Simulazione della Prova Scritta di Logica e Fondamenti di Matematica 30 aprile 2013

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Simulazione della Prova Scritta di Logica e Fondamenti di Matematica 30 aprile 2013"

Transcript

1 Simulazione della Prova Scritta di Logica e Fondamenti di Matematica 30 aprile 013 Nome, cognome, numero di matricola Punteggio totale 1. (i) lassificare le seguenti formule in tautologie, contraddizioni o formule contingenti: (a) (p q) ( p q) (punti 1) (b) ((p r) q) (p q) (punti 1) (c) (p q) (q p) (punti 1) (d) (p q) ( p q) (punti 1) Sol.: Tautologia Sol.: ontraddizione Sol.: Tautologia Sol.: Formula ontingente (ii) Indicare, se ce ne sono, quali di queste formule sono equivalenti fra di loro. (punti 1) Sol.: Le formule di (a) e di (c) sono equivalenti, perché entrambe sono tautologie. Non ci sono altre.. onsiderando i seguenti valori per le lettere sentenziali: p = I concetti sono entità soggettive; q = I concetti sono entità oggettive; r = Si può fare logica; s = È possibile spiegare lo status metafisico dei concetti. Formalizzare gli enunciati seguenti: (i) I concetti sono entità soggettive oppure oggettive. (punti 1) Sol.: (p q) (ii) Se sono oggettive, allora si può fare logica ma è impossibile spiegare lo status metafisico dei concetti. (punti 1) Sol.: q (r s) (iii) Se sono soggettive, allora non si può fare logica, ma si può spiegare lo status metafisico dei concetti. (punti 1) Sol.: p ( r s) (iv) Tuttavia, non si può spiegare lo status metafisico dei concetti. (punti 1) Sol.: s (v) Quindi, i concetti sono entità oggettive e si può fare logica. (punti 1) Sol.: (q r) 3. onsideriamo gli insiemi = {1,, 4}, B = {, 3}, = {1, 3, 4}, = {{1, }, 4}. (i) alcolare: (a) \ (B ); (punti 1) Sol.: B = {3}, quindi {1,, 4} \ {3} = {1,, 4}. (b) ( \ B) ( \ ). (punti 1) Sol.: \ B = {1, 4}, \ = {}, quindi ( \ B) ( \ ) = {1, 4} {} = {1,, 4}. lternativamente, in virtù delle leggi di e Morgan, ( \ B) ( \ ) = \ (B ), e quindi la soluzione è la stessa di (a). (ii) Enumerare tutti i sottoinsiemi di e di. (punti 1) Sol.: I sottoinsiemi di sono 3 = 8:, {1}, {}, {4}, {1, }, {1, 4}, {, 4}, {1,, 4}. I sottoinsiemi di sono = 4:, {{1, }}, {4}, {{1, }, 4}. (iii) escrivere l insieme B per compressione. (punti 1) Sol.: B = {x : x N 1 < x < 4}, cioè, B = {x : x è un numero naturale maggiore di 1 e minore di 4}. (iv) Trovare degli insiemi X, Y, Z tali che X \ (Y Z) (X \ Y ) (X \ Z). (punti ) Sol.: Se prendiamo, ad esempio, X = {1}, Y = {1} e Z =, allora X\(Y Z) = {1}\({1} ) = {1} \ = {1}, mentre invece (X \ Y ) (X \ Z) = ({1} \ {1}) ({1} \ ) = {1} =. In realtà, sono pochi gli insiemi che soddisfano la uguglianza. 1

2 4. onsideriamo l insieme = {x : x è un bambino sardo}, e sia R = { x, : x e sono bambini della stessa età}. ire se sono vere o false le affermazioni seguenti: (i) R non è una relazione di equivalenza su perché R non è transitiva. (punti 1) Sol.: Falsa (ii) R non è una relazione di equivalenza su perché R non è simmetrica. (punti 1) Sol.: Falsa (iii) R è una relazione di equivalenza su le cui classi di equivalenza sono tante quanti sono gli anni che un bambino può avere. (punti 1) Sol.: Vera. Perché due bambini stanno nella stessa classe di equivalenza se hanno la stessa età, e quindi ci sono classi di equivalenza tanti quanti sono gli anni che un bambino può avere. (iv) R è una relazione di equivalenza su le cui classi di equivalenza sono tante quanti sono i bambini sardi. (punti 1) Sol.: Falsa. Perché (iii) è vera, e non possono essere entrambe vere. 5. (i) Trovare due numeri tali che la loro somma sia 6 e la differenza tra i loro quadrati sia 10. (punti ) Sol.: Siano x e i numeri. evono soddisfare: { x + = 6 x = 10 Una forma di risolvere il sistema è isolando x nella prima equazione e sostituirla nella seconda: x = 6, e quindi (6 ) = 10. Sviluppando otteniamo: ( ) = 10, e per tanto 36 1 = 10. Isolando in questa equazione otteniamo 1 = 10 36, cioè 1 = 84, e finalmente = 84 1, = 7. Siccome x = 6, allora x = 6 ( 7), pertanto x = 13. Una forma alternativa sarebbe la seguente: osservare che x = (x + ) (x ). E quindi, dividendo la seconda equazione per la prima: x x + = 10 6, (x + )(x ) = 10 x + 6, x = 0. Per tanto, il sistema è equivalente a: { x + = 6 x = 0 Sommando le due equazioni, otteniamo x = 6, e quindi x = 13, e restando la seconda alla prima otteniamo = 14, e quindi = 7. Per ogni metodo otteniamo la stessa soluzione: i numeri sono 7 e 13. In fatti, 13+( 7) = 6 e 13 ( 7) = = 10. (ii) Risolvere il sistema di equazioni: 6x + 5 = 4 3x = 5 (punti ) Sol.: Isolando nella seconda equazione, otteniamo: = 3x 5, e sostituendo nella prima otteniamo: 6x + 5(3x 5) = 4. Sviluppando, arriviamo a 1x = 49, e quindi x = 7 3. Sostituendo in = 3x 5, otteniamo = 7 5, cioè =. }

3 6. Il prodotto di due numeri naturali dispari consecutivi è 33. Quali sono questi numeri? (punti ) Sol.: Siano x e i due numeri che cerchiamo. Siccome sono dispari consecutivi, allora possiamo suporre che = x +. Il suo prodotto è 33, e quindi x(x + ) = 33, e sviluppando otteniamo: x + x 33 = 0. Questo è una equazione di secondo grado e le sue soluzioni, se ce ne sono, si ottengono con la formula generale: x = ± ( 33) = ± 196 = ± 36 e per tanto: x = + 36 = 34 = 17 oppure x = 36 = 38 = 19. Siccome i numeri devono essere naturali, allora la soluzione negativa della equazione non è en realtà una soluzione al nostro problema, e la unica che dobbiamo prendere in considerazione è x = 17, e quindi = x + = 17 + = 19. I due numeri sono: 17 e 19, che effettivamente sono naturali e dispari consecutivi, e il suo prodotto è (i) alcolare il massimo comune divisore e minimo comune multiplo delle seguenti coppie di numeri: (a) 94, 88; (punti 1) Sol.: = 1 con resto 4; 88 4 = 1 con resto 0. Quindi, M(94, 88) = 4, e mcm(94, 88) = = (b) 11536, 163. (punti 1) Sol.: = 5 con resto 71; = 3 con resto 0. Quindi M(11536, 163) = 71 e mcm(11536, 163) = = (ii) Trovare le frazioni generatrici dei seguenti numeri decimali: (a) 5, (punti 1) Sol.: Se a = 5, 3407, allora 10a = 53, 407, 10000a = 53407, 407, e quindi ioè 10000a 10a = 53407, , a = 53354, e quindi a = (b) 64, 01. (punti 1) Sol.: Se a = 64, 01, allora 100a = 6401, 01, e quindi 100a a = 6401, 01 64, 01. Pertanto: 99a = 6337 e quindi a =

4 8. bbiamo un pezzo di carta rettangolare che è proporzionale alla sua metà. (i) Quale è il rapporto fra il lato lungo e il lato corto? (punti ) (ii) Quale è il rapporto fra la diagonale del quadrato sul lato corto e il lato lungo? (punti ) (iii) Se la sua area è 1/16 m, quanto misurano i suoi lati? (punti ) Sol.: bbiamo un rettangolo che è proporzionale alla sua metà. Se i suoi lati sono x = e = B, allora i lati del rettangolo metà saranno E = / e = x. E E F x / F B x (i) La prima domanda è quale è il rapporto fra il lato lungo e il lato corto, cioè, dobbiamo dire quanto vale /x. Siccome i due rettangoli sono proporzionali, allora il rapporto fra il suoi lati più lunghi sarà uguale al rapporto fra i suoi lati più corti, cioè: x = x. Se passiamo dall altro lato i denominatori, otteniamo: = x x cioè = x. Passando ancora x e, rispettivamente, da l altro lato otteniamo: x = e quindi x =. (ii) La seconda domanda è quale è il rapporto fra la diagonale del quadrato sul lato corto, x = e il lato lungo = B. d G Siccome il lato corto è x, allora per il Teorema di Pitagora, il quadrato della diagonale sarà d = x + x, cioè d = x, e quindi d = x. alla equazione x =, otteniamo anche = x. ioè H B d =. (iii) La ultima domanda è calcolare x e se sappiamo che l area del pezzo di carta è 1/16 m. L area del rettangolo è il prodotto dei suoi lati, cioè: x = Siccome = x, come abbiamo già visto, allora: x x = 1 16 cioè x =

5 Quindi: x = m 0, 10m = 10mm, e = x = 4 4 m 0, 97m = 97mm. ioè, il nostro pezzo di carta è esattamente un folio 4! Infatti, questa è la definizione dell 4. La sua metà è un 5, che è proporzionale all 4. Quindi, il punto (i) ci dice come possiamo ottenere una approssimazione di : soltanto dobbiamo dividere il lato lungo per il lato corto di un folio 4, cioè: dividere 97 per 10: 97/10 1, , 414. Lo stesso si può fare con un 5, e con un 3, o con un 0, 1,... 0 L area di un 0 è di 1m, e ogni elemento successivo della serie IN si ottiene dividendo il precedente a metà osì, l 4 è il risultato di dividere l 0 in 16 pezzi uguali, e per questo motivo ha un area di 1/16 m. 9. Si deve costruire un ponte su un fiume, e il ponte deve partire dall estremo all estremo B. amminando da in linea retta e perpendicolarmente a B, arriviamo a un punto dal quale si vedono e B da un angolo di 60 o. Se continuiamo a camminare altri 50 metri, sempre in linea retta, arriviamo a un punto dal quale si vedono e B da un angolo di 40 o. Quale è la lunghezza del ponte che si deve costruire? (Si può ricorrere al fatto che: sen(0 o ) 0, 34, sen(40 o ) 0, 64, sen(60 o ) 0, 87.) (punti 4) 60 o x β α B Possiamo rappresentare i dati del problema con questa figura, laddove x = B e la distanza che vogliamo trovare, = B è una distanza ausiliaria che useremo, = 50m, e α e β sono gli angoli indicati. 50m 40 o Siccome la somma degli angoli di un triangolo è 180 o, possiamo calcolare α = 180 o 90 o 60 o = 30 o. E poi possiamo calcolare anche β = 180 o 30 o 90 o 40 o = 0 o. Il triangolo B è rettangolo in Â, e quindi per la definizione del seno di un angolo, otteniamo che sen(60 o ) = x/, e pertanto x = sen(60 o ). pplicando il Teorema dei Seni al triangolo B, otteniamo che: sen(40 o ) = 50 sen(0 o ) e quindi = 50 sen(40o ) sen(0 o. ) Pertanto: x = sen(60 o ) = 50 sen(40o ) sen(0 o sen(60 o ) = 50 sen(40o ) sen(60 o ) ) sen(0 o ) 50 0, 64 0, 87 x 81, 88m. 0, 34 Quindi, la lunghezza del ponte è di 81, 88m. (Questo problema è analogo al problema 30 che abbiamo risolto a lezione.) 5

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi Chi non risolve esercizi non impara la matematica.. esercizi + = + = + = 0 = + = 8 + = 0 = 8 8 = + 9 = 0 = + = = + = 0 = = + = 0 = 0 8 0 = 9 = 0 + = + = = 8 = 0 = = = + = 8 = 0 9 = 0 = = + 8

Dettagli

Esercizio 2. Spiegare perché è falsa la seguente affermazione: Se n è un numero negativo, allora anche n + 3 è negativo.

Esercizio 2. Spiegare perché è falsa la seguente affermazione: Se n è un numero negativo, allora anche n + 3 è negativo. Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica

Dettagli

Come risolvere i quesiti dell INVALSI - terzo

Come risolvere i quesiti dell INVALSI - terzo Come risolvere i quesiti dell INVALSI - terzo Soluzione: Dobbiamo ricordare le precedenze. Prima le potenze, poi le parentesi tonde, quadre e graffe, seguono moltiplicazioni e divisioni nell ordine di

Dettagli

1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale?

1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale? M ============= (A) Aritmetica ===================== rappresentazione dei numeri algebra dei numeri proprietà delle operazioni. (A) Quali tra le seguenti uguaglianze sono vere? e. 2 + 2 2 2 + = 2 2 + =

Dettagli

10. IL TEST D INGRESSO: SOLUZIONI

10. IL TEST D INGRESSO: SOLUZIONI 0. IL TEST D INGRESSO: SOLUZIONI 0. LE RISPOSTE ESATTE ED I PROCEDIMENTI RISOLUTIVI CORRETTI ATTENZIONE Non limitarti a leggere il risultato. A volte si può arrivare ad una risposta corretta seguendo un

Dettagli

Come risolvere i quesiti dell INVALSI - primo

Come risolvere i quesiti dell INVALSI - primo Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

Una questione interessante di teoria dei numeri è connessa al teorema di Pitagora.

Una questione interessante di teoria dei numeri è connessa al teorema di Pitagora. Una questione interessante di teoria dei numeri è connessa al teorema di Pitagora. Ai greci era noto che un triangolo di lati 3, 4, 5 è rettangolo. Questo suggerisce il problema generale: quali altri triangoli

Dettagli

Test d'ingresso di matematica per le classi prime. Liceo delle Scienze applicate. e Liceo Sportivo

Test d'ingresso di matematica per le classi prime. Liceo delle Scienze applicate. e Liceo Sportivo Test d'ingresso di matematica per le classi prime Liceo delle Scienze applicate e Liceo Sportivo SEZIONE: NUMERI. Quanti sono i numeri naturali N che soddisfano la condizione N 0? 0 9 infiniti E.nessuno

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Geometria e Matematica di Base. Foglio di esercizi 1, con soluzioni

Geometria e Matematica di Base. Foglio di esercizi 1, con soluzioni Geometria e Matematica di Base. Foglio di esercizi 1, con soluzioni Maria Rita D Orio, Giada Moretti, Daniele Vitacolonna Nota! Useremo per tutti gli esercizi a = 5, b = 9. 1 Esercizi di logica Esercizio

Dettagli

L1 L2 L3 L4 L5 L6 L7 L8 L9. Esercizio. Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura

L1 L2 L3 L4 L5 L6 L7 L8 L9. Esercizio. Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura [1] y x, x 1 [2] y x, x 1 [3] y x, x 1 [4] y x, x 1 [5] y x, x 1 L insieme è simmetrico rispetto all origine

Dettagli

Disequazioni di 1 grado

Disequazioni di 1 grado Disequazioni di grado Disuguaglianze numeriche Esempio: < è una disuguaglianza numerica e si legge minore di Nota: posso anche scrivere ( maggiore di ) Esempio: (oppure < ) Proprietà delle disuguaglianze

Dettagli

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati I Poligoni Spezzata C A cosa vi fa pensare una spezzata? Qualcosa che si rompe in tanti pezzi A me dà l idea di un spaghetto che si rompe Se noi rompiamo uno spaghetto e manteniamo uniti i vari pezzi per

Dettagli

Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 2015 (versione 1)

Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 2015 (versione 1) Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 015 (versione 1) Nome e Cognome: Numero di matricola: Esercizio 1 Esercizio Esercizio 3 Esercizio 4 Esercizio 5 Totale 4 6 6 8 6 Tutte

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

Progetto continuità LAVORO ESTIVO DI MATEMATICA. Per studenti che si iscrivono alla prima superiore

Progetto continuità LAVORO ESTIVO DI MATEMATICA. Per studenti che si iscrivono alla prima superiore Progetto continuità LAVORO ESTIVO DI MATEMATICA Per studenti che si iscrivono alla prima superiore Il presente lavoro è stato predisposto da un gruppo di docenti delle scuole medie inferiori e superiori

Dettagli

Test sui teoremi di Euclide e di Pitagora

Test sui teoremi di Euclide e di Pitagora Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate

Dettagli

Il Teorema di Pitagora

Il Teorema di Pitagora Il Teorema di Pitagora I Enunciato del teorema: In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti. II Enunciato del teorema:

Dettagli

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Vale la [1] perché per le proprietà delle potenze risulta a m a

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Problemi di secondo grado con argomento geometrico (aree e perimetri)

Problemi di secondo grado con argomento geometrico (aree e perimetri) Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la

Dettagli

Risposte ai primi 14 quesiti

Risposte ai primi 14 quesiti U.M.I. - I. T. C. G. Pitagora - Calvosa Castrovillari OLIMPIADI DI MATEMATICA 2011- DISTRETTO DI COSENZA Gara a squadre del 24 Marzo 2011 Istruzioni 1) La prova consiste di 17 problemi divisi in 3 gruppi.

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

Parte II. Incontro del 20 dicembre 2011

Parte II. Incontro del 20 dicembre 2011 Parte II Incontro del 20 dicembre 2011 12 I quadrati modulo 4 Cerchiamo di determinare i possibili resti nella divisione per 4 del quadrato x 2 di un numero intero x. Se x = 2h è un numero pari allora

Dettagli

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione 1. 5 x y x 3y 1 risolvere con il metodo di Cramer. x 1 3 y y x 3 risolvere con il metodo di riduzione

Dettagli

PROBLEMI DI SECONDO GRADO: ESEMPI

PROBLEMI DI SECONDO GRADO: ESEMPI PROBLEMI DI SECONDO GRADO: ESEMPI Problema 1 Sommando al triplo di un numero intero il quadrato del suo consecutivo si ottiene il numero 9. Qual è il numero? Il campo di accettabilità delle soluzioni è,

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre www.matematicamente.it Verifica II liceo scientifico: Sistemi, Radicali, Equiestensione 1 Verifica di matematica, classe II liceo scientifico Sistemi, problemi con sistemi, radicali, equiestensione 1.

Dettagli

Esercizi propedeutici all insegnamento. Matematica Corso Base

Esercizi propedeutici all insegnamento. Matematica Corso Base Esercizi propedeutici all insegnamento Matematica Corso Base Prof.ssa G. Rotundo Prof. R. Benini Facoltà di Economia Sapienza Università di Roma a.a. 014/15 Indice Prefazione 1 1 Linguaggio, elementi di

Dettagli

Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli

Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli Programma di Matematica Classe 1^ B/LL Anno scolastico 2016/2017 Testo Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli CAPITOLO 1: NUMERI NATURALI ORDINAMENTO

Dettagli

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e Corso di Laurea in Matematica (A.A. 2007-2008) SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004 Rispondere (nello spazio assegnato) alle seguenti domande (1) Calcolare il MCD e il mcm tra i numeri

Dettagli

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione a B 3 Compito del Q 8 maggio 009 A) Equazioni con parametro. Data l equazione ( k + k ) + k + 0 determinare il valore di k in ciascuno dei seguenti casi. L equazione si abbassa di grado (risolvere l equazione

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

1. Si considerino: l insieme A degli iscritti all Università di Pavia e l insieme B dei residenti a Pavia. Descrivere

1. Si considerino: l insieme A degli iscritti all Università di Pavia e l insieme B dei residenti a Pavia. Descrivere . Si considerino: l insieme A degli iscritti all Università di Pavia e l insieme B dei residenti a Pavia. Descrivere A B, A B, A \ B, B \ A.. Si considerino: l insieme A dei multipli di e l insieme B dei

Dettagli

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle

Dettagli

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b 8 Esercizi di Analisi Matematica ersione 2006 razioni Argomenti: Operazioni sulle frazioni Difficoltà: Tempo richiesto: Completare la seguente tabella: a b a + b a b 1/3 1/2 1/3 1/2 1/3 1/2 a b a a + b

Dettagli

Esercizi di Algebra. 25 marzo Soluzione Si tratta di trovare una soluzione del sistema di equazioni congruenziali

Esercizi di Algebra. 25 marzo Soluzione Si tratta di trovare una soluzione del sistema di equazioni congruenziali Esercizi di Algebra 25 marzo 2010 1. Soluzione Si tratta di trovare una soluzione del sistema di equazioni congruenziali X 2 mod 5 X 3 mod 7 X 7 mod 9, che sia prossima a 1000. Dalla prima equazione abbiamo

Dettagli

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO:

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO: RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 I NUMERI LA CUI RADICE QUADRATA E UN NUMERO NATURALE SI DICONO QUADRATI PERFETTI ESEMPIO 36 E UN QUADRATO PERFETTO:

Dettagli

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 };

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 }; ESERCIZI. INSIEMISTICA. Sia l insieme dei punti dello spazio, Γ una sfera e N il suo polo nord. Quali delle seguenti relazioni sono corrette? N Γ; N ; Γ ; Γ ; N ; Γ N.. Dire quali dei seguenti insiemi

Dettagli

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1 Liceo Scientifico di ordinamento anno 00-00 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno 00-00 PROBLEMA Punto a Indicati rispettivamente con V ed S il volume e l area totale di T e con

Dettagli

NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:... b =

NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:... b = Soluzioni Test di ingresso: MATEMATICA C.d.L. Scienze Geologiche (26/09/202) VALUTAZIONE mancata risposta o risposta errata: 0 punti risposta corretta: punto NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:....

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a GEOMETRIA PIANA EQUAZIONI E DISEQUAZIONI a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1) Nel piano

Dettagli

Sistemi di primo grado

Sistemi di primo grado Appunti di Matematica Sistemi di primo grado Consideriamo il seguente problema: Un trapezio rettangolo di area cm ha altezza di cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della

Dettagli

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742.

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742. Esercizi Trigonometria Es. n. pag 7. Sviluppa con le formule di duplicazione e semplifica le seguenti espressioni: cos α + sen α + sen α Applichiamo le formule di duplicazione a cos α e sen α cos α sen

Dettagli

Matematica ed Elementi di Statistica. L insieme dei numeri reali

Matematica ed Elementi di Statistica. L insieme dei numeri reali a.a. 2010/11 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

Le Frazioni. Esempio: il giorno è la settima parte della settimana, quindi

Le Frazioni. Esempio: il giorno è la settima parte della settimana, quindi Le Frazioni si dice UNITA FRAZIONARIA il simbolo che rappresenta una delle parti uguali in cui è stata divisa una grandezza che si considera come unità o intero. Esempio: il giorno è la settima parte della

Dettagli

Ripasso di matematica. Enrico Degiuli Classe terza

Ripasso di matematica. Enrico Degiuli Classe terza Ripasso di matematica Enrico Degiuli Classe terza Somma con i numeri relativi 1 3 =? 7 + 10 =? 8 + 3 =? 13 15 =? Regola: immaginare di partire dal primo numero e di spostarsi lungo la retta orientata in

Dettagli

Test d'ingresso di matematica per le classi prime ITI

Test d'ingresso di matematica per le classi prime ITI Test d'ingresso di matematica per le classi prime ITI SEZIONE: NUMERI. Quanti sono i numeri interi che verificano la condizione 0? 0 9 infiniti nessuno N. Nell'espressione 3 il numero si chiama fattore

Dettagli

Programma di matematica classe I sez. H a.s

Programma di matematica classe I sez. H a.s Programma di matematica classe I sez. H a.s. 2018-2019 Testo in adozione: Matematica.blu - Seconda edizione vol.1 - primo biennio Autore: Bergamini-Barozzi-Trifone Ed. Zanichelli I numeri naturali, interi,

Dettagli

LOGICA MATEMATICA. Canale E O a.a Docente: C. Malvenuto Primo compito di esonero 10 novembre 2006

LOGICA MATEMATICA. Canale E O a.a Docente: C. Malvenuto Primo compito di esonero 10 novembre 2006 LOGICA MATEMATICA Canale E O a.a. 2006 07 Docente: C. Malvenuto Primo compito di esonero 10 novembre 2006 Istruzioni. Completare subito la parte inferiore di questa pagina con il proprio nome, cognome

Dettagli

Programma di matematica classe I sez. H a.s

Programma di matematica classe I sez. H a.s Programma di matematica classe I sez. H a.s. 2016-2017 Testi in adozione: Bergamini-Barozzi-TrifoneMatematica.bluSeconda edizione vol.1- primo biennio Ed. Zanichelli MODULO A: I numeri naturali e i numeri

Dettagli

Progetto: Riuscire nelle gare di Matematica

Progetto: Riuscire nelle gare di Matematica Progetto: Riuscire nelle gare di Matematica Test d ingresso: 5 Febbraio 2010 ognome Nome lasse Sezione Tempo concesso 120 minuti Non è consentito l utilizzo della calcolatrice RITMETI 1. Tra i seguenti

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Disequazioni di primo grado Disuguaglianze numeriche Esempio: < 5è una disuguaglianza numerica e si legge minore di 5 Nota: posso anche scrivere 5 > (5 maggiore di ) Esempio: > 5 (oppure 5 < ) Proprietà

Dettagli

Il Piano Cartesiano Goniometrico

Il Piano Cartesiano Goniometrico Valori di seno e coseno per angoli multipli di / Il Piano Cartesiano Goniometrico Seno e coseno: valori per angoli particolari September 1, 010 Valori di seno e coseno per angoli multipli di / Sommario

Dettagli

Rapporti e proporzioni

Rapporti e proporzioni Rapporti e proporzioni I rapporti In matematica la parola rapporto indica un quoziente. Può essere indicato da: - Una divisione, es. 9 6 - Una frazione - Un numero decimale, es. 1,5 Def. Il rapporto tra

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

1. (A1) Quali tra le seguenti uguaglianze sono vere? = vera. 2. (A1) Una sola delle seguenti affermazioni è vera. Quale?

1. (A1) Quali tra le seguenti uguaglianze sono vere? = vera. 2. (A1) Una sola delle seguenti affermazioni è vera. Quale? M Commenti generali I test sono divisi in cinque gruppi (A) Aritmetica (A2) Aritmetica 2 (C) Calcolo (O) Ordinamenti (D) Divisioni Osservazione (/2/20): Sono stati sperimentati sugli studenti aggiungendo

Dettagli

12 Simulazione di prova d Esame di Stato

12 Simulazione di prova d Esame di Stato 2 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario È assegnata la funzione = f() =( +2)e 2 +, essendo una variabile reale.

Dettagli

PROBLEMI. 1) La media aritmetica di 35 numeri naturali è 102 e la media di 20 di questi. 7) Quanto vale la somma delle cifre del numero 111 1

PROBLEMI. 1) La media aritmetica di 35 numeri naturali è 102 e la media di 20 di questi. 7) Quanto vale la somma delle cifre del numero 111 1 PROBLEMI 1) La media aritmetica di 35 numeri naturali è 10 e la media di 0 di questi numeri è 93. Quanto vale la media dei 15 numeri rimanenti? ) La casa del professor Fibonacci è costruita su un terreno

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

Gli insiemi numerici

Gli insiemi numerici Gli insiemi numerici L insieme N Insieme dei numeri naturali N = {0; 1; 2; 3; 4; } Sono i numeri che si usano per contare È un insieme infinito (ogni numero naturale ha un successivo) È un insieme ordinato,

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 9 novembre 008 Griglia delle risposte

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

1 5 Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (c)

1 5 Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (c) Il numero reale log 4 è uguale a 16 8 log 4 16 d) Nessuna delle risposte precedenti è corretta L uguaglianza cos(arccos x) = x è valida Per ogni numero reale x Per ogni x tra 0 e π Per ogni x tra 1 ed

Dettagli

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Concorso Interno, per titoli ed esami, a 300 posti per l ammissione al 20 corso di aggiornamento e formazione professionale

Dettagli

Università di Pisa. Concorso di ammissione al tirocinio formativo attivo classe A047 - matematica. Prova scritta - 29 agosto 2012

Università di Pisa. Concorso di ammissione al tirocinio formativo attivo classe A047 - matematica. Prova scritta - 29 agosto 2012 Università di Pisa Concorso di ammissione al tirocinio formativo attivo classe A047 - matematica Prova scritta - 29 agosto 2012 Esercizio 1 Un robot si trova nell origine (0, 0 di un piano cartesiano e

Dettagli

Indice. NUMERI REALI Mauro Saita Versione provvisoria. Ottobre 2017.

Indice. NUMERI REALI Mauro Saita   Versione provvisoria. Ottobre 2017. NUMERI REALI Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria. Ottobre 2017. Indice 1 Numeri reali 2 1.1 Il lato e la diagonale del quadrato sono incommensurabili: la scoperta dei numeri

Dettagli

LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014

LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 I NUMERI NATURALI La rappresentazione dei numeri naturali. Le quattro operazioni.

Dettagli

ELEMENTI DI LOGICA. Siano p e q le due proposizioni: p: 3 è un numero primo q: 20 è divisibile per 5 Enunciare le proposizioni p q, p q.

ELEMENTI DI LOGICA. Siano p e q le due proposizioni: p: 3 è un numero primo q: 20 è divisibile per 5 Enunciare le proposizioni p q, p q. ELEMENTI DI LOGICA Proposizioni e operazioni 2 3 4 Stabilire quali di queste frasi sono proposizioni logiche e stabilirne il valore di verità: a) 5 è un numero dispari b) Napoli è il capoluogo della Campania

Dettagli

Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno

Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno Id Corso Formazione Professionale Data.. Nome e Cognome Tipo Prova Domanda 1 Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno M010755 Una impresa edile

Dettagli

Test di autovalutazione di Matematica - I parte

Test di autovalutazione di Matematica - I parte Test di autovalutazione di Matematica - I parte M1.1 Una circonferenza è individuata da: (A) due punti (C) quattro punti non allineati (E) cinque punti. (B)quattro punti allineati (D) tre punti non allineati

Dettagli

Test di autovalutazione di Matematica - I parte

Test di autovalutazione di Matematica - I parte Test di autovalutazione di Matematica - I parte M1.1 Una circonferenza è individuata da: (A) due punti (C) quattro punti non allineati (E) cinque punti. (B)quattro punti allineati (D) tre punti non allineati

Dettagli

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di ESERCIZI Quando possiamo dire che un numero a è divisibile per un numero b? Quando possiamo dire che un numero a è sottomultiplo del numero b? Quando un numero si dice primo? Al posto dei puntini inserisci

Dettagli

Programma di matematica classe I sez. B a.s

Programma di matematica classe I sez. B a.s Programma di matematica classe I sez. B a.s. 2016-2017 Testi in adozione: Bergamini-Barozzi-TrifoneMatematica.bluSeconda edizione vol.1- primo biennio Ed. Zanichelli MODULO A: I numeri naturali e i numeri

Dettagli

Introduzione alla Matematica per le Scienze Sociali - parte II

Introduzione alla Matematica per le Scienze Sociali - parte II Introduzione alla Matematica per le Scienze Sociali - parte II Lucrezia Fanti Istituto Nazionale per l Analisi delle Politiche Pubbliche (INAPP) lucrezia.fanti@uniroma1.it Lucrezia Fanti Intro Matematica

Dettagli

Categoria Student Per studenti del quarto e quinto anno della scuola media superiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno

Categoria Student Per studenti del quarto e quinto anno della scuola media superiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno Categoria Student Per studenti del quarto e quinto anno della scuola media superiore I quesiti dal N. al N. 0 valgono 3 punti ciascuno. Risposta B) Per soddisfare le condizioni sulle righe, la coppia di

Dettagli

2009 Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore

2009 Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore 2009 Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore 1. Risposta B) Tutti quelli tra 3 e 19, estremi compresi, quindi 17 numeri interi. 2. Risposta D) Il lato del

Dettagli

1. Quanti sono i numeri naturali N che soddisfano la condizione 1 N <10? a. 10 b. 11 c. 9 d. infiniti e. nessuno

1. Quanti sono i numeri naturali N che soddisfano la condizione 1 N <10? a. 10 b. 11 c. 9 d. infiniti e. nessuno METTITI ALLA PROVA 1 1. Quanti sono i numeri naturali N che soddisfano la condizione 1 N

Dettagli

GARA DI MATEMATICA ON-LINE (9/11/2015)

GARA DI MATEMATICA ON-LINE (9/11/2015) GR I MTEMTI ON-LINE (9//0) LE ZUHE I HLLOWEEN [] Riscriviamo la prima equazione costruendo a secondo termine un quadrato di binomio: c a b c a ab b ab c ( a b) ab alla prima equazione ricaviamo a b c :

Dettagli

0 Insiemi, funzioni, numeri

0 Insiemi, funzioni, numeri Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo

Dettagli

SCIENZE MATEMATICHE FISICHE e NATURALI

SCIENZE MATEMATICHE FISICHE e NATURALI UNIVERSITÀ di ROMA TOR VERGATA FACOLTÀ di SCIENZE MATEMATICHE FISICHE e NATURALI Argomenti di Matematica delle prove di valutazione Anno 03-04 A. Manipolazioni algebriche, semplificazioni; calcolo elementare

Dettagli

Programma di matematica classe I sez. E a.s

Programma di matematica classe I sez. E a.s Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri

Dettagli

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Opzione Sc. Applicate a.s. 2018/19

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Opzione Sc. Applicate a.s. 2018/19 IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Opzione Sc. Applicate a.s. 2018/19 Classe 1L MODULO 1: I NUMERI NATURALI. Cap 1. 1. Le operazioni definite nell insieme dei numeri naturali

Dettagli

1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}?

1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}? Simulazione prova di recupero Ogni risposta esatta vale un punto, ogni risposta errata comporta una penalizzazione di 0,5 punti. La prova è superata con un punteggio di almeno 7,5 punti. 1 Quale di questi

Dettagli

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera Esercitazione in preparazione alla PROVA d ESAME Alunno/a Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera 1. Quale percentuale della figura è colorata? A. 80 % B. 50 % A. 45 % D. 40 % Osservando bene

Dettagli

Esercitazione su equazioni, disequazioni e trigonometria

Esercitazione su equazioni, disequazioni e trigonometria Esercitazione su equazioni, disequazioni e trigonometria Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 6 Ottobre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli

1 Quanti 17 per Lavinia! Lavinia ottiene la somma 17 esattamente 8 volte.

1 Quanti 17 per Lavinia! Lavinia ottiene la somma 17 esattamente 8 volte. 1 Quanti 17 per Lavinia! 5843779853861278142872476575 Lavinia ottiene la somma 17 esattamente 8 volte. 2 Una suddivisione intelligente 5 4 4 4 5 1 2 4 5 5 2 3 1 5 3 3 La suddivisione è riportata in figura.

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI EQUAZIONI E RELAZIONI Se x è un numero compreso tra 6 e 9, allora il numero (x+5) fra quali numeri è compreso? A. 1 e 4 B. 10 e 13 C. 11 e 14 D. 30 e 45 Qual è il valore di x che

Dettagli

Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio

Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio ELEMENTI DI GEOMETRI PIN. MISURE RIGURDNTI TRINGOLI, PRLLELOGRMMI, POLIGONI REGOLRI, CERCHIO La geometria piana si occupa delle

Dettagli

a p a (p) (a + 1) p = i=0 sono noti come coefficienti binomiali 2 e sono numeri interi (a + 1) p a p + 1 (p) (a + 1) p a + 1 (p)

a p a (p) (a + 1) p = i=0 sono noti come coefficienti binomiali 2 e sono numeri interi (a + 1) p a p + 1 (p) (a + 1) p a + 1 (p) Appunti quarta settimana Iniziamo con un risultato molto importante che ha svariate conseguenze e che3 sarà dimostrato in modi diversi durante il corso: Esercizio 1.[Piccolo teorema di Fermat] Dimostrare

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +

Dettagli