energia termica specifica, scambiata dal sistema solo con l esterno (irraggiamento, convezione, ), q rappresenta l energia termica specifica totale ricevuta o ceduta dall intero sistema, ovvero data dalla somma algebrica del calore scambiato con l esterno Q e e dalle dissipazioni in calore R dovute alle trasformazioni interne. Dalla (1) e dalla (2) si ottiene l espressione: v dp = dh δq e R. Introducendo tale relazione nell equazione energetica del moto dei fluidi in forma meccanica, si ottiene la forma termica di tale equazione. c dc + g dz + v dp + R + δl = 0 c dc + g dz + dh = δq e δl [J/kg] 4/24

5 Agenda Equazione energetica del moto dei fluidi Perdite di carico Diametro e spessore di una tubazione Riferimenti 5/24

6 Perdite di carico Equazione di Darcy-Weisbach per il calcolo delle perdite distribuite lungo un condotto: Δp ρ = λ l d v 2 2 Δp = perdita di carico lungo il condotto [Pa] ρ = densità del fluido all interno del condotto [kg/m 3 ] λ = fattore d attrito l = lunghezza del condotto [m] d = diametro equivalente del condotto [m] v = velocità del fluido all interno del condotto [m/s] Il fattore d attrito λ è ricavabile dal diagramma riportato nella slide seguente, realizzato grazie alle esperienze di Nikuradse e di altri: λ viene fornito in funzione del numero di Reynolds : Re = ρ v d μ Sul diagramma si distinguono tre diversi regimi di moto: 1) Regime di moto laminare dove vale la relazione λ = 64 2) Regime di transizione, μ = viscosità dinamica del fluido [Pa s] 3) Regime di moto turbolento dove il fattore λ risulta costante e viene fornito in funzione della scabrezza relativa del tubo ε/d Re 6/24

7 Perdite di carico Arpa di Nikuradse 7/24

8 Perdite di carico Diagramma per il calcolo della scabrezza relativa media dei seguenti materiali: da1 a 3: acciaio variamente lavorato; da 2 a 4: calcestruzzo variamente lavorato; da 3 a 6: legno più o meno grezzo; 5: ghisa; 7: ferro galvanizzato; 8: ghisa bitumata; 9: tubo in ferro saldato; 10: tubo in ferro trafilato. Tratto da: A. Cocchi, Termofisica per ingegneri, Ed. Libreria Editoriale Petroni 1974, pag /24

9 Perdite di carico Calcolo delle perdite di carico concentrate lungo un condotto In questo caso, per analogia a quello delle perdite distribuite, si utilizza un coefficiente di perdita di carico ξ che lega la caduta di pressione al quadrato della velocità del fluido. Valori indicativi per il coefficiente ξ: Δp ρ = ξ v2 2 Δp = perdita di carico concentrata [Pa] ρ = densità del fluido [kg/m 3 ] v = velocità del fluido [m/s] ξ = coefficiente di perdita 9/24

10 Perdite di carico Lunghezza equivalente In alternativa al coefficiente di perdita ξ, si può associare ad ogni accidentalità una lunghezza di condotto equivalente. Δp ρ = ξ v2 2 oppure Δp ρ = λ l eq v 2 d 2 ξ = λ l eq d Δp = perdita di carico concentrata [Pa] ρ = densità del fluido [kg/m 3 ] v = velocità del fluido [m/s] ξ = coefficiente di perdita λ = fattore d attrito l eq = lunghezza equivalente dell accidentalità [m] d = diametro equivalente [m] Dove ξ è proporzionale a λ ed alla lunghezza del condotto, espressa in numero di diametri. 10/24

11 Perdite di carico 11/24

12 Esercitazione: perdite di carico dovute all attraversamento di acqua in un diaframma Dati: diametro del tubo: D = 1 m densità dell acqua: ρ = 1000 kg/m 3 velocità dell acqua: v = 2 m/s Perdite di carico Ipotesi: Si sceglie un diaframma tale da generare una perdita di carico localizzata Δp = 981 Pa (= 100 mmh 2 0) Energia persa (equazione di Bernoulli per un fluido incomprimibile) c dc + g dz + v dp + R + L = 0 [J/kg] Le perdite di carico (R) e la portata (G) sono: R = න 1 2 v dp = v p = p ρ = J/kg G = ρ v A = ρ v π D2 4 = π = 1571 kg/s La potenza elettrica P e spesa per alimentare la pompa sconta dei seguenti rendimenti: rendimento meccanico (η m = 0,90), rendimento idraulico (η i = 0,90), rendimento volumetrico (η v = 0,96), rendimento elettrico del motore (η e = 0,95), rendimento di trasmissione della cabina elettrica alla pompa (η t = 0,98) P e = G R η m η i η v η e η t = = 2,17 kw 0,90 0,90 0,96 0,95 0,98 12/24

13 Agenda Equazione energetica del moto dei fluidi Perdite di carico Diametro e spessore di una tubazione Riferimenti 13/24

14 Diametro e spessore di una tubazione Il diametro di una tubazione: diametro nominale e pollici In idraulica il diametro nominale (simbolo DN) è un valore convenzionale con cui vengono individuati componenti idraulici quali tubazioni, flange, valvole. Tale diametro, a seconda del materiale, viene dimensionato in funzione del diametro interno od esterno. Se il componente idraulico è dimensionato in funzione del suo diametro interno standardizzato si fa riferimento alla serie DN/ID (standard dimensionali basati sui diametri interni). Se invece è dimensionato in funzione del suo diametro esterno standardizzato viene riferito alla serie DN/OD. Il costruttore deve indicare se il DN si riferisce alla serie DN/ID o DN/OD. In generale per le tubazioni vale la seguente convenzione: ghisa sferoidale: DN/ID gres: DN/ID fibrocemento: DN/ID plastiche (PVC, PEAD): DN/OD acciaio: DN/ID Il pollice cui si fa riferimento nei diametri delle tubazioni («pollice gas»)non è lo stesso utilizzato nel sistema di misura anglosassone, ovvero non vale 25,4 mm. 14/24

15 Diametro e spessore di una tubazione La designazione «pollice gas» La designazione «pollice gas» deriva dal passato ed in particolare dalle prime condotte per la distribuzione del gas. Le prime condotte da 1, infatti, presentavano effettivamente un diametro interno pari a 25,4 mm ed un diametro esterno pari a 33,7 mm (spessore pari a 4,25 mm). Nel corso degli anni, tuttavia, lo sviluppo tecnico di materiali più prestazionali e di nuove tecniche di realizzazione hanno reso possibile la riduzione degli spessori, consentendo di: Ridurre il diametro esterno a parità di diametro interno, o Aumentare il diametro interno a parità di diametro esterno La scelta ricadde sull aumento del diametro interno in quanto la scelta di ridurre il diametro esterno avrebbe comportato la necessità di modificare anche la raccorderia, essendo il collegamento tubo-raccordo del tipo maschio-femmina in cui il tubo si innesta all interno del raccordo. Per questo motivo, per indicare le dimensione della tubatura si è introdotto il termine pollice gas. Tubo Raccordo 15/24

16 Diametro e spessore di una tubazione Lo spessore della tubazione: il numero di schedula Anche i componenti non plastici possono essere dimensionati in funzione del diametro esterno. Per risalire al diametro interno si fa quindi riferimento allo spessore del tubo, progettato in funzione della pressione interna a cui è soggetto il componente meccanico. Il numero di schedula, schedule number (sch) nella dizione anglosassone fornisce un'informazione sulla pressione interna che la tubazione può sostenere, secondo la normativa americana ANSI. (La normativa italiana UNI, fa riferimento invece alla pressione nominale). (Valori degli spessori espressi in mm) La dicitura Standard (Std), Extra Strong (XS) e Double Extra Strong (XXS) che troviamo nelle tabelle seguenti fa riferimento invece alla vecchia normativa (del 1927). 16/24

17 Diametro e spessore di una tubazione Calcolo del numero di schedula: Il numero di schedula viene calcolato come: SCH = 1000 p i τ Dalla formula di Barlow abbiamo che: s = p i D i 2τ + c Si ha quindi: Dove: p i è la pressione interna alla tubazione, (psi) τ è la tensione massima ammissibile dal materiale a temperatura ambiente (psi) Dove: s è lo spessore della tubazione, (in) c è il sovraspessore di corrosione, (in) D i il diametro interno della tubazione, (in) p i = 2(s c)τ D i da cui otteniamo l'espressione del numero di schedula in funzione dello spessore di parete della tubazione (a T ambiente): SCH = 2000 (s c) D i 17/24

18 Diametro e spessore di una tubazione Tubi di acciaio: diametri e spessori (schedule) (Valori espressi in mm) 18/24

19 Diametro e spessore di una tubazione Tabella comparativa diametri esterni delle tubazioni 19/24

20 Diametro e spessore di una tubazione Tabella comparativa diametri interni delle tubazioni Il valore dopo la sigla PE (polietilene) diviso per 10 rappresenta la massima pressione garantita alla quale la condotta resiste in esercizio per 50 anni alla temperature di 20 C, (espressa in bar). PFA è la Pressione di Funzionamento Ammissibile che la condotta può sostenere in esercizio in modo continuo (espressa in bar). 20/24

21 Diametro e spessore di una tubazione Tabella comparativa diametri interni delle tubazioni SN (Nominal Stiffness) in [N/mm^2] rappresenta la resistenza allo schiacciamento della condotta: infatti in assenza di pressione all interno la condotta può subire deformazioni a causa del peso del terreno sovrastante o della presenza di carichi stradali. E I SN = D 3 Dove E è il modulo di Young del materiale (N/mm^2), I è il momento di inerzia (mm^4/mm) e D è il diametro della condotta (mm). Maggiore è dunque SN maggiore è il carico esterno che la condotta può sostenere. 21/24

22 Agenda Equazione energetica del moto dei fluidi Perdite di carico Diametro e spessore di una tubazione Riferimenti 22/24

23 Riferimenti Alcuni riferimenti di letteratura Per approfondimenti si consigliano i seguenti testi: 1. Fabbri, S. Impianti Meccanici. Patron Editore, Capitolo I: Termodinamica tecnica, pag Saccani, C. Slide del corso di Impianti Meccanici M. IMT_0_Caratteristiche di funzionamento dei compressori, slides («Esercitazione lavoro di compressione»). 3. Fabbri, S. Elementi di impiantistica meccanica: aria ed acqua. Capitolo 5: Approvvigionamento e distribuzione dell acqua. Perdite distribuite nelle condotte, pag Fabbri, S. Elementi di impiantistica meccanica: aria ed acqua. Capitolo 5: Approvvigionamento e distribuzione dell acqua. Perdite di carico concentrate, pag Saccani, C. Slide del corso di Impianti Meccanici. L equazione di Darcy-Weisbach, slide Nuovo Colombo. Manuale dell Ingegnere. 85 edizione Hoepli. Tubi e organi di tenuta. Paf. F97 F /24

24 Corso di Strumentazione e Automazione Industriale Modulo 0.1 Richiami e introduzione Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini, PhD Ing. Alessandro Guzzini Department of Industrial Engineering (DIN) - University of Bologna

Modulo 1.1 Richiami e introduzione

Modulo 1.1 Richiami e introduzione Corso di Strumentazione e Automazione Industriale Modulo 1.1 Richiami e introduzione Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini, PhD Ing. Alessandro Guzzini Department

Dettagli

Modulo 0 Richiami e introduzione alla catena di misura

Modulo 0 Richiami e introduzione alla catena di misura Corso di Strumentazione e Automazione Industriale Modulo 0 Richiami e introduzione alla catena di misura Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini Ing. Alessandro Guzzini

Dettagli

Sezione 1 Richiami e introduzione alla catena di misura

Sezione 1 Richiami e introduzione alla catena di misura Corso di Automazione Industriale: Modulo 2: Strumentazione e Automazione Industriale Sezione 1 Richiami e introduzione alla catena di misura Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Department

Dettagli

Modulo 2 Dimensionamento di una rete di distribuzione di fluidi

Modulo 2 Dimensionamento di una rete di distribuzione di fluidi Corso di Impianti Meccanici Laurea Triennale Modulo 2 Dimensionamento di una rete di distribuzione di fluidi Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Dott. Ing. Marco Pellegrini Dott. Ing.

Dettagli

Le pompe sono macchine operanti su fluidi incomprimibili; esse assorbono lavoro da un motore per trasferire energia ad un fluido.

Le pompe sono macchine operanti su fluidi incomprimibili; esse assorbono lavoro da un motore per trasferire energia ad un fluido. Introduzione Le pompe sono macchine operanti su fluidi incomprimibili; esse assorbono lavoro da un motore per trasferire energia ad un fluido. Si distinguono 2 tipologie di pompe: 1. pompe a flusso permanente:

Dettagli

Esercitazione: Dimensionamento di una valvola termostatica

Esercitazione: Dimensionamento di una valvola termostatica Corso di Impianti Meccanici Laurea Triennale e Magistrale Esercitazione: Dimensionamento di una valvola termostatica Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini PhD Ing.

Dettagli

Esercitazione: Dimensionamento di una valvola termostatica

Esercitazione: Dimensionamento di una valvola termostatica Corso di Impianti Meccanici Laurea Triennale e Magistrale Esercitazione: Dimensionamento di una valvola termostatica Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini, PhD Ing.

Dettagli

Alcuni utili principi di conservazione

Alcuni utili principi di conservazione Alcuni utili principi di conservazione Portata massica e volumetrica A ds Portata massica: massa di fluido che attraversa la sezione A di una tubazione nell unità di tempo [kg/s] ρ = densità (massa/volume)

Dettagli

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Nota bene: prima di cominciare scrivere chiaramente il proprio nome e cognome sui fogli e sui diagrammi allegati. I dati del compito sono personalizzati secondo le iniziali: nel seguito, N indica il numero

Dettagli

SISTEMI DI CONDOTTE: Aspetti generali

SISTEMI DI CONDOTTE: Aspetti generali SISTEMI DI CONDOTTE: Aspetti generali Carlo Ciaponi Università degli Studi di Pavia Dipartimento di Ingegneria Idraulica e Ambientale La La rete e i i suoi elementi RETE: insieme di elementi variamente

Dettagli

Modulo 0.6: Richiami. Dispersioni termiche

Modulo 0.6: Richiami. Dispersioni termiche Corso di Impianti Meccanici Laurea Triennale e Magistrale Modulo 0.6: Richiami Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini, PhD Ing. Alessandro Guzzini Department of Industrial

Dettagli

SISTEMI DI CONDOTTE: Aspetti generali

SISTEMI DI CONDOTTE: Aspetti generali SISTEMI DI CONDOTTE: Aspetti generali Carlo Ciaponi Università degli Studi di Pavia Dipartimento di Ingegneria Idraulica e Ambientale La rete e i suoi elementi RETE: insieme di elementi variamente connessi

Dettagli

UNIVERSITÀ DEGLI STUDI DI GENOVA FACOLTÀ DI INGEGNERIA MODULO DIDATTICO N 5

UNIVERSITÀ DEGLI STUDI DI GENOVA FACOLTÀ DI INGEGNERIA MODULO DIDATTICO N 5 UNIVERSITÀ DEGLI STUDI DI GENOVA FACOLTÀ DI INGEGNERIA Esercitazioni di Fisica Tecnica Ambientale 1 CORSO DI LAUREA INGEGNERIA CIVILE EDILE E AMBIENTE E TERRITORIO (Dott. Ing. Paolo Cavalletti) MODULO

Dettagli

Esercizio sul dimensionamento di un impianto ad aria compressa per uso industriale

Esercizio sul dimensionamento di un impianto ad aria compressa per uso industriale Esercizio sul dimensionamento di un impianto ad aria compressa per uso industriale Il dimensionamento in esame riguarda un area produttiva, in cui è necessario installare un impianto di distribuzione di

Dettagli

PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE

PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE Ministero dell istruzione, dell università e della ricerca Istituto d Istruzione Superiore Severi-Correnti IIS Severi-Correnti 02-318112/1 via Alcuino 4-20149 Milano 02-33100578 codice fiscale 97504620150

Dettagli

PERDITE DI CARICO. Gianluca Simonazzi matr Michael Zecchetti matr Lezione del 28/03/2014 ora 14:30-17:30

PERDITE DI CARICO. Gianluca Simonazzi matr Michael Zecchetti matr Lezione del 28/03/2014 ora 14:30-17:30 Gianluca Simonazzi matr. 3969 Michael Zecchetti matr. 390 Lezione del 8/03/04 ora 4:30-7:30 PERDITE DI CARICO Le perdite di carico distribuite (in un tubo liscio, dritto e privo di ostacoli) dipendono

Dettagli

Modulo 0.5: Richiami di componentistica. Scambiatori di calore

Modulo 0.5: Richiami di componentistica. Scambiatori di calore Corso di Impianti Meccanici Laurea Triennale e Magistrale Modulo 0.5: Richiami di componentistica Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini, PhD Ing. Alessandro Guzzini

Dettagli

Modulo 1.2 Automazione degli impianti

Modulo 1.2 Automazione degli impianti Corso di Strumentazione e Automazione Industriale Modulo 1.2 Automazione degli impianti Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini Ing. Alessandro Guzzini Department of

Dettagli

PERDITE DI CARICO CONTINUE

PERDITE DI CARICO CONTINUE PERDITE DI CARICO CONTINUE La dissipazione di energia dovuta all'attrito interno ed esterno dipende da: velocità del liquido [m/s] dal tipo di liquido e dalle pareti della vena fluida, secondo un coefficiente

Dettagli

CORSO DI TERMODINAMICA E MACCHINE

CORSO DI TERMODINAMICA E MACCHINE CORSO DI TERMODINAMICA E MACCHINE Parte A (Termodinamica Applicata) - Tempo a disposizione 1 ora Problema N. 1A (punti 10/30) Una tubazione con diametro di 70 mm e lunga 2 km trasporta 20 kg/s di gasolio

Dettagli

Calcolo idraulico dell impianto INDICE

Calcolo idraulico dell impianto INDICE INDICE 1. PREMESSA... 2 2. SCHEMA DI FUNZIONAMENTO E SCHEMA IDRAULICO... 3 3. CALCOLO DELL IMPIANTO... 5 3.1. CALCOLO DELLA PREVALENZA TOTALE... 5 3.2. SCELTA DELLA POMPA... 7 3.3. PROBLEMI CONNESSI...

Dettagli

Appunti sull analisi dimensionale per la modellazione del moto uniforme dei fluidi nei condotti circolari. 15 ottobre 2012

Appunti sull analisi dimensionale per la modellazione del moto uniforme dei fluidi nei condotti circolari. 15 ottobre 2012 Appunti sull analisi dimensionale per la modellazione del moto uniforme dei fluidi nei condotti circolari 5 ottobre 202 Analisi dimensionale e teorema Π Si consideri la relazione g 0 = f (g, g 2, g 3,...,

Dettagli

Le principali norme di riferimento per il calcolo dell impianto di riscaldamento sono sostanzialmente:

Le principali norme di riferimento per il calcolo dell impianto di riscaldamento sono sostanzialmente: Lavori inerenti la ristrutturazione degli impianti di riscaldamento a servizio del Palazzo Lombardini ed adiacente ex fabbricato scolastico adibito a scuola superiore denominato Istituito Professionale

Dettagli

061473/ Macchine (a.a. 2014/15)

061473/ Macchine (a.a. 2014/15) 061473/090856 - Macchine (a.a. 2014/15) Nome: Matricola: Data: 02/04/2015 Prova da sostenere: II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova completa

Dettagli

Miscele di gas (Esercizi del testo) e Conduzione

Miscele di gas (Esercizi del testo) e Conduzione Miscele di gas (Esercizi del testo) e Conduzione 1. Determinare la resistenza termica complessiva di un condotto cilindrico di lunghezza L = 10 m, diametro interno D i = 4 mm e spessore s = 1 mm, realizzato

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

Illustrazione 1: Sviluppo dello strato limite idrodinamico in un flusso laminare interno a un tubo circolare

Illustrazione 1: Sviluppo dello strato limite idrodinamico in un flusso laminare interno a un tubo circolare 1 Flusso interno Un flusso interno è caratterizzato dall essere confinato da una superficie. Questo fa sì che lo sviluppo dello strato limite finisca per essere vincolato dalle condizioni geometriche.

Dettagli

EQUAZIONE DELLA CONTINUITA = Bilancio di massa nel tempo dt. Massa accumulatasi nel sistema. Massa uscente dal sistema. Massa entrante nel sistema

EQUAZIONE DELLA CONTINUITA = Bilancio di massa nel tempo dt. Massa accumulatasi nel sistema. Massa uscente dal sistema. Massa entrante nel sistema SISTEMI APERTI Ipotesi: EQUILIBRIO LOCALE in ogni punto del sistema aperto le proprietà termostatice assumono il valore ce avrebbero se nell intorno di quel punto il sistema fosse uniforme Ipotesi: MOTO

Dettagli

Prova scritta di Fisica Tecnica 1 Fila A 22 dicembre 2006

Prova scritta di Fisica Tecnica 1 Fila A 22 dicembre 2006 Prova scritta di Fisica Tecnica Fila A dicembre 006 Esercizio n. Un impianto a vapore per la produzione di energia elettrica opera secondo un ciclo Rankine con le seguenti caratteristice: portata di vapore

Dettagli

Flussi Di Fanno. 1 Definizione del flusso di Fanno

Flussi Di Fanno. 1 Definizione del flusso di Fanno Flussi Di Fanno 1 Definizione del flusso di Fanno Si consideri un flusso adiabatico all interno di un condotto a sezione costante, in presenza di attrito e senza scambio di lavoro con l esterno. Tale regime

Dettagli

Dimensionamento di una rete d'adduzione del gas

Dimensionamento di una rete d'adduzione del gas Dimensionamento di una rete d'adduzione del gas Edificio: Istituto "Medi" di Randazzo Relazione tecnica Il calcolo dei diametri delle tubazioni dell'impianto è svolto in conformità alla norma UNI 7129/2001

Dettagli

FLUIDODINAMICA ESPERIMENTO DI REYNOLDS

FLUIDODINAMICA ESPERIMENTO DI REYNOLDS Silvia Vezzosi matr. 146130 Lezione del 17/10/0 ora 8:30-10:30 FLUIDODINAMICA La fluidodinamica è la parte della meccanica che si occupa della dinamica dei fluidi all interno ed all esterno di condotti.

Dettagli

Esercizio 1 Pompa 25/01/2008

Esercizio 1 Pompa 25/01/2008 Esercizio 1 Pompa 25/01/2008 Parte 1 Pompa con valvola parzialmente chiusa Dati: - le misure riportate sulla schema in Figura 1 espresse in metri - densità e viscosità dinamica dell acqua trasportata dalla

Dettagli

COMUNE DI PRADAMANO COMMITTENTE. AMMINISTRAZIONE COMUNALE DI PRADAMANO piazza Chiesa, Pradamano (UD) P.IVA C.F.

COMUNE DI PRADAMANO COMMITTENTE. AMMINISTRAZIONE COMUNALE DI PRADAMANO piazza Chiesa, Pradamano (UD) P.IVA C.F. REGIONE FRIULI VENEZIA-GIULIA COMUNE DI PRADAMANO PROVINCIA DI UDINE COMMITTENTE AMMINISTRAZIONE COMUNALE DI PRADAMANO piazza Chiesa, 3-33040 Pradamano (UD) P.IVA 00466800307 - C.F. 80003650308 OGGETTO

Dettagli

Fisica Tecnica (9CFU) -- Ing. Energetica -- Laurea

Fisica Tecnica (9CFU) -- Ing. Energetica -- Laurea Fisica Tecnica (9CFU) -- Ing. Energetica -- Laurea Programma dettagliato del Corso Docente: Ing. Ivano Petracci Termodinamica F. Gori, Lezioni di termodinamica, TE MAT) Il Sistema Internazionale (SI).

Dettagli

Modulo 2 Dimensionamento di una rete di distribuzione di fluidi

Modulo 2 Dimensionamento di una rete di distribuzione di fluidi Corso di Impianti Meccanici Laurea Triennale Modulo 2 Dimensionamento di una rete di distribuzione di fluidi Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Dott. Ing. Marco Pellegrini Dott. Ing.

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

TERMODINAMICA DEL CALORE SISTEMI APERTI

TERMODINAMICA DEL CALORE SISTEMI APERTI CAPITOLO QUINTO TERMODINAMICA DEL CALORE SISTEMI APERTI Sistemi aperti Essi possono essere considerati come una scatola, racchiudente organi di vario genere, che, oltre a scambiare calore e lavoro, sono

Dettagli

Modulo 0.5: Richiami di componentistica. Scambiatori di calore

Modulo 0.5: Richiami di componentistica. Scambiatori di calore Corso di Impianti Meccanici Laurea Triennale e Magistrale Modulo 0.5: Richiami di componentistica Scambiatori di calore Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini Department

Dettagli

POLITECNICO DI TORINO

POLITECNICO DI TORINO POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE Seconda sessione ANNO 2008 Settore INDUSTRIALE - Classe 33/S Ingegneria Energetica e nucleare Terza prova (prova pratica

Dettagli

Approfondimenti: PROBLEMATICHE TECNICHE di FISICA APPLICATA

Approfondimenti: PROBLEMATICHE TECNICHE di FISICA APPLICATA Approfondimenti: PROBLEMATICHE TECNICHE di FISICA APPLICATA CASO A): dilatazione termica dei tubi in acciaio e compensazione degli sforzi CASO B): misurazione dell energia termica e dimensionamento preliminare

Dettagli

061473/ Macchine (a.a. 2015/16)

061473/ Macchine (a.a. 2015/16) 061473/090856 - Macchine (a.a. 2015/16) Nome: Matricola: Data: 23/11/2015 Parte B (11 punti su 32). Punteggio minimo: 5/11. Esercizio 1 (5 punti) Si consideri il banco prova rappresentato in figura, utilizzato

Dettagli

INDICE 1. DESCRIZIONE DELLE POMPE IDROVORE DA FORNIRE DIMENSIONAMENTO MOTORI ELETTRICI... 7

INDICE 1. DESCRIZIONE DELLE POMPE IDROVORE DA FORNIRE DIMENSIONAMENTO MOTORI ELETTRICI... 7 INDICE 1. DESCRIZIONE DELLE POMPE IDROVORE DA FORNIRE... 3 2. DIMENSIONAMENTO MOTORI ELETTRICI... 7 2 1. DESCRIZIONE DELLE POMPE IDROVORE DA FORNIRE CALCOLO DELLE PERDITE DI CARICO, PREVALENZA MANOMETRICA,

Dettagli

Dimensionamento di canna fumaria singola

Dimensionamento di canna fumaria singola Dimensionamento di canna fumaria singola Progettazione e verifica secondo UNI EN 13384-1 EDIFICIO INDIRIZZO DESCRIZIONE COMMITTENTE Scuola Calvino Via Santa Maria a Cintoia Nuova Canna Fumaria Comune di

Dettagli

Modulo 1.1 Introduzione e richiami

Modulo 1.1 Introduzione e richiami Corso di Strumentazione e Automazione Industriale Modulo 1.1 Introduzione e richiami Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini Ing. Alessandro Guzzini Department of Industrial

Dettagli

Modulo 1.1 Introduzione e richiami

Modulo 1.1 Introduzione e richiami Corso di Strumentazione e Automazione Industriale Modulo 1.1 Introduzione e richiami Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini Ing. Alessandro Guzzini Department of Industrial

Dettagli

Figure 1: Sviluppo dello strato limite idrodinamico in un flusso laminare interno a un tubo circolare. Re D = ρu md

Figure 1: Sviluppo dello strato limite idrodinamico in un flusso laminare interno a un tubo circolare. Re D = ρu md FLUSSO INTERNO Un flusso interno come quello che passare nel piping di un impianto è caratterizzato dall essere confinato da una superficie. Questo fa sì che lo sviluppo dello strato limite finisca per

Dettagli

Bilanci macroscopici. Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot

Bilanci macroscopici. Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot Bilanci macroscopici Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot 7A 7B 7C 7D 7E 7F Esercizio 1 Due recipienti, le cui basi si trovano su uno stesso piano, sono messi in comunicazione

Dettagli

Sommario 1 PREMESSA POTENZE TERMICHE VALVOLE TERMOSTATICHE ACQUA CALDA SANITARIA POMPE E CIRCOLATORI...

Sommario 1 PREMESSA POTENZE TERMICHE VALVOLE TERMOSTATICHE ACQUA CALDA SANITARIA POMPE E CIRCOLATORI... Sommario 1 PREMESSA... 2 2 POTENZE TERMICHE... 3 3 VALVOLE TERMOSTATICHE... 4 4 ACQUA CALDA SANITARIA... 8 4.1 Massimo consumo orario... 8 4.2 Volume preparatore... 8 4.3 Potenza termica del serpentino...

Dettagli

CAPITOLO 5 IDRAULICA

CAPITOLO 5 IDRAULICA CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'

Dettagli

STUDIO DI MASSIMA DI UNA MICROTURBINA PER PRODUZIONE DI ENERGIA ELETTRICA

STUDIO DI MASSIMA DI UNA MICROTURBINA PER PRODUZIONE DI ENERGIA ELETTRICA ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA Sede di Bologna TESI DI LAUREA Laboratorio di Cad STUDIO DI MASSIMA DI UNA MICROTURBINA PER PRODUZIONE

Dettagli

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE 1 PERDITE DI CARICO CONTINUE Sono le perdite di carico (o di pressione) che un fluido, in moto attraverso un condotto, subisce a causa delle resistenze

Dettagli

Perdite di energia per frizione di sali fusi ad alta temperatura

Perdite di energia per frizione di sali fusi ad alta temperatura Perdite di energia per frizione di sali fusi ad alta temperatura Erminia Leonardi 3/1/ Le perdite di energia per frizione in un fluido sono in generale una funzione complessa della geometria del sistema,

Dettagli

CORRENTI IN PRESSIONE. Si devono risolvere le equazioni indefinite del moto: Navier, Continuità, Stato, Termodinamica, con condizioni al contorno

CORRENTI IN PRESSIONE. Si devono risolvere le equazioni indefinite del moto: Navier, Continuità, Stato, Termodinamica, con condizioni al contorno CORRENTI IN PRESSIONE INTEGRAZIONE DELL EQUAZIONE DI NAVIER-STOKES Per le applicazioni pratiche bisogna conoscere lo sforzo, ovvero il campo di moto (distribuzione della velocità): V x, y, z Si devono

Dettagli

Dimensionamento Coclee

Dimensionamento Coclee Corso di Impianti Meccanici Laurea Magistrale Dimensionamento Coclee Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Dott. Ing. Marco Pellegrini Ing. Luca Golfera Department of Industrial Engineering

Dettagli

METODI DI RAPPRESENTAZIONE DI UN SISTEMA

METODI DI RAPPRESENTAZIONE DI UN SISTEMA METODI DI RAPPRESENTAZIONE DI UN SISTEMA PROPRIETA ELEMENTARI Proprietà elementari dei componenti idraulici Proprietà elementari dei componenti termici Proprietà elementari dei componenti meccanici Proprietà

Dettagli

DINAMICA DEI LIQUIDI

DINAMICA DEI LIQUIDI INAMICA EI LIQUII Si definisce portata Q il prodotto tra la velocità del liquido per la sezione della condotta : Q = V S Se la portata Q, in una condotta, non varia nel tempo il regime si definisce stazionario.

Dettagli

Indice delle lezioni (Prof. Marchesi)

Indice delle lezioni (Prof. Marchesi) Lezione numero 1 Lezione numero 2 Lezione numero 3 Lezione numero 4 Lezione numero 5 Lezione numero 6 Lezione numero 7 Indice delle lezioni Introduzione al corso. Sistemi termodinamici. Pareti. La natura

Dettagli

( pi + σ ) nds = 0 (3)

( pi + σ ) nds = 0 (3) OLUZIONE IMULAZIONE EAME 0 DICEMBRE 05 I Parte Domanda (5 punti) Un fluido incomprimibile viene pompato in tubo orizzontale di lunghezza L e diametro D. La differenza di pressione agli estremi del tubo

Dettagli

Moto dei fluidi: equazione di bilancio energetico

Moto dei fluidi: equazione di bilancio energetico Lezione XIX - 03/04/003 ora 4:30-6:30 - Bilancio di energia, perdite di carico, esperienza di Reynolds - Originale di Berti Sara. Introduzione alla fluidodinamica Lo studio dei fluidi in movimento è l

Dettagli

PARTE 1. S = kn, diretta dal liquido verso la parete, affondamento del punto

PARTE 1. S = kn, diretta dal liquido verso la parete, affondamento del punto PARTE 1 Utilizzando i seguenti dati: - schema dell impianto riportato in figura 1 - proprietà termodinamiche del liquido trasportato (acqua γ H20 = 1000 kg/m 3, µ=10-3 Pa s) - diametro D 1 =150 mm e scabrezza

Dettagli

Perdite di carico in tubi cilindrici (i.e. correnti in pressione)

Perdite di carico in tubi cilindrici (i.e. correnti in pressione) Perdite di carico in tubi cilindrici (i.e. correnti in pressione) Le perdite di carico in tubi cilindrici sono classificabili in due grosse categorie: - Perdite di carico distribuite: traggono origine

Dettagli

RELAZIONE TECNICA AI SENSI DELLA LEGGE 5 MARZO 1990 N. 46 E SUCCESSIVO DECRETO MINISTERIALE 22/01/2008 N. 37

RELAZIONE TECNICA AI SENSI DELLA LEGGE 5 MARZO 1990 N. 46 E SUCCESSIVO DECRETO MINISTERIALE 22/01/2008 N. 37 RELAZIONE TECNICA AI SENSI DELLA LEGGE 5 MARZO 1990 N. 46 E SUCCESSIVO DECRETO MINISTERIALE 22/01/2008 N. 37 OGGETTO: Relazione tecnica relativa alle reti di distribuzione del gas metano per l alimentazione

Dettagli

Dimensionamento rete aria compressa. Impianti Industriali

Dimensionamento rete aria compressa. Impianti Industriali Dimensionamento rete aria Impianti Industriali 2-2009 1 1 - Tratto di tubazione ogni tratto dell'impianto di distribuzione dell aria è individuato da lettere e numeri che ne definiscono gli estremi. Con

Dettagli

Effetti dell approssimazione di portata equivalente per una condotta distributrice

Effetti dell approssimazione di portata equivalente per una condotta distributrice UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO Tesi di Laurea in Idraulica Effetti dell approssimazione di portata equivalente

Dettagli

PROGETTO DIDATTICO DELLA DISCIPLINA

PROGETTO DIDATTICO DELLA DISCIPLINA MATERIA: MECCANICA MACCHINE ED ENERGIA CLASSI 3AME INDIRIZZO/I: MECCANICA / ENERGIA PROGETTO DIDATTICO DELLA DISCIPLINA In relazione a quanto richiesto dal Piano dell Offerta Formativa si definiscono i

Dettagli

Esercizio 1 Pompa Parte 1 Pompa con valvola parzialmente chiusa (z = 0 m in corrispondenza del baricentro della sezione (Q = 8.

Esercizio 1 Pompa Parte 1 Pompa con valvola parzialmente chiusa (z = 0 m in corrispondenza del baricentro della sezione (Q = 8. Esercizio 1 Pompa Parte 1 Pompa con valvola parzialmente chiusa Dati: - le misure riportate sullo schema in Figura 1 espresse in metri - densità e viscosità dinamica dell acqua trasportata dalla condotta

Dettagli

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU............ Tempo a disposizione (tre esercizi) 2 ore e 30 1 esercizio (esonero) 1 ora

Dettagli

5. Calcolo termodinamico e fluidodinamico di progetto di un riscaldatore d aria con fluidi in controcorrente.

5. Calcolo termodinamico e fluidodinamico di progetto di un riscaldatore d aria con fluidi in controcorrente. 5. Calcolo termodinamico e fluidodinamico di progetto di un riscaldatore d aria con fluidi in controcorrente. Si vuole effettuare il dimensionamento di un riscaldatore d aria con fluidi in controcorrente

Dettagli

Studio di massima di un turbocompressore per uso aeronautico con riferimento ad un compressore esistente

Studio di massima di un turbocompressore per uso aeronautico con riferimento ad un compressore esistente Alma Mater Studiorum - Università degli Studi di Bologna Facoltà di Ingegneria Studio di massima di un turbocompressore per uso aeronautico con riferimento ad un compressore esistente Tesi di Laurea in

Dettagli

PREMESSA. La presente relazione, accompagna le scelte progettuali relative all impianto di adduzione idrica

PREMESSA. La presente relazione, accompagna le scelte progettuali relative all impianto di adduzione idrica PREMESSA La presente relazione, accompagna le scelte progettuali relative all impianto di adduzione idrica asservito alla banchina interessata dal progetto di Adeguamento strutturale della banchina di

Dettagli

LE PERDITE DI CARICO

LE PERDITE DI CARICO https://www.google.it/#q=perdite+di+carico http://web.taed.unifi.it/fisica_tecnica/sciurpi/perdite%20di%20carico.pdf http://pcfarina.eng.unipr.it/dispense99/patini119156/patini119156.htm http://pcfarina.eng.unipr.it/dispense00/ghidoni125948/ghidoni125948.htm

Dettagli

ESAME DI AERODINAMICA 14/06/2013

ESAME DI AERODINAMICA 14/06/2013 ESAME DI AERODINAMICA 14/06/2013 La derivata della retta C L in fuzione di α, per un ala finita di allungamento 8 composta da profili sottili simmetrici e lungo la quale si realizza una distribuzione di

Dettagli

Meccanica dei fluidi, dove e cosa studiare

Meccanica dei fluidi, dove e cosa studiare Meccanica dei fluidi, dove e cosa studiare Meccanica dei Fluidi AA 2015 2016 Il libro di testo adottato è Meccanica dei Fluidi di Cengel & Cimbala, McGraw Hill. Alcuni argomenti sono stati trattati con

Dettagli

PARTE 1. Utilizzando i seguenti dati:

PARTE 1. Utilizzando i seguenti dati: PARTE 1 Utilizzando i seguenti dati: - schema dell impianto riportato in figura 1 - proprietà termodinamiche del liquido trasportato (acqua γ H20 = 1000 kg/m 3, µ=10-3 Pa s) - diametro D 1 =450 mm e scabrezza

Dettagli

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Dinamica dei fluidi 7/3/2006

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Dinamica dei fluidi 7/3/2006 a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Dinamica dei fluidi 7/3/2006 Fluido in moto Difficile da calcolare: modelli matematici! la forma più semplice è il moto laminare scorrimento

Dettagli

Pillole di Fluidodinamica e breve introduzione alla CFD

Pillole di Fluidodinamica e breve introduzione alla CFD Pillole di Fluidodinamica e breve introduzione alla CFD ConoscereLinux - Modena Linux User Group Dr. D. Angeli diego.angeli@unimore.it Sommario 1 Introduzione 2 Equazioni di conservazione 3 CFD e griglie

Dettagli

Calcolo delle perdite di carico

Calcolo delle perdite di carico 9 Calcolo delle perdite di carico 9.1 Canali Il seguente paragrafo sarà dedicato alla descrizione delle perdite di carico nei canali anche se tutto il manuale è dedicato alle tubazioni per il trasporto

Dettagli

COMUNE DI CASTRONNO PIAZZA DEL COMUNE, 1 CASTRONNO (VA)

COMUNE DI CASTRONNO PIAZZA DEL COMUNE, 1 CASTRONNO (VA) Studio ETA Engineering PROGETTAZIONE IMPIANTISTICA INTEGRATA ELETTROTECNICA TERMOTECNICA - ANTINCENDIO ALLEGATO D COMUNE DI CASTRONNO PIAZZA DEL COMUNE, 1 CASTRONNO (VA) LAVORI DI ADEGUAMENTO IMPIANTO

Dettagli

ESAME DI AERODINAMICA 14/06/2013

ESAME DI AERODINAMICA 14/06/2013 ESAME DI AERODINAMICA 14/06/2013 La derivata della retta C L in fuzione di α, per un ala finita di allungamento 8 composta da profili sottili simmetrici e lungo la quale si realizza una distribuzione di

Dettagli

L 2 L 1 L 3. Esercizio 1. Con riferimento alla Figura 1, i dati del problema in esame sono:

L 2 L 1 L 3. Esercizio 1. Con riferimento alla Figura 1, i dati del problema in esame sono: Esercizio 1 Con riferimento alla Figura 1, i dati del problema in esame sono: - L 1 = 6 m; - L 2 = 3 m; - L 3 = 14 m; - d = 5 m; - a = 45 ; - D = 2 mm; - K= 1 m 1/3 /s. Si verifichi il funzionamento del

Dettagli

Oggetto: Via Galileo Galilei, San Donato (MI) ALLEGATO 1 - DIMENSIONAMENTO DI CAMINO SINGOLO

Oggetto: Via Galileo Galilei, San Donato (MI) ALLEGATO 1 - DIMENSIONAMENTO DI CAMINO SINGOLO Oggetto: Via Galileo Galilei, 1 20097 - San Donato (MI) ALLEGATO 1 - DIMENSIONAMENTO DI CAMINO SINGOLO INNOVHUB STAZIONI SPERIMENTALI PER L INDUSTRIA ALLEGATO 1 DIMENSIONAMENTO DI CAMINO SINGOLO Committente:

Dettagli

Modulo 0 Caratteristiche di funzionamento dei compressori

Modulo 0 Caratteristiche di funzionamento dei compressori Corso di Impianti Meccanici Laurea Magistrale Modulo 0 Caratteristiche di funzionamento dei compressori Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Dott. Ing. Marco Pellegrini Dott. Ing. Michele

Dettagli

Studio di massima di un sistema di sovralimentazione di un motore diesel turbocompound basato su turbina Allison 250-C18

Studio di massima di un sistema di sovralimentazione di un motore diesel turbocompound basato su turbina Allison 250-C18 ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA Studio di massima di un sistema di sovralimentazione di un motore diesel turbocompound basato su

Dettagli

Programmazione modulare a.s

Programmazione modulare a.s Programmazione modulare a.s. 2018-2019 Disciplina: MME Meccanica, Macchine ed Energia Docente prof.ssa Rita Muraglia, prof. Raniero Spinelli Classe 4 meccanica sez. A settimanali : 5 ore di cui 2 di laboratorio

Dettagli

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv Prefazione alla terza edizione italiana...xi Ringraziamenti dell Editore...XIII Guida alla lettura...xiv 1 INTRODUZIONE E UNO SGUARDO D INSIEME...1 1.1 Introduzione alle scienze termiche...2 1.2 La termodinamica

Dettagli

Gocce di MECCANICA DEI FLUIDI per allievi geometri

Gocce di MECCANICA DEI FLUIDI per allievi geometri M Gocce di MECCANICA DEI FLUIDI per allievi geometri Definizioni. 2 Leggi fondamentali dell idrostatica 2 Energia potenziale e pressione...3 La legge di Bernoulli..4 Portata ed equazione di continuità..5

Dettagli

Cognome: Nome: Matricola: CFU TERMOTECNICA 1. A.A febbraio 2010 ESERCIZI NUMERICI. tot. sec m sec = 1. S sec. ζ prim

Cognome: Nome: Matricola: CFU TERMOTECNICA 1. A.A febbraio 2010 ESERCIZI NUMERICI. tot. sec m sec = 1. S sec. ζ prim TERMOTECNICA 1 I PROBLEMA A.A. 2009-2010 12 febbraio 2010 ESERCIZI NUMERICI In un impianto monotubo (cfr disegno) sul ramo secondario è presente un corpo scaldante da 3,0 kw nel quale entra acqua a 90

Dettagli

Corso di Idraulica Agraria ed Impianti Irrigui

Corso di Idraulica Agraria ed Impianti Irrigui Corso di Idraulica Agraria ed Impianti Irrigui Docente: Ing. Demetrio Antonio Zema Lezione n. 6: Idrodinamica (parte seconda) Anno Accademico 0-0 0 Perdite di carico concentrate (o localizzate) Perdite

Dettagli

ESCLUSIVO USO DIDATTICO INTERNO - CENNI DI DINAMICA DEI FLUIDI Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica

ESCLUSIVO USO DIDATTICO INTERNO - CENNI DI DINAMICA DEI FLUIDI Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via Bassi 6, 700 Pavia, Italy - tel. 038/98.7905 girolett@unipv.it - www.unipv.it/webgiro 004 elio giroletti dinamica dei fluidi RISCHI FISICI,

Dettagli

Università di Roma Tor Vergata

Università di Roma Tor Vergata Università di Roma Tor Vergata Facoltà di Ingegneria Dipartimento di Ingegneria Industriale Corso di: TERMOTECNICA TRASMISSIONE DEL CALORE: RESISTENZA DI CONTATTO Ing. G. Bovesecchi gianluigi.bovesecchi@gmail.com

Dettagli

UNIVERSITÀ DEGLI STUDI DI BRESCIA

UNIVERSITÀ DEGLI STUDI DI BRESCIA UNIVERSITÀ DEGLI STUDI DI BRESCIA ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario) SEZIONE B - Seconda

Dettagli

Meccanica e Macchine esame 2008 MECCANICA APPLICATA E MACCHINE A FLUIDO

Meccanica e Macchine esame 2008 MECCANICA APPLICATA E MACCHINE A FLUIDO Meccanica e Macchine esame 008 MECCANICA APPLICATA E MACCHINE A FLUIDO Sessione ordinaria 008 Lo schema riportato in figura rappresenta un motore elettrico che eroga una potenza nominale di 0 kw ad un

Dettagli

Modellistica di sistemi a fluido

Modellistica di sistemi a fluido I fluidi vengono suddivisi in liquidi e gas. Liquidi: sono sempre delimitati da una superficie ben definita, possiedono un volume proprio ma non una forma propria. Gas: sono costituiti da molecole in moto

Dettagli

ESAME DI STATO Soluzione. Diagramma del momento motore Velocità angolare di rotazione: n 60 Calcolo della cilindrata 2 2

ESAME DI STATO Soluzione. Diagramma del momento motore Velocità angolare di rotazione: n 60 Calcolo della cilindrata 2 2 ESAE DI STATO 004 ESAE DI STATO DI ISTITUTO TECNICO INDUSTRIALE CORSO DI ORDINAENTO Indirizzo: ECCANICA Tema di: ECCANICA APPLICATA E ACCHINE A LUIDO Una pompa a stantuffo a semplice effetto ha le seguenti

Dettagli