Elena Scubla, Classe quinta
|
|
|
- Rebecca Fabbri
- 9 anni fa
- Visualizzazioni
Transcript
1 Elena Scubla, 2013 Classe quinta
2 I problemi di geometria che vengono proposti ai bambini della scuola primaria hanno tutti più o meno la stessa struttura: Il testo, in cui si propone la situazione: un campo, un giardino, la cameretta, un tetto Le informazioni, esplicite o da dedurre dal testo. Domande nascoste e domande espresse Propongono situazioni lontane dalla realtà dei bambini rafforzano l idea che anche la matematica è cosa di scuola trascurano la bellezza della geometria
3 Le tracce della cultura materiale di tutte le civiltà che ci hanno preceduto, testimoniano della seduzione che i motivi geometrici, da sempre, esercitano sull uomo. Questo fascino si traduce nella propensione che spinge gli esseri umani a decorare tutto ciò che li circonda: gli oggetti, i corpi, l ambiente. Siamo molto simili ai nostri antenati. Condividiamo con loro il piacere della decorazione con motivi geometrici. Il motivo decorativo in architettonica è utile quanto bello Dalla tassellatura del piano alla pavimentazione di spazi urbani. Kim Williams Judith Moran
4 Situazioni problematiche in cui le figure geometriche provenissero da situazioni per loro dominabili, inserite in contesti reali e belli.
5 Nella formulazione dei problemi ho cercato di rispettare sempre le stesse richieste: Osservazione dell immagine Identificazione delle figure geometriche presenti Ricerca delle informazioni: alcune sono date, altre devono essere dedotte dall osservazione dell immagine. Richiesta di spiegazione del percorso risolutivo che accompagni la soluzione matematica.
6 Lettura collettiva del testo informativo che illustra la situazione Spiegazione delle richieste Ricerca individuale delle strategie risolutive. Discussione collettiva e confronto dei vari percorsi risolutivi
7 LA DOMUS La prima forma di abitazione diffusa in Italia e in Grecia è la capanna, inizialmente a pianta circolare, in seguito a pianta ovale ed infine quadrata. La capanna era circondata da un muro di pietre. E' dalla capanna che, con il cambiamento dei metodi e dei materiali di lavoro, si giungerà alla domus. Nelle domus, per costruire il pavimento, spesso erano utilizzati mosaici, che duravano a lungo e rappresentavano scene di caccia, pesca, oppure motivi geometrici. La maggior parte dei mosaici erano in bianco e nero ed avevano una decorazione geometrica. Anche a Brescia, come in altre città dell'italia settentrionale, sono trovati ritrovati molti mosaici. Un esempio di pavimento con decorazione geometrica, che appartiene ad una domus del 1 secolo d.c,.è in via Veronica Gambara, sotto l'edificio dell'istituto Veronica Gambara. Ogni rettangolo : b = 30 cm h= 15 cm Nella foto in alto puoi osservare un immagine del pavimento visto dall alto RIPRODUCI IL DISEGNO DEL MODULO DEL PAVIMENTO SUL TUO QUADERNO CALCOLA L AREA DEL MDODULO E SPIEGA COME HAI LAVORATO OSSERVA LE IMMAGINI IN BASSO: RAPPRESENTANO IL PAVIMENTO DALL ALTO E SI VEDONO BENE I MODULI CALCOLA L AREA DI TUTTO IL PAVIMENTO E SPIEGA IL TUO RAGIONAMENTO.
8
9
10 Ogni rettangolo ha le seguenti misure: b= 12 cm h = 25 cm Osserva con attenzione e descrivi le figure geometriche che formano il pavimento. riproduci sul quaderno il disegno della zona indicata con la lettera A calcola l area di ciascuna figura. calcola l area della zona delimitata ERCOLANO L'antica città di Herculaneum, già gravemente danneggiata dal terremoto del 62 d.c., venne distrutta dall'eruzione del Vesuvio (79), che la coprì con un'ingentissima massa di fango, cenere ed altri materiali eruttivi trascinati dall'acqua piovana che, penetrando in ogni apertura, si solidificò in uno strato compatto e duro di metri. Queste particolari circostanze che hanno portato al seppellimento di Ercolano, se da un lato ne hanno reso e ne rendono tuttora assai arduo lo scavo, dall'altro hanno permesso la conservazione di materiali altamente deperibili, come i papiri e gli stessi alimenti, sigillati nel fango secco. Questa sigillatura ha anche protetto materiali come il legno strutturale, che invece in presenza di ristagno d'acqua è più deperibile. Nella foto vedi un pavimento che si trova nelle terme femminili.e' pavimentato con un semplice disegno geometrico con tessere in bianco e nero
11
12 Questo disegno rappresenta una parte di un pavimento Osservalo attentamente e elenca le figure geometriche che vedi Ricava le misure delle figure geometriche, sapendo che 1 cm sul disegno corrisponde a 15 cm nella realtà. Calcola il perimetro e l area di ogni figura geometrica Calcola il perimetro e l area del disegno Sapendo che il disegno è ¼ dell intero pavimento, calcolane l area
13
14
15 Osserva attentamente questo antico pavimento: Disegna sul tuo quaderno il modulo. Nomina le figure che lo formano. Racconta come faresti a calcolare l area del modulo. Come faresti a calcolare l area dei triangoli che formano il modulo del pavimento? Se vuoi puoi usare il modellino :
16
17
18 OSSERVA IL MOTIVO DECORATIVO CHE VEDI NELL IMMAGINE: Riproduci il motivo sul quaderno sul quaderno Nomina le figure che lo formano Stima quanti moduli mancano per completare tutto il motivo il lato del quadrato centrale misura 15 cm la base di un triangolo è 10 cm, la sua altezza è 5,5 cm. lo spessore della cornice è 25 cm. Calcola l area e il perimetro di tutte le figure. Calcola l area di tutto il motivo decorativo Un frammento di fascia incompleta nella cripta di S. Maria Maggiore a Civita Castellana
19
20 Osserva con attenzione il motivo geometrico della figura, anche questo fa parte di un antico pavimento. E formato da moduli di 3 figure ciascuno. Copia sul tuo quaderno un modulo un po ingrandito. Descrivi le figure geometriche che lo formano Pensa un modo per calcolare l area di uno dei due parallelogrammi, se vuoi puoi usare il modellino.
21 Osserviamo ancora il modulo dell antico pavimento. Copia di nuovo il modulo un po ingrandito sul tuo quaderno. E formato da due parallelogrammi e da un rombo. Abbiamo imparato a calcolare l area dei due parallelogrammi, adesso prova a calcolare l area del rombo, se vuoi puoi usare il modellino, poi spiega come hai lavorato
Geometria figure piane Raccolta di esercizi
Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha
PROBLEMI DI GEOMETRIA SUL QUADRATO
PROBLEMI DI GEOMETRIA SUL QUADRATO 1. Calcola la lunghezza della diagonale di un quadrato che ha il lato di 15 mm. 2. Il perimetro di un quadrato misura 20,8 dm, calcola la lunghezza della diagonale. 3.
LE ALTEZZE. Sandra Taccetti, Antonio Moro, Classe quarta o quinta delle scuola primaria
LE ALTEZZE Sandra Taccetti, Antonio Moro, 2013 Classe quarta o quinta delle scuola primaria 1. Oggi misuriamo le nostre altezze: esperienza in classe con l uso del metro e dei grafici (già fatta lo scorso
LA SALA PAX RESTAURATA
LA SALA PAX RESTAURATA RICERCA CONDOTTA DAGLI ALUNNI DEL LABORATORIO DI STORIA LOCALE DELLA SCUOLA SECONDARIA A. MARTINI DI PESEGGIA (VE) Ins. Silvia Ramelli Quella che oggi è chiamata Sala Pax è la precedente
Compiti vacanze IIG a.s Alunno:
Compiti vacanze IIG a.s. 2012-2013 Alunno: Numeri razionali assoluti 1 Completa, come nell esempio. 2 Sistema ciascuna lettera al posto giusto sulla semiretta numerica. A = 0,2 B = 0,9 C = 1,15 D = 0,6
Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.
1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.
L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA
L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA Le formule per il calcolo dell area delle principali figure della geometria piana sono indispensabili per poter proseguire con lo studio della geometria.
Geometria Equivalenza e misura delle aree Parallelogramma. Esercizi risolti. - 1
Geometria Equivalenza e misura delle aree Parallelogramma. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul parallelogramma completi di soluzioni Area Measurement - Area
quadrilatero generico parallelogramma rombo rettangolo quadrato
Pavimentare 1. Quali forme di quadrilateri puoi costruire? Schizza tutte le forme possibili e scrivi il loro nome. 2. Cosa rappresentano i piccoli punti rossi sui lati del quadrilatero? 3. a) Costruisci
DALLA NOSTRA ALTEZZA ALL ALTEZZA DELLE FIGURE. Classe quarta o quinta
DALLA NOSTRA ALTEZZA ALL ALTEZZA DELLE FIGURE Classe quarta o quinta Anna Dallai, Antonio Moro, 2013 OGGI MISURIAMO LA NOSTRA ALTEZZA Mettiamoci al muro dritti con i piedi uniti e attaccati alla parete
3 :
COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero
L AREA DELLE FIGURE PIANE
L AREA DELLE FIGURE PIANE Segna il completamento corretto. 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie, cioè hanno la stessa
Risolvi i seguenti problemi scrivendo dati, richiesta, figura e svolgimento come negli esempi sottostanti.
cbnd Antonio Guermani Scheda n 1 versione del 09/04/2014 1) L'area di un triangolo scaleno è 20, ha e la base è lunga volte la sua altezza. Calcola la misura della base e dell'altezza. [7; 111 hm] 2) L'area
SCHEDA DI LAVORO N.8 LABORATORIO. Problemi di Modellizzazione PREMESSA
SCHEDA DI LAVORO N.8 LABORATORIO Problemi di Modellizzazione PREMESSA Questo problema privilegia argomenti di geometria euclidea nello spazio e di geometria analitica nel piano cartesiano; lo studente
grazie alla proprietà associativa dell'addizione è possibile tralasciare le parentesi. Si sommano poi tra loro i monomi simili.
1. POLINOMI Un polinomio è una somma algebrica di monomi. Es.:... Se il polinomio è formato da due monomi si chiama binomio. Se il polinomio è formato da tre monomi si chiama trinomio. Il grado del polinomio
ATTIVITAÁ SULLE COMPETENZE
1 ATTIVITAÁ SULLE COMPETENZE FIGURE, FORMULE, CALCOLI: QUANTI PROBLEMI! Scopo dell'attivitaá Riconoscere l'importanza di come si ricavano le formule e la rilevanza che rivestono in relazione al loro carattere
Raccolta di problemi di equivalenza e misura delle aree sul rombo completi di soluzioni Area Measurement - Area of a Rhombus problems (with solution)
Geometria Equivalenza e misura delle aree Rombo. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul rombo completi di soluzioni Area Measurement - Area of a Rhombus problems
Lavorare in gruppo con L APPRENDIMENTO COOPERATIVO. una proposta nuova per imparare un po di geometria e non solo. La proposta
Lavorare in gruppo con L APPRENDIMENTO COOPERATIVO una proposta nuova per imparare un po di geometria e non solo. La proposta GRUPPI: di 3 (formati da tutor e insegnanti) MATERIA: geometria ARGOMENTO:
Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso.
Proposta di esercitazione per le vacanze Geometria ed aritmetica Ricordo che a settembre verrà effettuata la verifica sul ripasso. 1) Un prisma retto, alto 7 cm, ha per base un triangolo isoscele;
CLASSE 2^A. Numeri decimali Trova la frazione generatrice dei seguenti numeri decimali (cioè trasformali in frazione!)
CLASSE 2^A (futura 3^A) Prof.ssa Cappello A.S. 2015/2016 Ciao ragazzi! Di seguito trovate un elenco di esercizi da svolgere. INVITO 1: non fate tutti gli esercizi a giugno, o tutti a settembre, ma cercate,
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli
3 :
COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero
Compiti vacanze IIG a.s Alunno:
Compiti vacanze IIG a.s. 2015-2016 Alunno: Numeri razionali assoluti 1 Completa, come nell esempio. 2 Sistema ciascuna lettera al posto giusto sulla semiretta numerica. A = 0,2 B = 0,9 C = 1,15 D = 0,6
IL TEOREMA APPLICAZIONE AI RETTANGOLI APPLICAZIONE AL ROMBO APPLICAZIONE AL TRAPEZIO APPLICAZIONE AL QUADRATO AVANTI GENERALE
TEOREMA DI PITAGORA IL TEOREMA APPLICAZIONE AI TRIANGOLI RETTANGOLI APPLICAZIONE AI RETTANGOLI APPLICAZIONE AL ROMBO APPLICAZIONE AL TRAPEZIO APPLICAZIONE AL QUADRATO TEOREMA DI PITAGORA IL TEOREMA VALE
VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA
VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando
I PENTAMINI.
I PENTAMINI [email protected] TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA Riconosce, descrive, denomina, rappresenta, costruisce e classifica figure del
Problemi sui teoremi di Euclide e Pitagora
Appunti di Matematica GEOMETRIA EUCLIDEA Problemi sui teoremi di Euclide e Pitagora Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo
I Solidi. ( Teoria pag ; esercizi pag ) Osserva queste immagini e commentale.
I Solidi. ( Teoria pag. 66 70 ; esercizi pag. 139 142 ) Osserva queste immagini e commentale. Immagine 1 Immagine 2 Immagine 3 Immagine 4 Immagine 5 Immagine 6 Conclusioni: Un solido è una parte di spazio
Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:
Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte
E ora qualche proporzione!
CLASSE II B COMPITI PER LE VACANZE Come d accordo risolvi le espressioni ed i problemi con le frazioni del libro delle vacanze dello scorso anno; risolvi tante espressioni quante ti servono per un ripasso
SIMULAZIONE TEST INVALSI
SIMULAZIONE TEST INVALSI AREE POLIGONI Disegna nel piano quadrettato un rettangolo che abbia la stessa area del rettangolo ABCD, ma perimetro maggiore. Osserva il rettangolo. Sul lato DC segna il punto
Esercizi per le vacanze estive.
Esercizi per le vacanze estive. ^ A B Controlla il quaderno delle regole: se non è ordinato o se mancano alcune parti, completalo, chiedendo se è possibile ad un compagno. GEOMETRIA A Ripassa le caratteristiche
Matematica anno scolastico 2010/2011 II A COMPITI DELLE VACANZE
Pagina di Matematica anno scolastico 00/0 II A COMPITI DELLE VACANZE - ARITMETICA -.Risolvi le seguenti espressioni sul foglio a protocollo. 0 0.. 0. 0. 0... 0. 0 0.... . 0. 0. Estrai le seguenti radici
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)
COMPITI VACANZE ESTIVE 017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 017 da parte degli studenti
ESERCIZI PER LE VACANZE
ESERCIZI PER LE VACANZE Tutti gli esercizi devono essere svolti sul quaderno. 1. Trova il quoziente di ciascuna frazione senza usare la calcolatrice (ricorda che puoi ridurre le frazioni ai minimi termini
Test di autovalutazione
Test di autovalutazione 0 10 0 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.
Matematica Lezione 4
Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri
Triangoli rettangoli. Problema
Triangoli rettangoli 1. a) Sposta il vertice C 1, fino a quando stimi che l angolo nel vertice C 1 sia 90. b) Allo stesso modo sposta i vertici da C 2 fino a C 9 fino a quando stimi che l angolo sia 90.
L equivalenza delle superfici piane
GEOMETRIA EUCLIDEA L equivalenza delle superfici piane Superficie piana Il concetto di superficie piana è un concetto primitivo: i poligoni, i cerchi o in generale regioni di piano delimitate da una linea
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.
Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico
I numeri irrazionali nella geometria e nella storia. Daniela Valenti, Treccani scuola
I numeri irrazionali nella geometria e nella storia 1 Costruzioni geometriche di!a Con la geometria possiamo costruire un segmento che sia lungo esattamente!a Una costruzione semplice e versatile è basata
MATEMATICA SCUOLA PRIMARIA CLASSE 4ª. - Leggere e scrivere i numeri naturali entro le migliaia usando materiale strutturato.
MATEMATICA SCUOLA PRIMARIA CLASSE 4ª NUMERI INDICATORI DISCIPLINARI TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE L alunno sviluppa un atteggiamento positivo rispetto alla matematica, anche grazie a molte
MATEMATICA CLASSE QUINTA
MATEMATICA CLASSE QUINTA UNITÀ DIDATTICA N. 1 IL NUMERO 1. Rappresentare, leggere, scrivere e operare con i numeri naturali e decimali avendo la consapevolezza del valore posizionale delle cifre. 2. Operare
Diesse forma e innova: Le Botteghe dell Insegnare MATEMATICA. La bellezza in matematica: un esperienza possibile. Esempi e percorsi 1
Diesse forma e innova: Le Botteghe dell Insegnare MATEMATICA La bellezza in matematica: un esperienza possibile. Esempi e percorsi 1 Equivalenza ed equiscomponibilità Elisa Zaccherini percorso 2015-2016
Problemi di secondo grado con argomento geometrico (aree e perimetri)
Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la
Giocando intorno a Pitagora
12 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE per una educazione alla cittadinanza Giocando intorno a Pitagora Roma, lì 23 Maggio 2017 BUGLIA GIOVANNI LUIGI Contesto Scuola secondaria di primo grado Classe
Applicazioni dei teoremi di Pitagora ed Euclide
Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =
P = L + L + L. AREA E PERIMETRO DEL QUADRATO, DEL RETTANGOLO e DEL PARALLELOGRAMMA AREA E PERIMETRO DEL TRIANGOLO. PERIMETRO: è la SOMMA DEI LATI!
AREA E PERIMETRO DEL TRIANGOLO COME SI CALCOLA? P = L + L + L oppure P = L 3 AREA: è la MISURA DELL INTERNO DEL TRIANGOLO! COME SI CALCOLA? A = (b h) : 2 CON QUESTE DUE FORMULE PUOI TROVARE ALTRE PARTI
Buone Vacanze! Compiti per le vacanze. Classe II A
Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei
C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)
circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio
PROVE FINALI DI MATEMATICA CLASSE QUINTA. Parte A
Fascicolo F ISTITUTO COMPRENSIVO I SUZZARA PROVE FINALI DI MATEMATICA CLASSE QUINTA Parte A Alunno/a.. Classe. Data. 1. Nel numero 867,86 la cifra 8 indica A. decine e decimi B. centinaia e centesimi C.
SIMULAZIONI TEST INVALSI
SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica
1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di
1) Claudio ha 45 biglie colorate e ne regala 1/3 alla sua migliore amica. Con quante biglie gli restano? 2) Ho letto i sette decimi di un libro di 150 pagine. Quante pagine restano da leggere? 3) Luca
a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì..
Segna il completamento corretto. L AREA DELLE FIGURE PIANE (in rosso i risultati) 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie,
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Media. Classe Prima. Codici. Scuola:...
Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico
Compiti delle vacanze di Aritmetica - Classe IIB (6 o 7 in pagella)
Compiti delle vacanze di Aritmetica - Classe IIB (6 o 7 in pagella) 1. Trasforma i seguenti numeri decimali in frazioni: 1,34 3,055 0,4 2. Trasforma i numeri decimali in frazioni e risolvi le espressioni:
I TRIANGOLI RETTANGOLI
I TRIANGOLI RETTANGOLI IN QUESTA ATTIVITÀ PARLEREMO DI TRIANGOLI RETTANGOLI, PERTANTO RICORDA CHE I LATI DI TALI TRIANGOLI HANNO NOMI PARTICOLARI: SI CHIAMANO CATETI DI UN TRIANGOLO RETTANGOLO ABC I DUE
Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi?
Alunno/a Pag. Esercitazione Alunno/a in preparazione alla PROVA d ESAME Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera. Quale tra le seguenti proposizioni è FALSA? A. La somma di due numeri dispari
Esame di Qualifica (III Livello Europeo) Terzo Anno
Id orso ata.. Nome e ognome Tipo Prova Matematica / Servizi Sessione 2 a.f. 2016/2017 Esame di Qualifica (III Livello Europeo) Terzo nno omanda 1 M010877 Laura due anni fa ha investito 10.000 al tasso
MATEMATICA: Compiti delle vacanze Estate 2015
MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola
SIMULAZIONI TEST INVALSI
SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica
LE FRAZIONI. 1 Scrivi la frazione corrispondente alla parte colorata. cinque settimi. dieci quindicesimi. nove diciottesimi. dodici ventiquattresimi
LE FRAZIONI Scrivi la frazione corrispondente alla parte colorata. 3 7 9 Riscrivi la frazione in cifre e colora la parte indicata. cinque settimi dieci quindicesimi nove diciottesimi dodici ventesimi quattordici
Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni?
1 Il Cerchio - la circonferenza.( Teoria 63-65 ; Esercizi 129 138 ) 0) Definizione. Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? Determina l insieme di tutti i punti distanti
2 ITI ARGOMENTI ED ESERCIZI PER IL RIPASSO ESTIVO
Gli esercizi che seguono sono per tutta la classe, coloro che devono recuperare il debito in matematica devono farne in più, ad esempio rifare (o far tutti gli esercizi assegnati durante l anno scolastico.
Il teorema nella storia - Dimostrazioni Il teorema di Pitagora nel trattato Chou Pei Suan Chjing
Il teorema nella storia - Dimostrazioni Il teorema di Pitagora nel trattato Chou Pei Suan Chjing - Il titolo del trattato corrisponde a Il libro classico dello gnomone e delle orbite circolari del cielo.
11. Osserva la figura: l angolo in A è 30, l angolo in B è 45 mentre DC=DH= 50cm. Calcola l area di ABCD.
COPITO PER LE VACANZE ESTIVE ATEATICA Cari ragazzi, siamo arrivati alla fine di questo nostro anno insieme ed ora è arrivato il momento di riposarsi un po! urante le vacanze non è importante fare tanti
Compiti per le vacanze estive 2016 II A-B MATEMATICA Borgofranco
Compiti per le vacanze estive 06 II A-B MATEMATICA Borgofranco Svolgi i compiti sui quaderni di matematica e di geometria che già usi, un po per volta, non subito dopo il termine delle lezioni e neanche
La matematica e la scienza nelle bolle
MATEMATICA TRASPARENTE COME BOLLE DI SAPONE Un percorso didattico-sperimentale per le scuole secondarie di primo grado Relatore I. Tamanini Laureanda Silvia Dirupo La matematica e la scienza nelle bolle
UNITÀ DIDATTICA N. 1 IL NUMERO
UNITÀ DIDATTICA N. 1 IL NUMERO Rappresentare, leggere, scrivere e operare con i numeri naturali e decimali avendo la consapevolezza del valore posizionale delle cifre. Operare con le potenze del 10. Interpretare
Anna Montemurro. 3Geometria. e misura
Anna Montemurro Destinazione Matematica 3Geometria e misura ... verifico 1 Come si definisce il cerchio? Che cosa s intende per raggio e per diametro di un cerchio? Disegna tre cerchi, rispettivamente
La misura delle grandezze
GEOMETRIA EUCLIDEA La misura delle grandezze Una classe di grandezze geometriche è un insieme di enti geometrici in cui è possibile: - il confronto tra due qualsiasi elementi dell insieme; - l addizione,
A IC T A M E T A M I D A V O R P
PROVA DI MATEMATICA Classe seconda MAT7 1 3 D1. La metà di è 4 3 A., perché ho diviso il denominatore per 2 2 6 2 B., perché ho moltiplicato la frazione per 8 2 3 1 C., perché ho moltiplicato la frazione
Dottoressa FRANCESCA GUANDALINI
Dottoressa FRANCESCA GUANDALINI Archeologa, coordinatrice degli scavi effettuati nel territorio di Montegibbio a partire dall estate del 2006. Finalità principale di questa ricerca, oggetto della sua tesi
matematica l = 13,5 m Ricorda A = (D x d) : 2 h = (A x 2) : (D +d) D = [(A x 2) : h] d d = [(A x 2) : h] D A = b x h b = A : h A = l x l
L R a L area di un poligono corrisponde alla misura della sua superficie. = l x l = b x h b = : h h = : b = (b x h) : 2 b = ( x 2) : h h = ( x 2) : b = ( x d) : 2 h = ( x 2) : ( +d) = [( x 2) : h] d d
TITOLO: LEGGERE I QUADRILATERI
TITOLO: LEGGERE I QUADRILATERI Competenze di riferimento: Comprendere ed interpretare l informazione: comprendere messaggi verbali e non verbali di vario genere; individuare ed interpretare l informazione,
SCUOLA SECONDARIA DI PRIMO GRADO ANGELO MARIA RICCI UNITA DI APPRENDIMENTO SULLE SIMILITUDINI DOCENTI:
1 SIMILI MA NON UGUALI SCUOLA SECONDARIA DI PRIMO GRADO ANGELO MARIA RICCI UNITA DI APPRENDIMENTO SULLE SIMILITUDINI DOCENTI: Sara Mostocotto e Loretta Brachini 2 SIMILI.. MA NON UGUALI Obiettivi di apprendimento
Archimede UNDER 14 Dal ritagliare al dimostrare: i rettangoli isoperimetrici. La seguente proposta didattica mostra
RUBRICA Dal ritagliare al dimostrare: i rettangoli isoperimetrici di Monica Testera La seguente proposta didattica mostra come, da attività semplici e manipolative quali il ritaglio di figure su cartoncini
Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto.
Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto. R V T P S U Z Colora di verde le caselle corrispondenti agli angoli piatti e di rosso quelle
GEOMETRIA EUCLIDEA L equivalenza delle superfici piane
GEOMETRIA EUCLIDEA Superficie piana Il concetto di superficie piana è un concetto primitivo: i poligoni, i cerchi o in generale regioni di piano delimitate da una linea chiusa o da più linee chiuse che
Test di autovalutazione
UNITÀ LE TRSFORMZIONI GEOMETRIHE: OMOTETIE E SIMILITUDINI Test Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è L omotetia è una trasformazione geometrica che a lascia
Disequazioni di secondo grado
Disequazioni di secondo grado Una disequazione di secondo grado è una disequazione del tipo (oppure a b c o a b c ) a b c oppure a b c I) Cominciamo considerando disequazioni in cui a Esempio Consideriamo
C.P.I.A. CENTRO PROVINCIALE PER
C.P.I.A. CENTRO PROVINCIALE PER L ISTRUZIONE DEGLI ADULTI SEDE DI CATANZARO - Via T. Campanella n 9 DISPENSE DI GEOMETRIA PERCORSO DI ISTRUZIONE DI PRIMO LIVELLO PRIMO PERIODO DIDATTICO A.S. 2017/2018
% Logica matematica e ragionamento numerico
% Logica matematica e ragionamento numerico 1 * Geometria euclidea Test n. 3 (Tempo: minuti) 1 Sia ABCD un quadrilatero; quale delle seguenti affermazioni è sempre VERA? A ABCD può essere un rettangolo
LA MISURA DELLE SUPERFICI PIANE
LA MISURA DELLE SUPERFICI PIANE Approccio al concetto di area classe quarta o quinta Antonella Martinucci, Rossana Nencini, 2007 IN CONTINUITÀ CON IL PASSATO UTILIZZO DI CONOSCENZE ACQUISITE IN ALTRI PERCORSI
ESERCIZI PER L INGRESSO ALLA CLASSE PRIMA MATEMATICA (LICEO SCIENTIFICO)
ESERCIZI PER L INGRESSO ALLA CLASSE PRIMA MATEMATICA (LICEO SCIENTIFICO) Per affrontare con serenità il primo anno del nuovo corso di studi, è importante che tu sia in possesso di alcuni prerequisiti.
VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno...
VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA Scuola..........................................................................................................................................
COMPITO DELLE VACANZE DI MATEMATICA
COMPITO DELLE VACANZE DI MATEMATICA Svolgi tutti gli esercizi che trovi di seguito su un quaderno dei compiti usato durante l anno scolastico (se hai avanzato dello spazio) oppure su un quaderno nuovo
Esercitazione in preparazione alla Prova Invalsi di Matematica
VERSO LA PROVA nazionale scuola secondaria di primo grado Esercitazione in preparazione alla Prova Invalsi di Matematica 1 marzo 013 ISTRUZIONI Questa prova di matematica contiene domande a risposta multipla
