Elasticità lineare per corpi affini

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elasticità lineare per corpi affini"

Transcript

1 Elasticità lineare per corpi affini Indice 1 Piccole deformazioni 2 2 Dilatazione infinitesima 2 3 Rotazione infinitesima 3 4 Variazione di volume 4 5 Variazione di area 4 6 Linearizzazione della risposta del materiale 4 7 Forza risultante e momento risultante linearizzati 5 8 Elasticità lineare 6

2 2 elasticità lineare per corpi affini 1 Piccole deformazioni Di solito i corpi si deformano molto poco. Ha dunque interesse valutare la risposta a piccole deformazioni. Si consideri una traiettoria generata da deformazioni affini dipendenti da un parametro di controllo φ ( p A ) = φ ( p O )+F ( p A p O ) (1) e la decomposizione polare del gradiente della deformazione Le espansioni in serie F = R U. (2) R = I+Θ +o(), (3) U = I+E +o(), (4) sono costituite dalla somma del valore in = 0, di un termine lineare in e di un termine o() tale che o() lim a = o a V. (5) 0 Sostituendo queste espressioni nella (2) si ottiene F = (I+Θ )(I+E )+o() = I+Θ +E +o(), (6) Si noti che Θ, detta rotazione infinitesima, è un tensore antisimmetrico poiché R T R = I (I+Θ ) T (I+Θ )+o() = I Θ T +Θ +o() = O, (7) mentre E, detta dilatazione infinitesima, è un tensore simmetrico poiché lo è U. Alla deformazione (1) corrisponde il campo di spostamento che per la (6) diventa 2 Dilatazione infinitesima Si osservi che per la (4) si ha U a a u ( p A ) = u ( p O )+(F I)( p A p O ), (8) u( p A ) = u( p O )+(Θ +E )( p A p O )+o(). (9) = 1 a (U a U a) 1/2 = 1 a ( a +E a a)+o() = 1+ E a a +o(). (10) a a Eliminando il pedice e indicando la matrice di E in un base ortonormale {e 1,e 2,e 3 } con ε 11 ε 12 ε 13 [E] = ε 21 ε 22 ε 23, (11) ε 31 ε 32 ε 33 per la (10) risulta Ue 1 e 1 = 1+Ee 1 e 1 +o() = 1+ε 11 +o(). (12)

3 elasticità lineare per corpi affini 3 Pertanto, a meno di o(), ε 11 è l allungamento nella direzione di e 1, ε 22 è l allungamento nella direzione di e 2, ε 33 è l allungamento nella direzione di e 3. In corrispondenza della coppia di vettori e 1 e e 2 si ha inoltre Ue 1 Ue 2 = U 2 e 1 e 2 = ( I+E+o() ) 2 e1 e 2 = ( I+2E+o() ) e 1 e 2 = e 1 e 2 +2Ee 1 e 2 +o() = 2ε 21 +o(). (13) Utilizzando la (12) si ha anche Ue 1 Ue 2 = (1+ε 11 )(1+ε 22 )+o() = 1+ε 11 +ε 22 +o() (14) ( Ue 1 Ue 2 ) 1 = 1 ε 11 ε 22 +o(). (15) Ne deriva che l angolo tra i vettori Ue 1 e Ue 2 è tale che cos ( π 2 γ ) Ue 1 Ue 2 21 = Ue 1 Ue 2 = 2ε 21 +o(). (16) Poiché cos( π 2 γ 21) = sin(γ 21 ) γ 21, per lo scorrimento γ 21 corrispondente alla coppia di vettori e 1, e 2 si ottiene γ 21 2ε 21. (17) Per la stessa ragione si ha γ 32 2ε 32, γ 13 2ε 13. (18) Si noti che se u i è un autovettore di E e ε i l autovalore corrispondente, si ha e dalla (4) Eu i = ε i u i (19) Eu i = (U I+o())u i = ε i u i Uu i = (1+ε i )u i +o(). (20) Pertanto per abbastanza piccolo gli autovettori di U sono vicini agli autovettori di E mentre le dilatazioni principali sono approssimate dalle espressioni 3 Rotazione infinitesima λ i 1+ε i. (21) L espansione in serie della rotazione si può costruire nel seguente modo. Si consideri la rotazione come composizione di tre rotazioni (v. Appendice 3) con asse rispettivamente e 1, e 2, e 3 e ampiezze θ (1), θ(2) Considerando ad esempio R (1), la sua espansione in serie R = R (3) R(2) R(1) (22), θ(3), nulle per = 0 e lineari in. R (1) = I+Θ(1) +o() (23) corrisponde all espansione in serie della sua matrice cosθ (1) sinθ (1) = θ (1) 0 sinθ (1) cosθ (1) +o(). (24) θ (1) 0

4 4 elasticità lineare per corpi affini Componendo le espansioni in serie si ottiene Dalla (3) risulta R = (I+Θ (3) )(I+Θ(2) )(I+Θ(1) essendo le matrici di Θ (3), Θ(2), Θ(1), rispettivamente 0 θ (3) θ (2) 0 0, θ (3) 4 Variazione di volume )+o() = I+Θ(3) +Θ(2) +Θ(1) +o(). (25) Θ = Θ (3) +Θ(2) +Θ(1) (26) θ (2) , 0 0 θ (1). (27) 0 θ (1) 0 Per il volume del parallelepipedo di spigoli {U e 1,U e 2,U e 3 }, utilizzando la (4), si ha vol(u e 1,U e 2,U e 3 ) = vol((i+e )e 1,(I+E )e 2,(I+E )e 3 )+o() = vol(e 1,e 2,e 3 )+vol(e e 1,e 2,e 3 )+vol(e 1,E e 2,e 3 )+vol(e 1,e 2,E e 3 )+o(). (28) Risulta dunque Pertanto per abbastanza piccolo è 5 Variazione di area detf = vol(u e 1,U e 2,U e 3 ) vol(e 1,e 2,e 3 ) = 1+trE +o(). (29) detf 1+trE. (30) Consideriamo la faccia F di un parallelepipedo. Il rapporto tra l area di tale faccia e l area della faccia corrispondente F nella configurazione di riferimento è dato da A F A F = (coff) n (31) dove n il versore normale esterno a F. Dall espansione in serie della precedente espressione, per sufficientemente piccolo si ha (coff ) n 1+trE E n n. (32) 6 Linearizzazione della risposta del materiale La tensione, data dalla funzione di risposta per un materiale elastico, è Si consideri l espansione in serie T = R T(U )R T. (33) T(U ) = T(I+E ) = T(I)+C(E )+o(), (34)

5 elasticità lineare per corpi affini 5 dove C è la parte lineare di T, risultando cosí C(E ) lineare in. Assumendo 1 T(I) = O, (35) la (33) diventa T = (I+Θ ) T C(E )(I+Θ )+o() = C(E )+o() (36) 7 Forza risultante e momento risultante linearizzati Lungo una traiettoria dipendente da un parametro di controllo, descritta dalla (1), la potenza di una forza f A applicata nel punto A risulta f A v A = f A v O +F ( p A p O ) f A L. (37) Lo sviluppo in serie del momento, assumendo che la forza f A sia lineare rispetto a e nulla per = 0, risulta F ( p A p O ) f A = (I+E +Θ +o())( p A p O ) f A = ( p A p O ) f A +o() (38) La potenza di una distribuzione di forza b su R in un campo di velocità v è R b v dv (39) Tale integrale si può trasformare in un integrale sulla forma, utilizzando il rapporto tra i volumi (formula generale del cambiamento di variabile) b v dv = (b φ) (v φ)detf dv (40) R che più brevemente si può scrivere R b v dv = b vdetf dv. (41) Utilizzando l espansione in serie di detf (29) si ha b v dv = b v (1+trE +o()) dv R = b v dv + b v tre dv +o(). (42) Assumendo che b sia lineare rispetto a e nullo per = 0, essendo E lineare in risulta b v dv = b v dv +o(). (43) R Inoltre dall espressione del campo di velocità affine v(p A ) = v O +LF ( p A p O ) (44) 1 Si dice in tal caso che il corpo è in una configurazione di riposo o rilassata.

6 6 elasticità lineare per corpi affini si ottiene b v dv = R = b v O dv + b dv v O + b LF (x p O ) dv +o() (x p O ) b dv L +o(). Assumendo che anche t, come b, è una funzione lineare in, nulla in = 0, utilizzando la (32) si ottiene t v da = t v (coff) n da = t v da R = t v O da+ t LF (x p O ) da+o() (46) = t da v O + (x p O ) t da L +o(). 8 Elasticità lineare La parte lineare di T(F ) data dalla (36) definisce la funzione di risposta della teoria lineare dell elasticità T = C(E). (47) L applicazione lineare C è detta tensore dell elasticità. Poichè tale tensore trasforma tensori simmetrici in tensori simmetrici, esso è descritto da una matrice 6 per in una qualunque base. Affinché esista l energia elastica si può dimostare che C deve essere un tensore simmetrico. Pertanto il numero totale di coefficienti (i moduli elastici) necessari a descrivere un materiale risulta (6 6 6)/2+6 = 21. Per materiali isotropi questo numero di riduce a 2 e la formula generale della funzione di risposta risulta C(E) = λtr(e)i+2µe. (48) Le costanti λ e µ si dicono moduli di Lamè. La rotazione infinitesima e la dilatazione infinitesima si definiscono nel modo seguente (45) Θ := skw(f I) = skw u, (49) E := sym(f I) = sym u, (50) dove u = (F I) è il gradiente dello spostamento. Una deformazione affine infinitesima è descritta dall espressione φ( p A ) = φ( p O )+F( p A p O ) = φ( p O )+(I+Θ+E)( p A p O ) (51) o, in termini di campo di spostamento, dall espressione u( p A ) = u( p O )+(F I)( p A p O ) = u( p O )+(Θ+E)( p A p O ) (52) Riassumiamo la teoria del eleasticità lineare per un corpo affine. Il principio di bilancio è da cui derivano le seguenti equazioni di bilancio f v O + ( M TV ) L = 0 vo, L (53) f = o, (54) skwm = O, (55) symm = TV. (56)

7 elasticità lineare per corpi affini 7 La forza risultante e il momento risultante sono dati dalle espressioni f = b dv + t da, (57) M po = (x p O ) b dv + (x p O ) t da (58) e la funzione di risposta per la tensione T è data dalla (47). Utilizzando per la matrice di E l espressione γ 12 γ 13 ε γ 21 γ 23 [E] = ε 22, (59) 2 2 γ 31 γ 32 ε il termine ε 11 ha il significato di allungamento nella direzione e 1 ; il termine γ 12 ha il significato di scorrimento corrispondente alle direzioni e 1 e e 2. Utilizzando per la matrice di Θ l espressione 0 θ 3 θ 2 [Θ] = θ 3 0 θ 1, (60) θ 2 θ 1 0 i termini θ 1, θ 2, θ 3 hanno il significato di ampiezza di tre rotazioni infinitesime, rispettivamente con assi e 1, e 2, e 3.

Corpo affine elastico vincolato

Corpo affine elastico vincolato Esercizio [5-1] 1 Corpo affine elastico vincolato e 2 e 1 Un corpo a forma di parallelepipedo retto, con spigoli paralleli a e 1 di lunghezza l 1, spigoli paralleli a e 2 di lunghezza l 2 e spigoli paralleli

Dettagli

Corpi affini elastici

Corpi affini elastici Corpi affini elastici Indice 1 Principi di bilancio 2 1.1 Corpo rigido....................................... 2 1.2 Corpo affine e tensione di Cauchy............................ 2 2 Caratterizzazione della

Dettagli

Appendice 3. Rotazioni

Appendice 3. Rotazioni Appendice 3. Rotazioni Indice 1 Tensori ortogonali 2 2 Rotazioni e simmetrie in uno spazio di dimensione 2 2 3 Tensori ortogonali in uno spazio di dimensione 3 4 4 Rotazioni in uno spazio di dimensione

Dettagli

Analisi della deformazione

Analisi della deformazione 3 Analisi della deformazione Tema 3.1 Si consideri un corpo continuo di forma parallelepipedica e di dimensioni a = 15 cm, b = 10 cm, c = 1 cm. Rispetto ad un riferimento centrato nel baricentro del corpo

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Travi. 1 Deformazioni 2. 2 Atti di moto test 3. 3 Modello di Timoshenko Componenti della tensione Linearizzazione...

Travi. 1 Deformazioni 2. 2 Atti di moto test 3. 3 Modello di Timoshenko Componenti della tensione Linearizzazione... Travi Indice 1 Deformazioni 2 2 Atti di moto test 3 3 Modello di Timoshenko 3 3.1 Componenti della tensione............................ 5 3.2 Linearizzazione.................................. 5 4 Modello

Dettagli

DEFORMAZIONE DI SCORRIMENTO SEMPLICE

DEFORMAZIONE DI SCORRIMENTO SEMPLICE DEFORMAZIONE DI SCORRIMENTO SEMPLICE Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile Università ditrieste Piazzale Europa, Trieste giugno 5 Indice Deformazione Velocità 3 3 Tensori di deformazione

Dettagli

1 Applicazioni lineari

1 Applicazioni lineari 1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di

Dettagli

Appendice 2: TEORIA LINEARE della DEFORMAZIONE. ( ),

Appendice 2: TEORIA LINEARE della DEFORMAZIONE. ( ), Capitolo I Cinematica Appendice 2: TEORIA LINEARE della DEFORMAZIONE. Sia C la regione tridimensionale dello spazio occupata da una corpo B nella sua assegnata forma di riferimento. Si assuma che la sostanza

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 6 Giugno 08 (usare fogli diversi per esercizi diversi) Primo Esercizio i) Assumiamo che Q sia un punto di un corpo rigido piano

Dettagli

Analisi della Deformazione

Analisi della Deformazione Analisi della Deformazione Tema 1 Si consideri un corpo continuo omogeneo di forma parallelepipedica e lo si riferisca ad un riferimento Cartesiano centrato nel suo baricentro e ad assi paralleli agli

Dettagli

Appendice 2. Spazi euclidei

Appendice 2. Spazi euclidei Appendice 2. Spazi euclidei Indice Spazi euclidei 2. Vertici di un triangolo.............................. 3.2 Vertici di un parallelogramma.......................... 3.3 Sistemi di coordinate...............................

Dettagli

Continuo Deformabile: Deformabile cambia forma per effetto dello spostamento dei suoi punti; Continuo gli spostamenti dei punti sono descritti da

Continuo Deformabile: Deformabile cambia forma per effetto dello spostamento dei suoi punti; Continuo gli spostamenti dei punti sono descritti da Il Continuo Deformabile Continuo Deformabile: Deformabile cambia forma per effetto dello spostamento dei suoi punti; Continuo gli spostamenti dei punti sono descritti da funzioni continue e differenziabili:

Dettagli

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico 5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a

Dettagli

Discorsi di tensioni e deformazioni

Discorsi di tensioni e deformazioni CHAPTR 1 Discorsi di tensioni e deformazioni 1 Relazioni tra le componenti di tensione Componenti della tensione su un piano generico: S 1 = σ 11 n 1 + σ 1 n + σ31n 3 S = σ 1 n 1 + σ n + σ3n 3 S 3 = σ

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = 0 (b Rotazione di π/4 seguita da riflessione

Dettagli

Geometria BAER Canale A-K Esercizi 11

Geometria BAER Canale A-K Esercizi 11 Geometria BAER 6-7 Canale A-K Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = (b Rotazione di π/4 seguita da riflessione

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2 Analisi Matematica II Corso di Ingegneria Gestionale Compito del 15--18 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

Esempi di domande per scritto e orale

Esempi di domande per scritto e orale 260 A.Frangi, 208 Appendice D Esempi di domande per scritto e orale D. LE e PLV Risolvere il problema 7.6.6 Risolvere il problema 7.6.7 Nella pagina del docente relativa a Scienza delle Costruzioni allievi

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2x 2 + x 4 + 4y 4., x 2 + y 2 1.

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2x 2 + x 4 + 4y 4., x 2 + y 2 1. Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 05-06-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA MEODI MAEMAICI PER LA FISICA PROVA SCRIA - 6 SEEMBRE 6 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNEGGIO: 6/3) Si calcoli l integrale S arccos() + 3 Suggerimento È utile iniziare con

Dettagli

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE 29. Mezzi elastici I mezzi continui solidi sono caratterizzati da piccole deformazioni, che consentono di stabilire una relazione lineare tra sforzo e deformazione nota come legge di Hook. Linearizzando

Dettagli

MECCANICA dei CONTINUI

MECCANICA dei CONTINUI MECCANICA dei CONTINUI Appunti redatti da Anna Tangredi revisionati dal Prof. Giovanni Frosali 1 S n S v vdt dv Firenze - 10 giugno 2014 1 Dipartimento di Matematica e Informatica U. Dini, Università degli

Dettagli

Prodotto scalare e matrici < PX,PY >=< X,Y >

Prodotto scalare e matrici < PX,PY >=< X,Y > Prodotto scalare e matrici Matrici ortogonali Consideriamo in R n il prodotto scalare canonico < X,Y >= X T Y = x 1 y 1 + +x n y n. Ci domandiamo se esistono matrici P che conservino il prodotto scalare,

Dettagli

COGNOME e NOME... N. MATRICOLA...

COGNOME e NOME... N. MATRICOLA... Prova d esame di Fondamenti di algebra lineare e geometria (mat.disp.) Laurea Triennale in Ingegneria dell energia 03/07/2017 COGNOME e NOME... N. MATRICOLA... Quesiti preliminari di teoria Sono ammessi

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

VETTORI. 1. Si dimostri con un esempio che il prodotto vettoriale non è associativo. u = u u

VETTORI. 1. Si dimostri con un esempio che il prodotto vettoriale non è associativo. u = u u VETTORI 1. Si dimostri con un esempio che il prodotto vettoriale non è associativo. Consideriamo i vettori i (1,0,0), j (0,1,0) i ( j j)= i o= o ( i j) j = k j= j k= i il prodotto vettoriale non è associativo

Dettagli

Lezione 5 Dinamica del punto

Lezione 5 Dinamica del punto ezione 5 Dinamica del punto rgomenti della lezione avoro Potenza Energia cinetica avoro forza peso avoro forza d attrito avoro Studiando cosa succede integrando la forza nel tempo siamo arrivati alla definizione

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici geometriche algebriche e matrici e isometrie Riduzione Invarianti Studio di coniche Intersezione con rette e tangenti in forma parametrica 006 Politecnico di Torino

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

2.10 Equilibri e stabilità

2.10 Equilibri e stabilità 54 CPITOLO. MECCNIC LGRNGIN.10 Equilibri e stabilità Considero le equazioni di Lagrange d T T (q, q) (q, q) = Q(q, q), dt q q per vincoli fissi, cioè T = T = 1 q (q) q, e per forze non dipendenti da t.

Dettagli

Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare

Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare Capitolo TORSIONE (prof. Elio Sacco). Sollecitazione di torsione Si esamina il caso in cui la trave è soggetta ad una coppia torcente e 3 agente sulla base L della trave. Si utilizza il metodo seminverso

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Applicazioni lineari e diagonalizzazione

Applicazioni lineari e diagonalizzazione Autovalori e autovettori Matrici associate a applicazioni lineari Endomorfismi semplici e matrici diagonalizzabili Prodotti scalari e Teorema Spettrale nel caso generale 2 2006 Politecnico di Torino 1

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Analisi e Geometria 2 Docente: 13 febbraio 2014

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Analisi e Geometria 2 Docente: 13 febbraio 2014 Es. 1 Es. 2 Es. 3 Es. 4 Totale Analisi e Geometria 2 Docente: 13 febbraio 214 Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto

Dettagli

Trave con appoggio inclinato

Trave con appoggio inclinato Esercizio [7-7] 1 Trave con appoggio inclinato e b e 1 π 6 La forza distribuzione di forza applicata sia La trave sia lunga L b = b e Si faccia un elenco sia delle condizioni di vincolo che delle condizioni

Dettagli

Potenza, forze e momenti

Potenza, forze e momenti Potenza, forze e momenti Mais il y a aussi, au moins depuis d Alambert, une deuxième voie possible, celle des puissances (ou travaux) virtuelles. Contrairement à ce que l on croit parfois, cette deuxième

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Composizione di stati cinetici Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

H precedente. Procedendo come sopra, si costruisce la matrice del cambiamento di base

H precedente. Procedendo come sopra, si costruisce la matrice del cambiamento di base Geometria analitica e algebra lineare, anno accademico 9/1 Commenti ad alcuni esercizi 17 Diagonalizzazione di matrici simmetriche Coniche Commenti ad alcuni degli esercizi proposti 17 Diagonalizzazione

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Esercizio. x = 0 x = Date le rette r : y = t e s : y = t, si verifichi che sono sghembe e si scrivano le equazioni z = t z = t parametriche di una retta r ortogonale ed

Dettagli

Lezione 9 LA SPINTA ESERCITATA DA UN FLUIDO SU UNA SUPERFICIE GOBBA

Lezione 9 LA SPINTA ESERCITATA DA UN FLUIDO SU UNA SUPERFICIE GOBBA Appunti dei corsi di Idraulica e Idrodinamica Lezione 9 LA SPINTA ESERCITATA DA UN LUIDO SU UNA SUPERICIE GOBBA Come illustrato nella LEZIONE e nella LEZIONE 3, la forza esercitata da un fluido in quiete

Dettagli

Possiamo scrivere le tre precedenti espressioni in un'unica equazione matriciale:

Possiamo scrivere le tre precedenti espressioni in un'unica equazione matriciale: A1. Considerazioni sul cambio di un sistema di riferimento cartesiano ortogonale Sia xyz un sistema di riferimento cartesiano ortogonale di origine O e di riferimento cartesiano pure di origine O. un secondo

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Il Problema del De Saint Venant

Il Problema del De Saint Venant Il Problema del De Saint Venant Tema 1 Si consideri una trave di acciaio di lunghezza L = m e con sezione retta a corona circolare di raggio esterno R = 30 cm e raggio interno r = 0 cm, che rispetti le

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012 Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9 settembre A) Data la funzione f(x, y) = { xy x se (x, y) (, ) se (x, y) = (, ), i) stabilire se risulta continua

Dettagli

Quantum Computing. Esercizi. Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma

Quantum Computing. Esercizi. Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma Quantum Computing Esercizi 1 Qubit Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma ψ = e iγ ( cos(θ/) 0 + e iφ sin(θ/) 1 ), dove γ, θ e φ sono numeri reali. Il fattore di

Dettagli

Risoluzioni di alcuni esercizi

Risoluzioni di alcuni esercizi Risoluzioni di alcuni esercizi Reti topografiche, trasformazioni di coordinate piane In una poligonale piana il punto è nell origine delle coordinate, l angolo (in verso orario fra il semiasse positivo

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

RICHIAMI DI ELETTROMAGNETISMO

RICHIAMI DI ELETTROMAGNETISMO RICHIAMI DI ELETTROMAGNETISMO Equazioni di Maxwell I fenomeni elettrici e magnetici a livello del mondo macroscopico sono descritti da due campi vettoriali, in generale dipendenti dal tempo, E(x, t), H(x,

Dettagli

5 Un applicazione: le matrici di rotazione

5 Un applicazione: le matrici di rotazione 5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edile ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edile ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edile ed Edile/Architettura IV Appello del corso di Geometria Docente F. Flamini, Roma, /9/ NORME SVOLGIMENTO Scrivere negli appositi

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura Primo Appello del corso di Geometria 2 Docente F. Flamini, Roma, 22/02/2007 SVOLGIMENTO COMPITO I APPELLO

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

Sistemi Dinamici Corso di Laurea in Matematica Compito del

Sistemi Dinamici Corso di Laurea in Matematica Compito del Sistemi Dinamici Corso di Laurea in Matematica Compito del 6--9 Esercizio. punti) i) Studiare al variare del parametro µ R, il ritratto di fase del sistema meccanico dato da un punto materiale di massa

Dettagli

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Introduzione ai numeri complessi Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Definizione (Campo complesso C. Prima definizione.) Il campo complesso C è costituito da tutte le espressioni

Dettagli

Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così :

Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così : Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così : Q = q r + q i i + q j j + q k k ove le quantità q sono numeri reali e i, j e k sono tre unità immaginarie. Quando

Dettagli

10.1 Sollecitazione di sforzo normale e momento flettente

10.1 Sollecitazione di sforzo normale e momento flettente Capitolo 1 SFORO NORMALE E MOMENTO FLETTENTE (prof. Elio Sacco) 1.1 Sollecitazione di sforzo normale e momento flettente Si esamina il caso in cui la risultante ed il momento risultante agenti sulla base

Dettagli

26 - Funzioni di più Variabili Limiti e Derivate

26 - Funzioni di più Variabili Limiti e Derivate Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 26 - Funzioni di più Variabili Limiti e Derivate Anno Accademico 2013/2014 M.

Dettagli

Compito di Analisi Matematica II del 28 giugno 2006 ore 11

Compito di Analisi Matematica II del 28 giugno 2006 ore 11 Compito di Analisi Matematica II del 28 giugno 26 ore Esercizio. ( punti) Calcolare il flusso del campo vettoriale F (,, z) = (z, z 2, z 2 ) } uscente dalla frontiera di D = (,, z) R 3 : 2 + z 2, z,. Svolgimento

Dettagli

Lezione 41 - Il teorema di reciprocita'

Lezione 41 - Il teorema di reciprocita' ezione 41 - Il teorema di reciprocita' ü [A.a. 212-213 : ultima revisione 25 Aprile 213] In questa ezione si introduce il concetto di distorsione, e si dimostra un principio generale di reciprocita', da

Dettagli

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come:

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come: 9 Moti rigidi notevoli In questo capitolo consideriamo alcuni esempi particolarmente significativi di moto di un sistema rigido. Quelle che seguono sono applicazioni delle equazioni cardinali di un sistema

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea A di massa m e lunghezza l è libera di ruotare attorno al proprio estremo mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro di

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà)

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà) Foglio di Esercizi 5 Meccanica Razionale a.a. 017/18 Canale A-L (P. Buttà) Esercizio 1. Su un piano orizzontale sono poste due guide immateriali circolari di centri fissi O 1 e O e uguale raggio r; sia

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 2 luglio 24 Esercizio In riferimento allo schema a blocchi in figura. s r y 2 s y K s2 Domanda.. Determinare una realizzazione in equazioni di stato

Dettagli

F = ma = -mω 2 R u r.

F = ma = -mω 2 R u r. Esercizio a) Sia v F = -ma cp u r = -m u r = -mω R u r. R b) Sia ω = ω u z il vettore velocità angolare del sistema di riferimento O. In questo sistema di riferimento rotante, i vettori velocità v e accelerazione

Dettagli

Anno Accademico

Anno Accademico MACCHINE ELETTRICHE Corso di Laurea in Ingegneria Industriale Anno Accademico 2015-2016 TRASFORMAZIONI PER MACCHINE ELETTRICHE Docente Francesco Benzi Università di Pavia e-mail: fbenzi@unipv.itit Di i

Dettagli

Studio generale di una conica

Studio generale di una conica Studio generale di una conica Manlio De Domenico 19 Giugno 2003 Definizione 1 Si definisce conica C un equazione algebrica F (x 1, x 2, x 3 ) = 0 del secondo ordine omogenea. Detta A la matrice simmetrica

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Scritto di Analisi II e Meccanica razionale del

Scritto di Analisi II e Meccanica razionale del Scritto di Analisi II e Meccanica razionale del 19.1.212 Esercizio di meccanica razionale Una terna cartesiana Oxyz ruota con velocità angolare costante ω attorno all asse verticale Oy rispetto ad un riferimento

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Trave appoggiata inclinata

Trave appoggiata inclinata Esercizio [7-10] 1 Trave appoggiata inclinata e 2 f e 1 α La forza applicata sia La trave sia lunga L. f = f e 1. Si faccia un elenco sia delle condizioni di vincolo che delle condizioni al bordo per la

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

SISSA Area Matematica. Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni. 10 Settembre 2019

SISSA Area Matematica. Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni. 10 Settembre 2019 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 10 Settembre 2019 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima

Dettagli

Corso interno di Matematica compito scritto del n n+1

Corso interno di Matematica compito scritto del n n+1 Corso interno di Matematica compito scritto del 4.07.05 1. Dire se la serie converge e giustificare la risposta. n=1 1 n n+1 n Soluzione: Il criterio della radice o del rapporto falliscono; proviamo col

Dettagli

Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI

Universita degli Studi di Roma - Tor Vergata - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio

Dettagli

Primo Parziale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale

Primo Parziale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale Primo Parziale del Corso di Analisi Matematica 4. Calcolare la soluzione generale dell equazione differenziale 5 + 3 4 + 3 3 + =. Soluzione: Sostituendo = e λ si arriva all equazione caratteristica λ 5

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Prof. Anno Accademico Prova del 05 / XII / 07

Prof. Anno Accademico Prova del 05 / XII / 07 FISICA GENERALE 1 COMPITO A Prof. Anno Accademico 2007-08 Prova del 05 / XII / 07 Cognome Nome Matricola Per ogni quesito indicare nelle caselle la risposta algebrica in funzione delle variabili indicate

Dettagli

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Tutore: Eleonora Palmieri 14 febbraio 2007 Esercizio 1: Si consideri in R 2 la conica Γ : 2x 2 1 + 4x 2 2 + x 1 + 2x 2 = 0. 1. Ridurre Γ

Dettagli

Esercizî di Geometria

Esercizî di Geometria Esercizî di Geometria (Carlo Petronio Foglio del 27/4/2015 Esercizio 1 Determinare l espressione dell isometria di R 2 descritta: (a La riflessione σ rispetto alla retta l di equazione 3x 2 = 5; ( 3 (b

Dettagli

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017 Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria Primo Appello 13 Luglio 017 Cognome: Nome: Matricola: Es.1: 11 punti Es.: 6 punti Es.3: 7 punti Es.: 8 punti Totale

Dettagli

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA)

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) Equazioni di Maxwell I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E = ϱ ɛ 0 (1) E = B (2) B = 0 (3) E B = µ 0 j + µ 0 ɛ 0 (4) La forza che agisce

Dettagli

Teoria dei Sistemi

Teoria dei Sistemi Teoria dei Sistemi 13-06-2016 Esercizio 1 In Figura sono riportati un sottomarino telecomandato da remoto (ROV) ed il suo modello nel piano di pitch (beccheggio). Il sistema ha massa M e momento di inerzia

Dettagli

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE DEFINIZIONE Una superficie in R 3 è un applicazione α : U R 3, di classe almeno C. In realtà, tratteremo solamente superfici di classe C. Inoltre, U R deve essere un aperto, e α deve essere iniettiva.

Dettagli

Corso di Geometria Lezione II: Spazi vettoriali

Corso di Geometria Lezione II: Spazi vettoriali .. Corso di Geometria Lezione II: Spazi vettoriali F. Baldassarri 8 ottobre 2013 Definizione di spazio vettoriale Uno spazio vettoriale su un campo C (ad es. Q,R,C,{0, 1}) è un insieme V dotato di due

Dettagli

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova II prova parziale TEMA n.1

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova II prova parziale TEMA n.1 CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova 15-06-2010 II prova parziale TEMA n.1 Parte 1. Quesiti preliminari. Stabilire se le seguenti affermazioni sono

Dettagli