2.10 Equilibri e stabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2.10 Equilibri e stabilità"

Transcript

1 54 CPITOLO. MECCNIC LGRNGIN.10 Equilibri e stabilità Considero le equazioni di Lagrange d T T (q, q) (q, q) = Q(q, q), dt q q per vincoli fissi, cioè T = T = 1 q (q) q, e per forze non dipendenti da t. Le equazioni di Lagrange si possono scrivere con (q) q = F(q, q) F(q, q) = Q(q, q)+ T q (q, q) d (q) q. dt Queste equivalgono al sistema del primo ordine { q = v v = 1 (q)f(q,v). (.14) PoichèF(q,0) = Q(q,0), ipuntidiequilibriosonodellaforma(q, q) = (q 0,0), con Q(q 0,0) = 0. (.15) I valori q 0, soluzioni di (.15), si chiamano configurazioni di equilibrio. Se le forze attive derivano da un energia potenziale generalizzata V(q, q) = V 0 (q)+v 1 (q, q), con V 1 (q, q) = a(q) q, possiamo scrivere la lagrangiana In questo caso l equazione L(q, q) = 1 q (q) q V(q, q). definisce le configurazioni di equilibrio, infatti V 0 q (q 0) = 0 (.16) Q = d V 1 dt q V 1 q V 0 q, Q(q,0) = V 0 q (q) Linearizzazione attorno a un equilibrio Considero un punto di equilibrio (q 0,0) ed analizzo la sua stabilità linearizzando le equazioni (.14) attorno ad esso.

2 .10. EQUILIBRI E STBILITÀ 55 Le equazioni linearizzate sono { q = v v = 1 (q 0 ) Q (q q 0,0)(q q 0 )+ Q (q q 0,0) q. (.17) Se le forze attive derivano dall energia potenziale V(q, q) = V 0 (q)+a(q) q si ha Q = V 0 +B q (vedi Sezione.4.3) e le equazioni linearizzate sono q { q = v v = 1 (q 0 )V 0 (q 0 )(q q 0 ) B(q 0 ) q (.18) dove B è antisimmetrica con componenti B ij = a i q j a j q i. Le (.18) sono le equazioni di Lagrange per la funzione L 0 (q, q) = 1 q (q 0) q 1 (q q 0) V 0 (q 0)(q q 0 ) a(q 0 )+ a q (q 0)(q q 0 ) q (.19) che èlo sviluppo di Taylor al secondo ordine di L(q, q)in (q 0,0). Per verificare che le (.18) sono le equazioni di Lagrange per L 0 dimostriamo che d G(q, q) dt q q G(q, q) = B(q 0) q, con G(q, q) = a q (q 0)(q q 0 ) q. bbiamo per cui d G(q, q) = dt q h G(q, q) = n j=1 n i,j=1 a h q j q j, Nel caso particolare in cui V = V 0 si ottiene a i q j (q 0 )(q j q 0,j ) q i, q h G(q, q) = n i=1 a i q h q i. L 0 (q, q) = 1 q (q 0) q 1 (q q 0) V (q 0 )(q q 0 ). (.0) Le equazioni di Lagrange per (.0) sono (q 0 ) q+v (q 0 )(q q 0 ) = 0 (.1) e si possono scrivere come ξ η ξ = Λ(q 0 ) η, (.)

3 56 CPITOLO. MECCNIC LGRNGIN con Λ(q 0 ) = 0 I 1 V (q 0 ) 0, ξ η = q q0 q In questo caso la matrice del sistema linearizzato ha autovalori che dipendono solo dagli autovalori di 1 V (q 0 ). Siccome (q 0 ), V (q 0 ) sono simmetriche, con definita positiva, sappiamo (vedi Sezione.11.3) che gli autovalori λ h di 1 V (q 0 ) sono reali e che possiamo trovare una base di autovettori B = {u h } h=1...n ortonormali rispetto al prodotto scalare definito da (q 0 ), cioè tali che u h (q 0 )u k = δ hk. Tali autovalori si possono calcolare risolvendo l equazione secolare inoltre si ha det(v (q 0 ) λ(q 0 )) = 0, u h V (q 0 )u k = λ k δ hk, cioè nella base B entrambe le matrici (q 0 ),V (q 0 ) sono in forma diagonale. Se {λ h } h=1...n, sono gli autovalori di 1 V (q 0 ) allora gli autovalori di Λ(q 0 ) sono ± λ h, h = 1...n. Inparticolare, seλ k < 0perqualchekallora(q 0,0)èinstabileperchéilsistema (.) ha un esponente di Lyapounov positivo. Se λ h > 0 per h = 1...n allora gli esponenti di Lyapounov sono tutti nulli ed il metodo di linearizzazione non ci permette di concludere sulla stabilità di q 0. In questo caso possiamo usare il metodo della funzione di Lyapounov, come discusso nella prossima sezione Il teorema di Lagrange-Dirichlet Teorema 3. Considero il sistema lagrangiano definito da L(q, q) = 1 q (q) q V 0(q) V 1 (q, q). (.3) Se q 0 è un minimo stretto di V 0 allora è una configurazione di equilibrio stabile. Dimostrazione. Si osserva che q 0 è una configurazione di equilibrio in quanto soddisfa (.16). Siccome la lagrangiana (.3) non dipende da t, allora la funzione J(q, q) = 1 q (q) q+v 0(q).

4 .11. PICCOLE OSCILLZIONI TTORNO UN EQUILIBRIO STBILE57 è un integrale primo delle equazioni di Lagrange per L (integrale di Jacobi). Inoltre (q 0,0) è un punto di minimo stretto per J(q, q), quindi si può usare J(q, q) come funzione di Lyapounov relativa al punto (q, q) = (q 0,0) nalisi della stabilità dei sistemi lagrangiani Dai risultati precedenti concludiamo che, nel caso in cui le forze generalizzate siano conservative, cioè esiste V(q) tale che Q = V, l analisi del solo spettro q di V (q 0 ) ci può permettere di studiare la stabilità dei punti di equilibrio di (.). Se V (q 0 ) ha tutti gli autovalori positivi allora, per il teorema di Lagrange- Dirichlet, il punto (q 0,0) è stabile. Se V (q 0 ) ha un autovalore µ < 0 con autovettore v, sia v = h v hu h l espressione di v come combinazione lineare degli elementi della base B. llora 0 > v V (q 0 )v = h,k v h v k u h V (q 0 )u k = h,k v h v k λ k u h (q 0 )u k = = h,k v h v k λ k δ hk = h v h λ h, quindi esiste k con λ k < 0 ed il punto (q 0,0) è instabile. Osservazione 13. Se le componenti lagrangiane delle forze attive ammettono un energia potenziale generalizzata V(q, q,t) = V 0 (q,t)+v 1 (q, q,t) è possibile che un punto di massimo di V 0 sia stabile: infatti la presenza del termine V 1 modifica lo spettro del linearizzato, anche se non modifica gli equilibri. Questo fenomeno si chiama stabilizzazione girostatica..11 Piccole oscillazioni attorno a un equilibrio stabile ssumiamo che la lagrangiana abbia la forma L = T V 0, e che q 0 sia un minimo non degenere di V significato della linearizzazione e stima della distanza tra le soluzioni delle equazioni linearizzate e quelle originali...

5 58 CPITOLO. MECCNIC LGRNGIN.11.1 Frequenze proprie e modi normali di oscillazione det(v (q 0 ) λ(q 0 )) = 0 La soluzione generale del sistema (.1) è q(t) = q 0 + con c h 0, φ h S 1, ω h = λ h > 0. n c h cos(ω h t+φ h )u h h=0 Le quantità ω h si chiamano frequenze proprie del sistema e le famiglie di soluzioni particolari c h cos(ω h t+φ h )u h, h = 1...n si chiamano modi normali di oscillazione attorno all equilibrio q lcuni esempi Esempio 9. Si consideri il sistema meccanico in Figura.1. Calcolare tutti gli equilibri e studiarne la stabilità al variare dei paramentri. P 01 φ Q θ B 1 1 Figura.1: L energia potenziale è data da Gli equilibri sono le soluzioni di V(θ,φ) = k 1 (cosφ cosθ) k cos(φ θ) V θ (θ,φ) = k 1sinθ k sin(φ θ) = 0 V φ (θ,φ) = k 1sinφ+k sin(φ θ) = 0

6 .11. PICCOLE OSCILLZIONI TTORNO UN EQUILIBRIO STBILE59 Sommando le due equazioni si ha e sostituendo nella prima sinθ = sinφ (.4) sinθk 1 +k (cosφ cosθ) = 0 bbiamo quindi le quattro configurazioni di equilibrio (θ,φ) = (0,0); (0,π); (π,0); (π,π) e, se k 1 < k, anche le due configurazioni (θ,φ) = ( θ, φ), con θ soluzione di cosθ = k 1 /k e φ = π θ. Studiamo la stabilità di questi equilibri. Le derivate seconde di V sono V θ (θ,φ) = k 1cosθ +k cos(φ θ) V φ θ (θ,φ) = k cos(φ θ) V φ (θ,φ) = k 1cosφ+k cos(φ θ) V k1 +k (0,0) = k, V k1 k (0,π) = k, k k 1 +k k k 1 k V k1 k (π,0) = k, V k1 +k (π,π) = k, k k 1 k k k 1 +k da cui detv (0,0) = 4k 1, detv (π,π) = 4k 1, detv (0,π) = 4k 1 (k 1 k ), trv (0,π) = (k 1 k ), detv (π,0) = 4k 1 (k 1 +k ), trv (π,0) = (k 1 +k ). Si ottiene che (0,0),(π,0),(π,π) sono instabili. Siccome trv (0,π) > 0, la configurazione (0,π) è stabile se k 1 > k, instabile se k 1 < k. Inoltre, osservando che cos( φ θ) = cos(π θ) = cos θ +sin θ si ottiene da cui V ( θ,π θ) = k 1 k +k sin θ k1 k k sin θ k1 k k sin θ k, 1 k +k sin θ detv ( θ,π θ) = 4k 1 sin θ > 0. Si osserva che c è una biforcazione per k 1 = k : l equilibrio (θ,φ) = (0,π) da stabile diventa instabile e nascono due nuovi equilibri stabili (θ,φ) = ( θ,π θ),(π θ, θ).

7 60 CPITOLO. MECCNIC LGRNGIN Esempio 10. Nel piano Oxy si consideri il sistema meccanico formato da n punti materiali P 1...P n di ugual massa m. Il punto P i è vincolato a muoversi sulla retta x = i, i = 1...n. Inoltre ogni P i è collegato ai punti P i 1 e P i+1 da due molle di costante elastica k, dove si è posto P 0 (0,0),P n+1 (n+1,0). Si usano come coordinate i valori q i = y i,i = 1...n delle ordinate dei punti P i. Scrivere le equazioni di Lagrange, trovare i punti di equilibrio e studiarne la stabilità. L energia cinetica e potenziale del sistema sono T = 1 n m q h, h=1 V = 1 n k P h+1 P h = 1 n k (q h+1 q h ) +costante h=0 h=0 dove q 0 = q n+1 = 0. Dimostriamo che l unica configurazione di equilibrio è (y 1,...,y n ) = (0,...,0). Gli equilibri sono soluzioni di V qh = k(q h+1 q h +q h 1 ) = 0, h = 1...n. Ottengo il sistema lineare Mq = 0, con M = Sia λ un autovalore di M, con autovettore v. llora ( n n ) v Mv = vh v h+1 v h = (v 1 v ) +...+(v n 1 v n ) +v1+v n 0 h=1 h=1 ed è nullo solo se v = 0. Questo ci dice che q = 0 è l unica soluzione di Mq = 0. Tale configurazione di equilibrio è stabile, come si vede applicando il teorema di Lagrange-Dirichlet, dato che V ha sicuramente un minimo stretto in q = 0. Gli autovalori della matrice hessiana V = km sono tutti positivi e distinti, infatti ad ogni autovalore è associato un autospazio di dimensione Diagonalizzazione simultanea di forme quadratiche Considero le forme quadratiche a(x) = x x, b(x) = x Bx, x R n

8 .11. PICCOLE OSCILLZIONI TTORNO UN EQUILIBRIO STBILE61 con, B matrici di ordine n simmetriche, definita positiva. L insieme di livello E = {x R n : a(x) = 1} è un ellissoide, quindi è compatto. Dunque esiste x 1 E tale che b(x 1 ) = min x E b(x). Il vettore x 1 è un punto stazionario di b(x), vincolato a E. Dal metodo dei moltiplicatori di Lagrange si ottiene Bx 1 = λ (1) 1 x 1, x 1 x 1 = 1, per cui x 1 E è autovettore di 1 B con autovalore λ (1) 1 = b(x 1 ). Sia S n 1 = x 1 il sottospazio di dimensione n 1 costituito dai vettori di R n ortogonali a x 1 rispetto al prodotto scalare definito da. Denoto con = E S n 1 l ellissoide di dimensione n e cerco x tale che E n b(x ) = min b(x). x E n Dal metodo dei moltiplicatori di Lagrange Bx = λ () x +λ () 1 x 1, x x = 1, x x 1 = 0. (.5) Moltiplicando scalarmente per x 1 la prima delle (.5) si ottiene λ () 1 = x 1 Bx = x Bx 1 = λ (1) 1 x x 1 = 0, per cui x E n è autovettore di 1 B con autovalore λ () = b(x ). Tale procedimento si può iterare cercando per ogni k = 3...n un vettore x k R n tale che b(x k ) = min b(x), x E n k con E n k = E S n k+1, ed S n k+1 il sottospazio di dimensione n k + 1 costituito dai vettori di R n ortogonali a x 1,...,x k rispetto al prodotto scalare definito da. In questo modo trovo una base B = {x 1...x n } di autovettori di 1 B ortonormali rispetto al prodotto scalare definito da, con autovalori reali λ 1 = b(x 1 ), λ = b(x ),... λ n = b(x n ). Per calcolare esplicitamente gli autovalori λ j si risolve l equazione secolare det(b λ) = 0. Denoto con U la trasposta della matrice che ha come colonne i vettori della base B. Osservo che si ha U T U = I, U T BU = diag(λ 1...λ n ), (.6) infatti x i x j = δ ij e x i Bx j = λ j x i x j = λ j δ ij.

Compito di Istituzioni di Fisica Matematica 8 Luglio 2013

Compito di Istituzioni di Fisica Matematica 8 Luglio 2013 Compito di Istituzioni di Fisica Matematica 8 Luglio 203 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi un sistema di riferimento Oxyz, con asse Oz verticale ascendente. Un asta omogenea

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 20 Settembre 2005 PARTE A P O

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 20 Settembre 2005 PARTE A P O LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 0 Settembre 005 PARTE A Esercizio 1. Nel piano cartesiano Oxy con asse y verticale ascendente, un punto materiale P di massa m è

Dettagli

Compito del 21 giugno 2004

Compito del 21 giugno 2004 Compito del 1 giugno 00 Una lamina omogenea di massa m è costituita da un quadrato ABCD di lato a da cui è stato asportato il quadrato HKLM avente i vertici nei punti medi dei lati di ABCD. La lamina è

Dettagli

11 Piccole oscillazioni attorno a posizioni stabili

11 Piccole oscillazioni attorno a posizioni stabili 11 Piccole oscillazioni attorno a posizioni stabili Consideriamo un sistema con l gradi di libertà descrivibile mediante le coordinate lagrangiane (q 1,..., q l ). Supponiamo che i vincoli siano lisci

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 18 Settembre 27 usare fogli diversi per esercizi diversi) Primo Esercizio In un piano si fissi un sistema di riferimento Oxy. Un

Dettagli

FORMALISMO LAGRANGIANO PER SISTEMI VINCOLATI (Schema del contenuto delle lezioni e riferimenti bibliografici)

FORMALISMO LAGRANGIANO PER SISTEMI VINCOLATI (Schema del contenuto delle lezioni e riferimenti bibliografici) FORMALISMO LAGRANGIANO PER SISTEMI VINCOLATI (Schema del contenuto delle lezioni e riferimenti bibliografici) 1. Vincoli e principio di D Alembert (vd. Fasano Marmi cap 1 (o anche Dell Antonio cap. 6,

Dettagli

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea A di massa m e lunghezza l è libera di ruotare attorno al proprio estremo mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro di

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 18 Luglio 7 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. L estremo

Dettagli

Compito di gennaio 2005

Compito di gennaio 2005 Compito di gennaio 2005 In un piano verticale, si consideri il vincolo mobile costituito da una semicirconferenza di raggio R e centro C, i cui estremi A e B possono strisciare lungo l asse delle ascisse:

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 7 Giugno 17 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideriuna lamina triangolareabc omogeneadi massam,

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 2018 (usare fogli diversi per esercizi diversi) Primo Esercizio In un piano verticale si fissi un sistema di riferimento

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà)

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà) Foglio di Esercizi 7 Meccanica Razionale a.a. 018/19 Canale A-L P. Buttà Esercizio 1. Sia {O; x, y, z} un sistema di riferimento ortonormale con l asse z diretto secondo la verticale ascendente. Un punto

Dettagli

Applicazioni lineari simmetriche e forme quadratiche reali.

Applicazioni lineari simmetriche e forme quadratiche reali. Applicazioni lineari simmetriche e forme quadratiche reali 1 Applicazioni lineari simmetriche Consideriamo lo spazio IR n col prodotto scalare canonico X Y = t XY = x 1 y 1 + + x n y n Definizione Un applicazione

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 10 Gennaio 2017 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideri il sistema di riferimento Oxy. L estremo

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Primo Scritto [1-6-018] 1. Si consideri il sistema meccanico bidimensionale per x R. ẍ = ( x 4 1)x, (a) Si identifichino due integrali

Dettagli

13. Piccole oscillazioni

13. Piccole oscillazioni 3. Piccole oscillazioni Il moto di un sistema meccanico, soggetto a forze conservative, è approssimabile, nell intorno di un punto di minimo del potenziale, con quello del sistema linearizzato. Questa

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 6 Giugno 2017 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. Si

Dettagli

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Attenzione: Riconsegnerete DUE fogli (protocollo bianco, a 4 facciate), scriverete chiaramente cognome e nome, data

Dettagli

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 3 febbraio 2011

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 3 febbraio 2011 1 Università di Pavia Facoltà di Ingegneria orso di Laurea in Ingegneria Edile/rchitettura orrezione prova scritta 3 febbraio 011 1. eterminare il trinomio invariante del seguente sistema di vettori applicati:

Dettagli

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 2008 PARTE A

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 2008 PARTE A LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 008 PARTE A Esercizio 1. Si consideri il sistema di equazioni differenziali in R (x, y) ẋ = x 3x + y 3y +

Dettagli

EFFETTO DEL RESTO DI TAYLOR NELLE PICCOLE OSCILLAZIONI

EFFETTO DEL RESTO DI TAYLOR NELLE PICCOLE OSCILLAZIONI EFFETTO DEL RESTO DI TAYLOR NELLE PICCOLE OSCILLAZIONI 1. Piccole oscillazioni Si consideri un sistema meccanico conservativo di energia potenziale U : R n R, M R(t) = U (R(t)), (1.1) R dove M è la matrice

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 16 Febbraio 27 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi un sistema di riferimento Oxy in un piano e

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 27 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

COGNOME e NOME... N. MATRICOLA...

COGNOME e NOME... N. MATRICOLA... Prova d esame di Fondamenti di algebra lineare e geometria (mat.disp.) Laurea Triennale in Ingegneria dell energia 03/07/2017 COGNOME e NOME... N. MATRICOLA... Quesiti preliminari di teoria Sono ammessi

Dettagli

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà)

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà) Foglio di Esercizi 5 Meccanica Razionale a.a. 017/18 Canale A-L (P. Buttà) Esercizio 1. Su un piano orizzontale sono poste due guide immateriali circolari di centri fissi O 1 e O e uguale raggio r; sia

Dettagli

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 Si consideri il sistema dinamico con { ẋ = y ẏ = d U(x) U(x) = 2 ( x 2 3 x + 4 ) e x/2. (2) 1. Tracciare qualitativamente le curve di fase del sistema

Dettagli

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 2016-17 18/12/2017 Nome Cognome Matricola: 1) Si consideri il sistema dinamico nonlineare ẋ = y x 2, ẏ = x + y 2, Si determinino i punti di equilibrio, si caratterizzi

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Esercizio: pendoli accoppiati. Soluzione

Esercizio: pendoli accoppiati. Soluzione Esercizio: pendoli accoppiati Si consideri un sistema di due pendoli identici, con punti di sospensione posti alla stessa quota in un piano verticale. I due pendoli sono collegati da una molla di costante

Dettagli

FISICA MATEMATICA (Ingegneria Civile) V APPELLO ( ) A.A.2017/18

FISICA MATEMATICA (Ingegneria Civile) V APPELLO ( ) A.A.2017/18 FISICA ATEATICA Ingegneria Civile V APPELLO 05.09.208 A.A.207/8 COGNOE E NOE.............................. N.Ro ATR.................................................. LUOGO E DATA DI NASCITA....................................................................................

Dettagli

GEOMETRIA 1 Autovalori e autovettori

GEOMETRIA 1 Autovalori e autovettori GEOMETRIA 1 Autovalori e autovettori Gilberto Bini - Anna Gori - Cristina Turrini 2018/2019 Gilberto Bini - Anna Gori - Cristina Turrini (2018/2019) GEOMETRIA 1 1 / 28 index Matrici rappresentative "semplici"

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

Università di Pavia Facoltà di Ingegneria Esame di Fisica Matematica (Ingegneria Civile ed Ambientale) Appello del 25 giugno 2015

Università di Pavia Facoltà di Ingegneria Esame di Fisica Matematica (Ingegneria Civile ed Ambientale) Appello del 25 giugno 2015 Università di Pavia Facoltà di Ingegneria Esame di Fisica Matematica (Ingegneria Civile ed Ambientale Appello del 5 giugno 5. Sia assegnata l equazione x ( e x +e y +e z = e x +e y +βe z. Trovare per quale

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

FM210 / MA - Seconda prova pre-esonero ( )

FM210 / MA - Seconda prova pre-esonero ( ) FM10 / MA - Seconda prova pre-esonero (3-5-018) 1. Un sistema meccanico è costituito da due sbarre uguali AB e BC, rettilinee, omogenee, di massa M e lunghezza l, incernierate tra loro in B. Le due sbarre

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA Corsi di laurea in Matematica e Fisica - Anno Accademico 07/8 FM0 / MA Seconda Prova di Esonero [8-5-08]. Un sistema meccanico è costituito da due sbarre uguali, rettilinee, omogenee, pesanti, di massa

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli 5 Febbraio 7 Esercizio. Si considerino i due sottospazi π e π di R dati dalle seguenti equazioni: π : x y + z = ; π : x + y z =.. Trovare una

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Corso interno di Matematica compito scritto del n n+1

Corso interno di Matematica compito scritto del n n+1 Corso interno di Matematica compito scritto del 4.07.05 1. Dire se la serie converge e giustificare la risposta. n=1 1 n n+1 n Soluzione: Il criterio della radice o del rapporto falliscono; proviamo col

Dettagli

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 3. Fra tutti i cilindri a base rotonda inscritti in una sfera, determinare quello di volume massimo. 4. Dimostrare

Dettagli

Scritto di Analisi II e Meccanica razionale del

Scritto di Analisi II e Meccanica razionale del Scritto di Analisi II e Meccanica razionale del 06.09.01 Meccanica razionale. Esercizio 1 Un recipiente cilindrico omogeneo, di massa m, area di base A e altezza h, completamente chiuso, poggia sul piano

Dettagli

Parte 1. Fisica Matematica I Compitino 7 Maggio 2015 Durata: 3 ore

Parte 1. Fisica Matematica I Compitino 7 Maggio 2015 Durata: 3 ore Fisica Matematica I Compitino 7 Maggio 015 Durata: 3 ore Scrivete cognome e nome in ogni foglio consegnato. Consegnate lo svolgimento della parte 1 (il FRONTE di questo foglio) nella pila etichettata 1,

Dettagli

DIAGONALIZZAZIONE E FORME QUADRATICHE / ESERCIZI PROPOSTI

DIAGONALIZZAZIONE E FORME QUADRATICHE / ESERCIZI PROPOSTI M.GUIDA, S.ROLANDO, 204 DIAGONALIZZAZIONE E FORME QUADRATICHE / ESERCIZI PROPOSTI L asterisco contrassegna gli esercizi più difficili o che possono considerarsi meno basilari. Autovalori, autospazi e diagonalizzazione

Dettagli

1 Punti di equilibrio e stabilità: definizioni

1 Punti di equilibrio e stabilità: definizioni ASPETTI QUALITATIVI DELLA TEORIA DELLE EQUAZIONI DIFFERENZIALI (Schema del contenuto delle lezioni e riferimenti bibliografici) Testi [HS] M. Hirsch and S. Smale Differential Equations, Dynamical Systems

Dettagli

Scritto di Analisi II e Meccanica razionale del

Scritto di Analisi II e Meccanica razionale del Scritto di Analisi II e Meccanica razionale del 19.1.212 Esercizio di meccanica razionale Una terna cartesiana Oxyz ruota con velocità angolare costante ω attorno all asse verticale Oy rispetto ad un riferimento

Dettagli

SO. Stabilità e piccole oscillazioni

SO. Stabilità e piccole oscillazioni SO. Stabilità e piccole oscillazioni L argomento della stabilità, nato nell ambito della meccanica, ai fini di fornire dei criteri matematici per formalizzare la nozione intuitiva di stabilità di una configurazione

Dettagli

Esercizi di Geometria - 1

Esercizi di Geometria - 1 Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi

Dettagli

MA - Soluzioni dell esame scritto del

MA - Soluzioni dell esame scritto del MA - Soluzioni dell esame scritto del 7-9-015 1. Si consideri un punto materiale di massa m vincolato a muoversi su una superficie ellissoidale di equazione (x + y ) + z = R, sottoposto all azione della

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

EH. Equazioni di Hamilton

EH. Equazioni di Hamilton EH. Equazioni di Hamilton Iniziamo questo capitolo con un osservazione di carattere preliminare. Consideriamo, per esempio, un sistema differenziale costituito da N equazioni ciascuna del secondo ordine,

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

Applicazioni lineari e diagonalizzazione

Applicazioni lineari e diagonalizzazione Autovalori e autovettori Matrici associate a applicazioni lineari Endomorfismi semplici e matrici diagonalizzabili Prodotti scalari e Teorema Spettrale nel caso generale 2 2006 Politecnico di Torino 1

Dettagli

1.9 Massimi e minimi vincolati

1.9 Massimi e minimi vincolati .9 Massimi e minimi vincolati Sia K un compatto di R N e sia f : K R una funzione continua. Per il teorema di Weierstrass, f assume massimo e minimo su K. Come determinarli? Se K ha punti interni e f è

Dettagli

Sistemi Dinamici Corso di Laurea in Matematica Compito del

Sistemi Dinamici Corso di Laurea in Matematica Compito del Sistemi Dinamici Corso di Laurea in Matematica Compito del 6--9 Esercizio. punti) i) Studiare al variare del parametro µ R, il ritratto di fase del sistema meccanico dato da un punto materiale di massa

Dettagli

FM210 / MA - Secondo scritto ( )

FM210 / MA - Secondo scritto ( ) FM10 / MA - Secondo scritto (6-7-017) Esercizio 1. Un asta rigida omogenea di lunghezza l e massa M è vincolata a muoversi su un piano verticale di coordinate x-y (con l asse x orizzontale e l asse y verticale,

Dettagli

Prova Scritta di di Meccanica Analitica. 4 Luglio ) Si consideri un punto materiale di massa m soggetto al potenziale.

Prova Scritta di di Meccanica Analitica. 4 Luglio ) Si consideri un punto materiale di massa m soggetto al potenziale. Prova Scritta di di Meccanica Analitica 4 Luglio 7 Problema ) Si consideri un punto materiale di massa m soggetto al potenziale V x) ax 4 determinare la dipendenza del periodo dall energia. ) Si scriva

Dettagli

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 22 gennaio 2015

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 22 gennaio 2015 Corso di Laurea in Matematica - Esame di Geometria UNO Prova scritta del 22 gennaio 2015 Cognome Nome Numero di matricola Corso (A o B) Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi.

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema.

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema. Esercizio 1. Un sistema materiale è costituito da una lamina piana omogenea di massa M e lato L e da un asta AB di lunghezza l e massa m. La lamina scorre con un lato sull asse x ed è soggetta a una forza

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Prodotto scalare e matrici < PX,PY >=< X,Y >

Prodotto scalare e matrici < PX,PY >=< X,Y > Prodotto scalare e matrici Matrici ortogonali Consideriamo in R n il prodotto scalare canonico < X,Y >= X T Y = x 1 y 1 + +x n y n. Ci domandiamo se esistono matrici P che conservino il prodotto scalare,

Dettagli

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI

SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI SISTEMI DI EQUAZIONI DIFFERENZIALI- ESERCIZI SVOLTI Generalità sui sistemi Sia xt, yt la soluzione del problema di Cauchy Posto vt = e xtyt, calcolare v x = 3x x = y = x y = 0 Sia x = 3x y y = x + y Scrivere

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA PRIMO APPELLO, 15 GIUGNO 2010 VERSIONE A. 1 a 1. 0 a a 2

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA PRIMO APPELLO, 15 GIUGNO 2010 VERSIONE A. 1 a 1. 0 a a 2 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA PRIMO APPELLO, 5 GIUGNO 2 VERSIONE A Esercizio Al variare del parametro reale a, si consideri l endomorfismo : R R definito dalle condizioni: a a a 2 a a 2 =,

Dettagli

Primo compito di esonero. Meccanica Razionale - Canale A - La. 23 aprile Docente C. Cammarota

Primo compito di esonero. Meccanica Razionale - Canale A - La. 23 aprile Docente C. Cammarota Primo compito di esonero Meccanica Razionale - Canale A - La 23 aprile 2014 Docente C. Cammarota Un punto materiale P di massa m è vincolato a muoversi senza attrito su un profilo descritto dall equazione

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica II parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici geometriche algebriche e matrici e isometrie Riduzione Invarianti Studio di coniche Intersezione con rette e tangenti in forma parametrica 006 Politecnico di Torino

Dettagli

2.1 Osservazioni sull esercitazione del

2.1 Osservazioni sull esercitazione del ¾ ½¾º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. 2.1 Osservazioni sull esercitazione del 5.3.214 2.1.1 Equazione

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 6 Giugno 08 (usare fogli diversi per esercizi diversi) Primo Esercizio i) Assumiamo che Q sia un punto di un corpo rigido piano

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 7 settembre 215 Cognome Nome Numero di matricola Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi. corretti, non

Dettagli

Prova scritta di fondamenti di meccanica razionale del

Prova scritta di fondamenti di meccanica razionale del Prova scritta di fondamenti di meccanica razionale del 1.1.18 Esercizio 1 Nel piano Oxy di una terna solidale Oxyz = Oê 1 ê ê un sistema rigido è costituito da due piastre quadrate identiche, Q 1 e Q,

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

Funzioni di R n a R m e la matrice Jacobiana

Funzioni di R n a R m e la matrice Jacobiana 0.1 Funzioni di R n a R m. Politecnico di Torino. Funzioni di R n a R m e la matrice Jacobiana Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Funzioni di R n

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi. 1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane 0.1. APPLICAZIONI LINEARI SIMMETRICHE ED HERMITIANE 1 Il Teorema Spettrale In questa nota vogliamo esaminare la dimostrazione del Teorema Spettrale e studiare le sue conseguenze per quanto riguarda i prodotti

Dettagli

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 2017 1 Introduzione Gli esercizi di questo capitolo riguardano i seguenti

Dettagli

SOLUZIONI. CDEF e Ixx D rispetto all asse x delle tre lamine, separatamente.

SOLUZIONI. CDEF e Ixx D rispetto all asse x delle tre lamine, separatamente. Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile e Ambientale/per l Ambiente e il Territorio Esame di Fisica Matematica 11 luglio 2012 SLUZINI Esercizio 1. Un corpo rigido

Dettagli

Esercizio. di centro l'origine e raggio R nel piano verticale O(x; z). Sia A il punto piu' alto dove la

Esercizio. di centro l'origine e raggio R nel piano verticale O(x; z). Sia A il punto piu' alto dove la Esercizio Due punti materiali P 1 e P, di ugual massa m, sono vincolati a muoversi sulla circonferenza di centro l'origine e raggio R nel piano verticale Ox; z). Sia A il punto piu' alto dove la circonferenza

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 20 settembre 2013 Versione 1

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 20 settembre 2013 Versione 1 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 20 settembre 2013 Versione 1 Cognome Nome Numero di matricola Corso (A o B) Voto ATTENZIONE. Riportare lo svolgimento completo degli

Dettagli

Dinamica dei Sistemi Aerospaziali Esercitazione 17

Dinamica dei Sistemi Aerospaziali Esercitazione 17 Dinamica dei Sistemi Aerospaziali Esercitazione 7 9 dicembre 0 M, ft G k, r k, r b z l l y Figura : Sistema a gradi di libertà. Il sistema meccanico rappresentato in Figura è composto da una trave di massa

Dettagli

Forme bilineari e prodotti scalari

Forme bilineari e prodotti scalari Forme bilineari e prodotti scalari Il prodotto scalare standard di R n può anche essere scritto come un prodotto riga per colonna u, v R n = u t Iv dove I è la matrice identità. Possiamo generalizzare

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria Esercitazioni per la preparazione della prova scritta di Matematica Dott Franco Obersnel Lezione 8: estremi vincolati Esercizio 1 Scomporre il numero 411 nella

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Capitolo 14. Teoria delle piccole oscillazioni

Capitolo 14. Teoria delle piccole oscillazioni 59. linearizzazione 101 Capitolo 14. Teoria delle piccole oscillazioni sec.59 59. Linearizzazione p.59.0 p.59.1 59.1 59. 59.1. Introduzione. 59.. Notazioni. Consideriamo un sistema meccanico descritto

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA MEODI MAEMAICI PER LA FISICA PROVA SCRIA - 6 SEEMBRE 6 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNEGGIO: 6/3) Si calcoli l integrale S arccos() + 3 Suggerimento È utile iniziare con

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (21 gennaio 2011)

PROVA SCRITTA DI MECCANICA RAZIONALE (21 gennaio 2011) PRV SRITT DI MENI RZINLE (21 gennaio 2011) Il sistema in figura, posto in un piano verticale, è costituito di un asta rigida omogenea (massa m, lunghezza 2l) i cui estremi sono vincolati a scorrere, senza

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Ax = λx x 0 Allora λ è un autovalore della matrice A corrispondente all autovettore x Risolviamo l equazione secolare det(a λi) = 0 Trasformazioni di similarità det(sas 1 λi) =

Dettagli