Compito di Meccanica Razionale
|
|
|
- Diana Napolitano
- 9 anni fa
- Visualizzazioni
Transcript
1 Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 27 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In tale piano si consideri il sistema meccanico formato da un disco di raggio r e da un asta di lunghezza l. Il disco può ruotare intorno al suo centro che è fissato nell origine O del riferimento. L estremo A dell asta è vincolato a scorrere sull asse Ox e l altro estremo B è incernierato in un punto del bordo del disco Usando come coordinata l angolo θ tra il segmento OB e l asse Ox, a) calcolare le coordinate del centro istantaneo di rotazione C 0 dell asta assumendo che l > r; b) trovare la polare fissa (base) e la polare mobile (rulletta) descritte da C 0 nel caso in cui l = r (assumiamo che l estremo A dell asta si trovi nell origine solo quando θ = π/2+kπ,k Z). Secondo Esercizio In un piano verticale si fissi un sistema di riferimento Oxy, con asse Oy verticale ascendente. Si consideri il sistema meccanico formato da un asta omogenea di massa m e lunghezza l e da un disco omogeneo di massa M e raggio R. L asta è incernierata in O in modo che la distanza tra il suo estremo A ed il punto O sia l/4, il disco può rotolare senza strisciare lungo l asta. Una molla di costante elastica k > 0 e lunghezza a riposo nulla collega il punto A con l asse Ox rimanendo verticale durante il moto. Sul sistema agisce la forza di gravità, di accelerazione g. Si assuma che la cerniera in O sia un vincolo ideale. Chiamiamo P il punto di contatto tra il disco e l asta. Usando come coordinate l ascissa s di P lungo l asta e l angolo α tra l asta e la direzione verticale (vedi figura), a) scrivere la lagrangiana del sistema; b) scrivere la seconda equazione cardinale della dinamica per il disco rispetto al punto P;
2 c) trovare la componente perpendicolare all asta della forza esercitata dall asta sul disco in funzione di α, α, α. Terzo Esercizio Si consideri il sistema meccanico formato da tre punti materiali P,P 2,P 3 di massa m vincolati a scorrere su una retta orizzontale r. Sui tre punti agiscono delle forze elastiche esercitate da quattro molle uguali, di costante elastica k > 0 e lunghezza a riposo nulla. Queste molle sono disposte come in figura: due di esse collegano P i a P i+ con i =,2, le altre due collegano P al punto O e P 3 al punto Q, dove O,Q sono punti fissati della retta r tali che Q O = l. O P P 2 P 3 Q Usando come coordinate lagrangiane le ascisse s,s 2,s 3 dei punti P,P 2,P 3 lungo la retta r, misurate a partire da O,. trovare l unica configurazione di equilibrio del sistema e dimostrare che è stabile; 2. calcolare le frequenze proprie ed i modi normali delle piccole oscillazioni attorno a questa configurazione. 2
3 Soluzioni Primo Esercizio a) Introduciamoil sistemadi riferimentooê ê 2 ê 3, con le direzioni e i versidi ê ed ê 2 datidagli assiox e Oy, rispettivamente, ed ê 3 = ê ê 2. Peril teorema di Chasles il centro di istantanea rotazione C 0 dell asta si trova nell intersezione della retta passante per A e perpendicolare all asse Ox con la retta passante per B ed O. Allora dalle relazioni B O = rcosθê +rsinθê 2, C 0 B = l 2 r 2 sin 2 θ(ê +tanθê 2 ), si ottiene C 0 O = (rcosθ + l 2 r 2 sin 2 θ)ê +(rsinθ + l 2 r 2 sin 2 θtanθ)ê 2. b) Nel caso in cui l = r sempre dal teorema di Chasles si ha (C 0 O) = 2rcosθê +2rsinθê 2. () Dette (x C0,y C0 ) le coordinate di C 0 in Oxy, dalla () segue subito che la polare fissa descritta da C 0 è una circonferenza con centro nel punto O e raggio 2r, infatti x 2 C 0 +y 2 C 0 = 4r 2. Per determinare la polare mobile descritta da C 0 introduciamo un sistema di riferimento Bê ê 2ê 3 solidale all asta, con ê 3 ê 3 ed ê parallelo e concorde al vettore A B. Associamo ad ê, ê 2 gli assi Bx, By, rispettivamente; si ha x C 0 = rcos(2θ), y C 0 = rsin(2θ). Queste coordinate soddisfano l equazione (x C 0 ) 2 +(y C 0 ) 2 = r 2. La polare mobile è una circonferenza con centro nel punto B e raggio r. Secondo Esercizio a) Introduciamoil sistemadi riferimentooê ê 2 ê 3, con le direzioni e i versidi ê ed ê 2 dati dagliassi Ox e Oy, rispettivamente, ed ê 3 = ê ê 2. Consideriamo inoltre il sistema di riferimento Oê ê 2ê 3, solidale all asta con ê parallelo e concorde a B O, ed ê 3 ê 3. Scriviamo le quantità seguenti in coordinate nella base {ê,ê 2,ê 3 }. La posizione e la velocità del centro di massa G a dell asta sono x Ga = l 4 e, v Ga = l 4 ω a e = l 4 αe 2, dove ω a = αe 3 è la velocità angolare dell asta. Per il centro di massa G d del disco si ha x Gd = se +Re 2, v Gd = (ṡ R α)e +s αe 2. 3
4 La velocità angolare del disco è la somma della velocità angolare dell asta e della velocità angolare del disco nel riferimento solidale all asta: ω d = ( α ṡ R )e 3. L energia cinetica del sistema meccanico è la somma di quella dell asta (T a ) e del disco (T d ) T = T a +T d, dove con T a = 2 mv2 G a + 2 I aω 2 a = 7 96 ml2 α 2, T d = 2 Mv2 G d + 2 I dω 2 d = 2 M(3 2ṡ R2 α 2 +s 2 α 2 3Rṡ α), I a = ml2 2, I d = MR2. 2 L energia potenziale risulta V = 2 ky2 A +mgy G a +Mgy Gd = kl2 32 cos2 α mgl 4 cosα+mg(rsinα scosα). La lagrangiana è la funzione L(s,α,ṡ, α) = T(s,ṡ, α) V(s,α). b) Scriviamo la seconda equazione cardinale per il disco prendendo come polo il punto P: Ṁ P = N (e) P Mv P v Gd. (2) La posizione e la velocità di P sono x P = se, v P = ṡe +s αe 2. Otteniamo dunque v P v Gd = sr α 2 e 3. Il momento delle forze esterne risulta N (e) G d = (x Gd x P ) ( Mge 2 ) = MgRcosαe 3. Possiamo calcolare il momento angolare M P dalla formula M P = M Gd +(x Gd x P ) Mv Gd = 3 2 MR(R α ṡ)e 3, dove abbiamo usato la relazione M Gd = I d ω d. In definitiva proiettando l equazione (2) lungo e 3 si ottiene (dopo aver diviso per MR) c) Chiamiamo 3 2 (R α s) = s α2 gcosα. (3) Φ n = Φ n e 2 4
5 la forza esercitata dall asta sul disco nel punto P in direzione perpendicolare all asta. Scriviamo la seconda equazione cardinale per l asta prendendo come polo il punto fisso O: Ṁ O = N (e) O. (4) Il momento risultante delle forze esterne è N (e) O = x P ( Φ n )+x Ga ( mge 2 )+x A k(x Q x A ), dove Φ n èlaforzaesercitatainp daldiscosull astaindirezioneperpendicolare all asta, e Si ottiene Inoltre si ha x A = l 4 ( sinαe +cosαe 2 ), x Q = l 4 sinαe. N (e) O = ( sφ n mgl kl2 sinα+ 4 6 sinαcosα)e 3. M (e) O = (I a +mx 2 G a )ω a = 7 48 ml2 αe 3. Dopo aver proiettato l equazione (4) lungo e 3 ed esplicitato Φ n si ottiene Φ n = ( 7 ) kl2 ml2 α+mglsinα 4s 2 4 sinαcosα. Terzo Esercizio a) L energia potenziale del sistema è V(s,s 2,s 3 ) = k 2 [s2 +(s 2 s ) 2 +(s 3 s 2 ) 2 +(l s 3 ) 2 ]. Le configurazioni di equilibrio corrispondono ai punti stazionari di V, cioè alle soluzioni di = = = 0, s s 2 s 3 (5) dove s = k(2s s 2 ), s 2 = k(2s 2 s s 3 ), s 3 = k(2s 3 s 2 l). La soluzione del sistema è ( s, s 2, s 3 ) con s = l 4, s 2 = l 2, s 3 = 3l 4. Per dimostrare che questa configurazione di equilibrio è stabile mostriamo che è un minimo stretto di V; possiamo poi concludere usando il teorema di Lagrange- Dirichlet. La matrice hessiana di V è data da V = k
6 Si verifica che V è definita positiva (per ogni valore di (s,s 2,s 3 ) poichè V è costante) essendo i tre minori principali di guida di V maggiori di zero (stiamo usando il criterio di Sylvester). Si può fare tale verifica anche osservando che per ogni u = (u,u 2,u 3 ) R 3 vale la formula k u V u = 2(u 2 +u 2 2+u 2 3) 2u u 2 2u 2 u 3 = u 2 +u 2 3+(u u 2 ) 2 +(u 2 u 3 ) 2. b) Le frequenze proprie sono ω = λ, ω 2 = λ 2, ω 3 = λ 3, dove λ,λ 2,λ 3 sono le soluzioni dell equazione secolare ed det(v ( s, s 2, s 3 ) λa( s, s 2, s 3 )) = 0 A = è la matrice cinetica. Abbiamo quindi m m m det(v ( s, s 2, s 3 ) λa( s, s 2, s 3 )) = (2k λm)[(2k λm) 2 2k 2 ] = 0, le cui soluzioni sono λ = 2k m, λ 2 = (2+ 2) k m, λ 3 = (2 2) k m. I modi normali di oscillazione sono le tre famiglie di funzioni vettoriali c cos(ω t+φ )u, c 2 cos(ω 2 t+φ 2 )u 2, c 3 cos(ω 3 t+φ 3 )u 3, dove, per j =,2,3, c j R +, φ j S ed u j un autovettore di V ( s, s 2, s 3 ) λ j A( s, s 2, s 3 ). Una scelta possibile è u = 0, u 2 = 2, u 3 = 2. 6
Compito di Meccanica Razionale
Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 10 Gennaio 2017 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideri il sistema di riferimento Oxy. L estremo
Compito del 14 giugno 2004
Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica
PROVA SCRITTA DI MECCANICA RAZIONALE (9 gennaio 2015) (C.d.L. Ing. Civile [L-Z] e C.d.L. Ing. Edile/Architettura Prof. A.
PRV SCRITT DI MECCNIC RZINLE (9 gennaio 2015) In un piano verticale, un disco D omogeneo (massa m, raggio r), rotola senza strisciare sull asse ; al suo centro è incernierata un asta omogenea (massa m,
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica I parte Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Svincolamento statico Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale
Compito di Meccanica Razionale M-Z
Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica II parte Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h
Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare
Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006
Facoltà d Ingegneria Meccanica Razionale A.A. 2005/2006 - Appello del 04/07/2006 In un piano verticale Oxy, un sistema materiale è costituito da un disco omogeneo, di centro Q, raggio R e massa 2m, e da
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007
Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il
Dinamica del punto materiale: problemi con gli oscillatori.
Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad
PROVA SCRITTA DI MECCANICA RAZIONALE (11 giugno 2005) (C.d.L. Ing. Edile - Architettura. Prof. A. Muracchini)
RV SRITT DI MENI RZINLE (11 giugno 2005) (.d.l. Ing. Edile - rchitettura. rof.. Muracchini) Il sistema rappresentato in figura, mobile in un piano verticale z, è costituito di un disco circolare pesante
M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.
Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M
VII ESERCITAZIONE - 29 Novembre 2013
VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.
Esercizi da fare a casa
apitolo 1 Esercizi da fare a casa 1.1 Premesse I seguenti esercizi sono risolubili nella seconda settimana di corso. Per quelli del primo gruppo le soluzioni si possono estrarre dal mio libro di Esercizi
Prova scritta di Meccanica Razionale
Prova scritta di Meccanica Razionale - 0.07.013 ognome e Nome... N. matricola....d.l.: MLT UTLT IVLT MTLT MELT nno di orso: altro FIL 1 Esercizio 1. Nel riferimento cartesiano ortogonale, si consideri
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.
Fisica 1 Anno Accademico 2011/2012
Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,
DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA
DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema
Soluzioni della prova scritta Fisica Generale 1
Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla
Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile
Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,
Dinamica Rotazionale
Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione
Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali
Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è
Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto
Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problema n. 1: Un carro armato, posto in quiete su un piano orizzontale, spara una granata
Esercitazioni di Meccanica Razionale
Esercitazioni di Meccanica Razionale a.a. 2002/2003 Composizione di stati cinetici Maria Grazia Naso [email protected] Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica
Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017
Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di
EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE
EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE Equazioni di Lagrange in forma non conservativa Riprendiamo l equazione simbolica della dinamica per un sistema olonomo a vincoli perfetti nella forma
Calcolo vettoriale. 2. Nel piano Oxy sono dati i vettori. con la direzione positiva dell asse x,
Calcolo vettoriale 1 Nel piano sono dati i vettori (P ) di modulo 4 e formante un angolo di π 6 (Q ) = 3i 3j, (P R) = 2 3i con la direzione positiva dell asse, Determinare Q, vers(q ), (P ) + (Q ), (P
Compito di Fisica Generale (Meccanica) 25/01/2011
Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida
Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1
Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare
Applicazioni delle leggi della meccanica: moto armnico
Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di
1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.
Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k
Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009
Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e
1 Distanza di un punto da una retta (nel piano)
Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di
M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle
6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva
Problema (tratto dal 7.42 del Mazzoldi 2)
Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata
8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente
1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie
Compito di Fisica Generale (Meccanica) 16/01/2015
Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato
Fisica Generale I (primo modulo) A.A , 9 febbraio 2009
Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in
DINAMICA E STATICA RELATIVA
DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.
Esame 28 Giugno 2017
Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28
UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento
UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell'insegnamento Anno accademico 2012/2013 Prof. ETTORE MINGUZZI Settore inquadramento MAT/07 - FISICA MATEMATICA Facoltà INGEGNERIA Insegnamento MECCANICA RAZIONALE
Esercizio (tratto dal problema 7.36 del Mazzoldi 2)
Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante
Compito di Fisica Generale (Meccanica) 17/01/2013
Compito di Fisica Generale (Meccanica) 17/01/2013 1) Un proiettile massa m è connesso ad una molla di costante elastica k e di lunghezza a riposo nulla. Supponendo che il proiettile venga lanciato a t=0
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
Compito di Fisica Generale (Meccanica) 13/01/2014
Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella
Meccanica Applicata alle Macchine
Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
Esercizio 1 Meccanica del Punto
Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa
ESERCIZI SULLA DINAMICA DI CORPI RIGIDI.
ESERCIZI SULL DINMIC DI CRPI RIIDI. Risoluzione mediante equazioni di Lagrange, equilibrio relativo (forze aarenti), stazionarietà del otenziale U; stabilità dell equilibrio e analisi delle iccole oscillazioni.
approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare
approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m
Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013
Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.
QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO
QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO Quantità di Moto Definizione 1 Per un punto P dotato di massa m e velocità v, sidefinisce quantità di moto il seguente vettore Q := m v. (1) Definizione
OSCILLATORE ARMONICO SEMPLICE
OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato
Equazioni di Eulero del corpo rigido.
Equazioni di Eulero del corpo rigido. In questa nota vogliamo scrivere e studiare le equazioni del moto di un corpo rigido libero, sottoposto alla sola forza di gravità. Ci occuperemo in particolare delle
Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata)
Esame scritto del corso di Fisica 2 del 2.09.20 Corso di laurea in Informatica A.A. 200-20 (Prof. Anna Sgarlata) COMPITO A Problema n. Un asta pesante di massa m = 6 kg e lunga L= m e incernierata nel
Meccanica. 5. Cinematica del Corpo Rigido. Domenico Galli. Dipartimento di Fisica e Astronomia
Meccanica 5. Cinematica del Corpo Rigido http://campus.cib.unibo.it/252232/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. 2. 2 Si chiama numero dei gradi di libertà (GdL)
Fondamenti di Meccanica Esame del
Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.
1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5
Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......
misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x
4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto
UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12
REGISTRO DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 Cognome e Nome BISI FULVIO Qualifica RICERCATORE CONFERMATO MAT/07 Insegnamento di FISICA MATEMATICA (500474) Impartito presso: Corso
Esercitazione 6 - Dinamica del punto materiale e. del corpo rigido
Università degli Studi di Bergamo Corso di Laurea in Ingegneria essile Corso di Elementi di Meccanica Esercitazione 6 - Dinamica del punto materiale e Esercizio n. del corpo rigido Studiare la dinamica
III esperimento: determinazione del momento d inerzia
III esperimento: determinazione del momento d inerzia Consideriamo un corpo esteso (vedi figura seguente) che possa ruotare attorno ad un asse fisso passante per il punto di sospensione PS; si immagini
Tutorato di Fisica 1 - AA 2014/15
Tutorato di Fisica - AA 04/5 Emanuele Fabbiani 8 febbraio 05 Quantità di moto e urti. Esercizio Un carrello di massa M = 0 kg è fermo sulle rotaie. Un uomo di massa m = 60 kg corre alla velocità v i =
Fisica Generale A 8. Esercizi sui Princìpi di Conservazione
Fisica Generale A 8. Esercizi sui Princìpi di Conservazione http://campus.cib.unibo.it/2462/ May 29, 2015 Esercizio 1 Un punto materiale di massa m = 0.1 kg è appoggiato su di un cuneo liscio, di massa
b) DIAGRAMMA DELLE FORZE
DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro
Esercizi sul corpo rigido.
Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:
j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1).
j B A l 2 1 ω1 r ϑ i Piede di biella Testa di biella Biella Braccio di manovella Siti interessanti sul meccanismo biella-manovella: http://it.wikipedia.org/wiki/meccanismo_biella-manovella http://www.istitutopesenti.it/dipartimenti/meccanica/meccanica/biella.pdf
DINAMICA DI SISTEMI AEROSPAZIALI
DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e
4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];
1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta
Esercitazione 2. Soluzione
Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale
Meccanica. 10. Pseudo-Forze. Domenico Galli. Dipartimento di Fisica e Astronomia
Meccanica 10. Pseudo-Forze http://campus.cib.unibo.it/2429/ Domenico Galli Dipartimento di Fisica e Astronomia 17 febbraio 2017 Traccia 1. Le Pseudo-Forze 2. Esempi 3. Pseudo-Forze nel Riferimento Terrestre
(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )
1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta
Meccanica razionale e statica
Università degli Studi eampus Facoltà di Ingegneria Meccanica razionale e statica Novedrate, 15 giugno 011 Teoria Rispondere in modo esauriente ad una sola domanda a scelta. 1. alcolo dell energia cinetica
Fisica 1 Anno Accademico 2011/2012
Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (16 Aprile - 20 Aprile 2012) 1 ESERCIZI SVOLTI AD ESERCITAZIONE Sintesi Abbiamo studiato le equazioni che determinano il moto
PRINCIPIO DEI LAVORI VIRTUALI
PRINCIPIO DEI LAVORI VIRTUALI Velocità possibili e velocità virtuali Ciponiamoilproblemadideterminareequazionipuredimoto,ovveroequazioni che non introducono incognite di reazioni. Consideriamo il seguente
A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1
Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.
Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula
Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE
Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla
Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema
Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da
MOTO DI PURO ROTOLAMENTO
MOTO DI PURO ROTOLAMENTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOTO DI PURO ROTOLAMENTO
EQUAZIONI DIFFERENZIALI
Indice 1 EQUAZIONI DIFFERENZIALI 3 1.1 Equazioni fisicamente significative...................... 3 1.1.1 A cosa servono?............................. 3 1.1.2 Legge di Newton............................
