Disequazioni di secondo grado
|
|
|
- Fabiana Tosi
- 7 anni fa
- Visualizzazioni
Transcript
1 Disequazioni di secondo grado Una disequazione di secondo grado è una disequazione del tipo (oppure a b c o a b c ) a b c oppure a b c I) Cominciamo considerando disequazioni in cui a Esempio Consideriamo l equazione di secondo grado corrispondente (detta equazione associata ): =, = ± =, = Quindi, ricordando che se a b c = ha soluzioni, allora a b c si scompone in a( )( ), abbiamo = ( ) ( ) possiamo studiare il segno di ( ) ed il segno di ( ) e per determinare il segno di. Rappresentiamo la situazione con il cosiddetto grafico dei segni in cui indichiamo con una linea continua il segno positivo e con una linea tratteggiata il segno negativo. Allora per la regola dei segni del prodotto avremo (valori esterni alle soluzioni dell equazione associata) Interpretazione grafica Possiamo disegnare la parabola associata alla disequazione, cioè la parabola y = : il vertice risulta V ( ; ) e naturalmente le intersezioni con l asse si ottengono dalle soluzioni dell equazione ;, ;. Quindi risolvere la disequazione precedente e sono ( ) ( ) equivale a individuare la zona della parabola che si trova al di sopra dell asse ed infatti osservando il grafico abbiamo che: y 8
2 Esempio In questo caso l equazione associata ha = ed infatti si tratta del quadrato di un binomio: ( ) = È chiaro quindi che la disequazione è verificata annulla e quindi scriveremo R,. R eccetto = in cui il trinomio si Graficamente osserviamo che la parabola y =, rivolta verso l alto, è tangente all asse delle nel suo vertice ( ; ) e quindi y R, Esempio Considerando l equazione associata = : in questo caso abbiamo = e quindi non ci sono soluzioni reali. Graficamente abbiamo la parabola y = che ha vertice V ; ed è rivolta verso l alto: si ha perciò y R 9
3 Riassumiamo le soluzioni delle disequazioni in cui a (parabola rivolta verso l alto) a b c (valori esterni) a b c (valori interni) ( a ( a b c b c ) ) = a a b c R, b c nessuna soluzione reale ( a ( a b c R) b c = ) a a b c R b c nessuna soluzione reale ( a ( a b c R) b c nessuna soluzione reale)
4 II) Consideriamo adesso disequazioni in cui a Esempio Per risolvere l equazione associata = mettiamo in evidenza la : quindi = = =. = ( ) Per determinare il segno di studiamo il segno di e di : Il grafico dei segni è : Quindi (valori interni alle soluzioni dell equazione associata) Interpretazione grafica Disegniamo la parabola y = : questa volta la parabola è rivolta verso il basso e quindi y
5 Esempio In questo caso abbiamo che l equazione associata ha =. Infatti = ( ) = ( ) Quindi la disequazione non ha nessuna soluzione ed infatti la parabola è rivolta verso il basso ed ;. ha vertice in ( ) Esempio In questo caso abbiamo che l equazione associata ha e quindi non ci sono soluzioni reali: quindi la parabola associata, che è rivolta verso il basso ed ha vertice V ;, non interseca l asse e la disequazione non ha nessuna soluzione.
6 Riassumiamo le soluzioni delle disequazioni in cui a (parabola rivolta verso il basso) a a b c b c ( a ( a b c b c ) ) = a a b c nessuna soluzione b c R, reale ( a ( a b c = ) b c R) a a b c nessuna b c R soluzione reale ( a ( a b c nessuna b c R) soluzione reale) Nota importante Quando in una disequazione si ha a conviene moltiplicare per ed invertire la diseguaglianza riconducendosi al caso di a. In questo modo possiamo fare riferimento sempre al caso della parabola rivolta verso l alto. Vediamo come si poteva procedere nel caso degli ultimi tre esempi: ) ) ( ) nessuna soluzione reale ; ) nessuna soluzione reale
7 Disequazioni di grado superiore al secondo Esempio Consideriamo la disequazione Proviamo a scomporre il polinomio (raccoglimento parziale): ( ) ( ) ( )( ) Possiamo quindi studiare il segno dei singoli fattori Riportiamo questi risultati nel grafico dei segni : Abbiamo quindi ( )( ) per.
8 Esempio Consideriamo la disequazione Scomponiamo utilizzando la regola di Ruffini: P () = = Quindi = ( )( ) Studiamo il segno dei singoli fattori (si imposta sempre il fattore ) ± (, = ) Riportiamo questi risultati nel grafico dei segni : Poiché la disequazione è, la soluzione è.
9 Esempio Consideriamo la disequazione Sappiamo che possiamo scomporre il polinomio dato come differenza di cubi per cui ( )( ) =. Studiamo il segno dei singoli fattori ( a, ) R Quindi Osservazione Quando in un prodotto un fattore è positivo R, possiamo anche non considerarlo perché non fa cambiare il segno del prodotto. Esempio Consideriamo la disequazione Basta mettere in evidenza: Poiché = ( ) R possiamo anche non considerarlo e studiare solo il segno di ( ): ( ) ( )
10 Disequazioni fratte Esempio Risolviamo la seguente disequazione fratta: Studiamo separatamente il segno del numeratore e del denominatore: N ( = ± ), D ( ), ( =, = ) Grafico dei segni: Poiché dobbiamo risolvere la soluzione sarà:. NOTA Se dobbiamo risolvere, dobbiamo considerare tra le soluzioni anche = e =, ma non = e = perché per quei valori il denominatore si annulla (C.E. della frazione algebrica:, ). La soluzione risulta quindi: NOTA Se dobbiamo risolvere, il procedimento sarebbe stato lo stesso solo che alla fine, dal grafico dei segni, avremmo considerato i valori di che danno segno complessivo positivo. La soluzione di risulta quindi: 7
11 Sistemi di disequazioni Esempio Risolviamo il sistema di disequazioni: Dobbiamo risolvere ciascuna disequazione del sistema ed intersecare le soluzioni per ottenere le soluzioni comuni. quindi la soluzione del sistema è. NOTA IMPORTANTE Quando si intersecano le soluzioni delle disequazioni non si deve mai aggiungere il tratteggio! Il tratteggio indica segno negativo nel grafico dei segni ma in questo caso non stiamo facendo un grafico dei segni! Esempio Risolviamo il sistema di disequazioni: Per la prima disequazione abbiamo ( ), quindi Per la seconda disequazione dobbiamo studiare i segni di numeratore e denominatore: N D ± (, = =, = ) Quindi la soluzione della seconda disequazione è :. A questo punto dobbiamo intersecare le soluzioni della prima e della seconda disequazione. Le soluzioni comuni sono: Perciò la soluzione del sistema è:. 8
12 Esempio Risolviamo il sistema di disequazioni: Prima disequazione: Osservo che R e quindi la disequazione ha come soluzione. ± Seconda disequazione: (, = =, = ). Grafico per individuare le soluzioni comuni Quindi non ci sono soluzioni comuni: il sistema è impossibile. S = (l insieme delle soluzioni è l insieme vuoto) per cui Esempio Risolviamo il sistema di disequazioni: ( )( ) ( ) R ( è sempre positivo) Pertanto la soluzione è. 9
13 Esercizi I) Risolvere le seguenti disequazioni di secondo grado ) [ ] ) ) ) 8 [ ] [ R ] [ ] ) [ nessuna soluzione reale ] ) 7) ( ) [ ] [ ] 8) 9 [ ] 9) [ nessuna soluzione reale ] ) ( ) ) 9 ) 8 8 [ ] [ R ] = 9 ) 8 [ ] ) ) 8 [ R ] ) ( ) 7) 9 R 8) [ nessuna soluzione reale ]
14 7 9) 8 ) ) [ ] ) 8 ) ) 8 [ R ] ) [ nessuna soluzione reale ] ) [ ] 7) [ ] 8) 9) 7 ) [ R ] 7 ) [ nessuna soluzione reale ] ) [ nessuna soluzione reale ] ) 9 ) ) ) 9 7) 8 8 [ R { } ] [ R ] =
15 8) 8 7 = 9) [ ] ) [ ] ) ( ) 9 9 [ R ] ) ( ) 9 7 ) ( ) ) [ R ] ) ) = 7) ( )( ) 8) ( ) 9) ) ( ) ( ) = ) ( ) 8 8 )
16 II) Risolvere graficamente le seguenti disequazioni di secondo grado ) [ ] ) [ ] ) [ nessuna soluzione reale ] ) [ ] ) [ ] ) [ R ] 7) [ ] 8) [ R ] 9) 8 ) [ 8 ] [ ] III) Risolvere le seguenti disequazioni di grado superiore al secondo ) ) ) [ ] [ = ] ) [ ] ) ) 7) = 8) [ ]
17 IV) Risolvere le seguenti disequazioni fratte ) 9 ) ) [ ], ) ] [ ) [ { } R ] ) [ ] 7) 8 [ ] 8) 7 [ ] 9) ( ) ] [ ) ] [ ) ( ) ] [ ) ] [ e ) 9 9 ) 8 [ ]
18 V) Risolvere i seguenti sistemi di disequazioni ) ] [ ) 7 [ ] ) 7 [ = S ] ) ) [ ] ) 7 7 7) [ 7 ] 8) ( ) 7 8 [ ] 9)
19 Problemi ) Problema svolto Consideriamo un equazione di secondo grado contenente un parametro reale k, per esempio ( k ) = k Possiamo chiederci per quali valori del parametro k l equazione ha soluzioni reali, cioè per quali valori di k si ha. Dobbiamo quindi risolvere la disequazione: ( k ) ( k ) k k 8 k k k 7 da cui si ricava( k = ± k = 7, k ), = k 7 k ) Problema guidato Da una lamiera quadrata di lato cm vogliamo ritagliare quatto quadrati uguali di lato (vedi figura) in modo che, ripiegando lungo i lati tratteggiati, si possa costruire una scatola. Per quali valori di la scatola ha superficie maggiore di 8 cm? L area della base della scatola risulta ( ). Le quattro pareti della scatola hanno area ( ), quindi: ( ) ( ) 8. Poiché perché., allora la soluzione è.. Oppure (più semplicemente): 8 da cui si ha.
20 ) Per quali valori di m l equazione ( m ) 9 = ha soluzioni reali? [ m m ] k k ) Per quali valori di k l equazione k = ha due soluzioni reali distinte? k k ) Per quali valori di a l equazione ( a ) a a = ) Problema svolto Per quali valori di k l equazione ( ) ( k ) ( k) = non ammette soluzioni reali? [ a a ] k ha radici reali e positive? Innanzitutto calcoliamo = ( k ) ( k )( k ) =... = k ; quindi affinché si abbiano radici reali occorre che k. Per il segno delle soluzioni possiamo studiare il segno dei coefficienti e ricordare che, per la regola di Cartesio, ad una variazione corrisponde una radice positiva. ( k ) k ( k ) k ( k) k a : b : c : Quindi ho due variazioni (vale a dire due soluzioni positive) per k k 7) Determina per quali valori di k l equazione ( ) k k = reali e negative. k ammette due soluzioni [ k ] 8) Determina per quali valori di a l equazione ( a ) ( a ) = a) ha soluzioni reali; b) ha due soluzioni positive. a R; a 9) Data l equazione ( k ) k =, determinare per quali valori di k l equazione: 7
21 a) ammette soluzioni reali b) ammette soluzioni negative ) Per quali valori di k le soluzioni di ( ) ( k ) = ) Data l equazione ( ) ( k ) ( k) = a) ha soluzioni reali e distinte; b) ha soluzioni reali e positive; c) ha soluzioni reali e negative; d) ha soluzioni reali e discordi. k sono discordi? [ k ; k, k ] k, determinare per quali valori di k: [ k ] [ a ) k, k ; b) k k ; c) / k R; d) k ] ) Un rettangolo ha l area di cm. Quanto deve misurare la sua base b affinché il perimetro non superi i cm? [ b ] ) In un triangolo rettangolo la differenza tra i cateti è cm. Quale deve essere la misura del cateto minore in modo che l area non superi i cm? cm [ ] ) Considera due circonferenze concentriche di raggi cm e cm con. Come deve essere il raggio perché l area della circonferenza interna sia minore di dell area della circonferenza di raggio? cm [ ] ) In un appezzamento rettangolare di terreno m m si vuole costruire una casa come in figura qui sotto. Quale deve essere (in metri) in modo che il giardino abbia una superficie di almeno m? [ m] ) In un trapezio rettangolo la base minore è uguale all altezza e la base maggiore supera di cm la base minore. Quale deve essere la misura della base minore perché l area del trapezio non superi i cm? cm [ ] 8
Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2
Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione
MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO
Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA
Introduzione a GeoGebra
Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni
FUNZIONI CONTINUE - ESERCIZI SVOLTI
FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità
Syllabus: argomenti di Matematica delle prove di valutazione
Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,
SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE
SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei
Massimi e minimi vincolati in R 2 - Esercizi svolti
Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare
Protocollo dei saperi imprescindibili Ordine di scuola: professionale
Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure
EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO
EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre
I.P.S.S. Severini a.s. 2015-16 Curriculum Verticale MATEMATICA
Curriculum Verticale MATEMATICA I Docenti di Matematica dell IPSS concordano, per l a.s. 2015/16, i seguenti punti: numero minimo di verifiche annue (riferite ad una frequenza regolare): 6, di varia tipologia
Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A
Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,
NUMERI COMPLESSI. Test di autovalutazione
NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO PROFESSIONALE DI ENOGASTRONOMIA E OSPITALITA ALBERGHIERA CON I PERCORSI: ACCOGLIENZA TURISTICA, CUCINA, SALA-BAR ISTITUTO TECNICO PER IL TURISMO Sede Amministrativa:
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classi I C I G
Esercizi Estivi di Matematica a.s. 0/04 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classi I C I G ALUNNO CLASSE Ulteriore ripasso e recupero anche nei siti www.vallauricarpi.it
CONI, CILINDRI, SUPERFICI DI ROTAZIONE
CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).
Introduzione alla programmazione lineare. Mauro Pagliacci
Introduzione alla programmazione lineare Mauro Pagliacci c Draft date 25 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati
LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A
LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula
2. Variabilità mediante il confronto di valori caratteristici della
2. Variabilità mediante il confronto di valori caratteristici della distribuzione Un approccio alternativo, e spesso utile, alla misura della variabilità è quello basato sul confronto di valori caratteristici
Matematica con il foglio di calcolo
Matematica con il foglio di calcolo Sottotitolo: Classe: V primaria Argomento: Numeri e operazioni Autore: Guido Gottardi, Alberto Battaini Introduzione: l uso del foglio di calcolo offre l opportunità
PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI
PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1
MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree
MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare
0.1 Esercizi calcolo combinatorio
0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,
a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.
1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità
Funzioni. 1. Introduzione alle funzioni. Tema C13. Che cos è una funzione?
Funzioni Tema C. Introduzione alle funzioni STRUMENTI DIGITALI APPRFNDIMENTI RISRSE IN GEGEBRA FIGURE ANIMATE VIDELEZINI ESERCIZI INTERATTIVI Che cos è una funzione? Dati due insiemi X e Y, si definisce
PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA
Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella
DOMINIO = R INTERSEZIONI CON ASSI
STUDIO DELLA FUNZIONE CUBICA a cura di Maria Teresa Bianchi La funzione è razionale intera ed è espressa in forma normale da: #1: y = a x + b x + c x + d I coefficienti del polinomio di grado a secondo
x log(x) + 3. f(x) =
Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d
ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009
ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)
Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche
Esempio di test di ingresso per i Corsi di Laurea della classe L-31 Scienze e tecnologie informatiche Il tempo a disposizione per la risoluzione dei quesiti è di 90 minuti. Il test si ritiene superato
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,
Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI
Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;
RETTE, PIANI, SFERE, CIRCONFERENZE
RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,
Percorsi di matematica per il ripasso e il recupero
Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado
NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i
NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,
IGiochidiArchimede--Soluzionibiennio
PROGETTO OLIMPIDI DI MTEMTI U.M.I. UNIONE MTEMTI ITLIN MINISTERO DELL PULI ISTRUZIONE SUOL NORMLE SUPERIORE IGiochidirchimede--Soluzionibiennio 18 novembre 2009 Griglia delle risposte corrette Problema
Esercizi di Matematica. Funzioni e loro proprietà
www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva
ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale
ˆp(1 ˆp) n 1 +n 2 totale di successi considerando i due gruppi come fossero uno solo e si costruisce z come segue ˆp 1 ˆp 2. n 1
. Verifica di ipotesi: parte seconda.. Verifica di ipotesi per due campioni. Quando abbiamo due insiemi di dati possiamo chiederci, a seconda della loro natura, se i campioni sono simili oppure no. Ci
ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio
ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO
Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.
Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è
CLASSE 1ª Manutenzione e Assistenza Tecnica
CLASSE 1ª Manutenzione e Assistenza Tecnica Programma svolto di MATEMATICA Anno scolastico 2013/14 ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA GLI INSIEMI CALCOLO LETTERALE GEOMETRIA - Ordinamento, proprietà,
Prova di ammissione alla SSIS - Indirizzo Matematico - Scientifico PROVA 012 - Comune
Prova di ammissione alla SSIS - Indirizzo Matematico - Scientifico PROVA 012 - Comune 1. Un urna contiene r palline rosse ed n nere. Si estrae una pallina e, senza rimetterla nell'urna, si estrae una seconda
Dispense per TFA. Domenico Candeloro
Dispense per TFA Domenico Candeloro Introduzione. Queste brevi dispense hanno lo scopo di illustrare alcuni strumenti elementari della Matematica, oggetto di studio nelle Scuole Medie, Superiori e non,
DISCIPLINA: MATEMATICA INDIRIZZO: FINANZA E MARKETING CLASSE: 1 FM DOCENTE : MARINA MARTINELLI. Testo in adozione Settembre Ottobre
Pagina 1 di 5 DISCIPLINA: MATEMATICA INDIRIZZO: FINANZA E MARKETING CLASSE: 1 FM DOCENTE : MARINA MARTINELLI Elenco moduli Argomenti Strumenti / Testi 1 I numeri Naturali, Interi e Razionali Addizione,
PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA
PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze
APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI
APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................
PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima.
PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI Introduzione Vengono qui presentati alcuni semplici problemi di massimo e minimo. Leggi con attenzione e completa i passaggi mancanti. Prova
STUDIO DEL SEGNO DI UNA FUNZIONE
STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,
METODI DI CONVERSIONE FRA MISURE
METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle
Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali
Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa
Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche
Disciplina MATEMATICA Secondo biennio e anno conclusivo Liceo Economico sociale Classe terza Finalità Conoscenze Obiettivi minimi Finalità della matematica nel corso del secondo biennio è di proseguire
Liceo G.B. Vico Corsico
Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,
Unità di misura di lunghezza usate in astronomia
Unità di misura di lunghezza usate in astronomia In astronomia si usano unità di lunghezza un po diverse da quelle che abbiamo finora utilizzato; ciò è dovuto alle enormi distanze che separano gli oggetti
PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO
PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore.
Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico
Indice generale. Modulo 1 Algebra 2
Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi
UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica
UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia
SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO
SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili
Anno 5 4 Funzioni reali. elementari
Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire
Soluzione di equazioni quadratiche
Soluzione di equazioni quadratiche Soluzione sulla Retta Algebrica Inseriamo sulla Retta Algebrica le seguenti espressioni polinomiali x e x 3 e cerchiamo di individuare i valori di x per i quali i punti
Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6
Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6 Classe: 1 a A AFM GLI INSIEMI NUMERICI E LE OPERAZIONI Ripasso del calcolo numerico: espressioni
Verifica di Matematica Classe V
Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 22/03/2016 Verifica di Matematica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Sei stato assunto come economo da una
Archimede BORSE DI STUDIO INDAM 2003
1 2004 Archimede BORSE DI STUDIO INDAM 2003 ARTICOLO UN PREMIO PER GLI STUDENTI DI MATEMATICA Anche per il 2003-2004, l INdAM ha assegnato 50 borse di studio ad alcuni dei migliori studenti immatricolati
SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:
CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}
Elenco Ordinato per Materia Chimica
( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde
RDefinizione (Funzione) . y. . x CAPITOLO 2
CAPITOLO 2 Funzioni reali di variabile reale Nel capitolo precedente è stata introdotta la nozione generale di funzione f : A B, con A e B insiemi arbitrari. Nel presente capitolo si analizzeranno più
a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π
PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente
LICEO STATALE G. MAZZINI
LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio
CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)
CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare
Esercizi svolti sui numeri complessi
Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =
b) Il luogo degli estremanti in forma cartesiana è:
Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere
LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L
LICEO ARTISTICO BOCCIONI A.S. 2013-2014 Programma di MATEMATICA svolto nella Classe Prima L I numeri naturali e i numeri interi Che cosa sono i numeri naturali. L insieme dei numeri naturali N. Le quattro
PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013)
PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) Linguaggio matematico di base 1. Qual è l area del triangolo avente i vertici nei punti di coordinate (0,2), (4,0) e (7,6)? A 10 B 30
Programma di MATEMATICA
MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO ISTITUTO ISTRUZIONE SUPERIORE Via Silvestri, 301 00164 ROMA - Via Silvestri, 301 Tel. 06/121127660 Fax
Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni
Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Docente:Alessandra Cutrì Richiamo:Zeri di Funzioni olomorfe (o analitiche) Sia f : A C C A aperto connesso,
0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y
INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).
Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra.
Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 9 novembre 010 Esercizi sul moto di caduta libera Esercizio 1. Una pallina da tennis viene lasciata cadere dal punto più alto
UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. A cura di Jung Kyu CANCI e Domenico FRENI. Con la collaborazione di
UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria A cura di Jung Kyu CANCI e Domenico FRENI Con la collaborazione di Luciano BATTAIA e Pier Carlo CRAIGHERO MATEMATICA DI BASE TEMI D ESAME 9
prof.a.battistelli PROIEZIONI ORTOGONALI
PROIEZIONI ORTOGONALI PROIEZIONI ORTOGONALI È il disegno delle viste, da davanti, da sopra e di fianco di un oggetto tridimensionale disegnate in un foglio bidimensionale. Trasformiamoci in designer Per
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per
Matematica - Sessione 1 / Produzione a.f. 2013/2014 Esame di Qualifica (III Livello Europeo) Terzo Anno
Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Produzione a.f. 2013/2014 Esame di Qualifica (III Livello Europeo) Terzo Anno omanda 1 M9037-00 Il grafico rappresenta le variazioni della
ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO
ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un
3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).
Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza
IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006
PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-Soluzioniiennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta E 4 5 6 7 8 9 E 0 Problema
PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime
PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime Metodi e strumenti Nelle lezioni in aula si farà uso: [] della lezione dialogata (utilizzata di norma, e che prevede lo sviluppo anche
ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.
ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper
Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R
Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.
SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014
SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0
MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE
MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE La distanza focale f di una lente convergente sottile è data dalla formula: da cui 1 f = 1 p + 1 q f = pq p + q dove p e q sono, rispettivamente, le
CLASSI PRIME Scienze Applicate 5 ORE
CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con
SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO
SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina
LE FUNZIONI MATEMATICHE
ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante
Lezione 3: Il problema del consumatore: Il
Corso di Economica Politica prof. Stefano Papa Lezione 3: Il problema del consumatore: Il vincolo di bilancio Facoltà di Economia Università di Roma La Sapienza Il problema del consumatore 2 Applichiamo
Cosa decidete di fare?
Immaginate di aver trovato un lavoretto estivo in un bar All inizio lavorate 5 ore al giorno (5 giorni alla settimana) a 8 euro l ora Poi il padrone del bar impazzisce e vi raddoppia la paga (16 euro all
BOOK IN PROGRESS MATEMATICA GEOMETRIA SECONDO ANNO TOMO NR. 2
OOK IN PROGRESS MTEMTIC GEOMETRI SECONDO NNO TOMO NR. 2 SOMMRIO DEL TOMO 2 SECONDO NNO UNITÀ 9: LE GRNDEZZE E L PROPORZIONLIT...2 9.1 Generalità...2 9.2 Grandezze commensurabili e incommensurabili...3
PROBLEMI DI SCELTA dipendenti da due variabili d azione
prof. Guida PROBLEMI DI SCELTA dipendenti da due variabili d azione in un problema di programmazione lineare, si ricorda che la funzione obiettivo z=f(x,y)=ax+by+c assume il suo valore massimo (o minimo)
