LE REGOLE DI DEDUZIONE
|
|
|
- Adolfo Savino
- 9 anni fa
- Visualizzazioni
Transcript
1 LE REGOLE DI DEDUZIONE II concetto di regola di deduzione Ci proponiamo di formulare alcune regole, dette regole di deduzione o ragionamento, in virtù delle quali, a partire da certe P1, P2,..., Pn, sia possibile ricavare una ben determinata logica P. Una regola di deduzione è corretta se e solo se, ammettendo che siano vere tutte le, si può affermare che anche la è. Ciascuna di tali regole può essere rappresentata sinteticamente secondo uno schema analogo a quello seguente: P1, P2,... Pn P Esse, in sostanza, costituiscono «le regole del corretto ragionamento» e, pertanto, saranno utilmente applicate nelle procedure di dimostrazione dei teoremi. Passiamo, ora, ad enunciare alcune delle principali regole di deduzione. II modus ponens Questa regola di corretto ragionamento si può rappresentare mediante lo schema seguente: 1) P1 => P2 2) P2 3) P2 La regola modus ponens si può così enunciare: «Se l implicazione P1 => P2 è e l'antecedente. P1 è allora anche la conseguente, P2 è» La correttezza di questa regola di ragionamento deriva dalla constatazione che la funzione proposizionale ad f(p1, P2) = [ (P1 => P2 ) and P1 ] => P2 è sempre e quindi, in base alla verità delle, necessariamente anche la P2 risulta. Ad esempio, è corretto il ragionamento seguente: 1) Se viene l'autunno allora le foglie cadono dagli alberi 2) Viene l'autunno conseguenza 3) Le foglie cadono dagli alberi Logica proposizionale: le regole di deduzione (da Battelli & Moretti) 1
2 Secondo questo schema, di tipo modus ponens, se si sa che le sono vere allora si può dedurre che anche la «Le foglie cadono dagli alberi» è. Presentiamo un altro esempio di corretto ragionamento di tipo modus ponens: 1) Se Tizio sbaglia allora Tizio paga 2) Tizio sbaglia 3) Tizio paga cui le siano vere, allora si può concludere che anche l'affermazione «Tizio paga» è. II modus tollens Questa regola di corretto ragionamento si può sintetizzare mediante lo schema seguente: 1) P1 => P2 2) not P2 3) not P1 La regola modus tollens si può così enunciare: «Se l'implicazione P1 => P2 è e la negazione di P2 è allora anche la negazione di P1 è» f(p1, P2) = [ (P1 => P2 ) and not P2 ] => not P1 è sempre e quindi, in base dalla falsità della, si deduce necessariamente anche la falsità della premessa. Ad esempio, è corretto il seguente ragionamento di tipo modus tollens: 1) Se Pierino è stato promosso allora passa dalle Medie alle Superiori 2) Pierino non passa dalle Medie alle Superiori 3) Pierino non è stato promosso Da tale schema di deduzione si ricava che, nell'eventualità in cui le siano vere, allora si può concludere che anche la negazione della P1, ossia «Pierino non è stato promosso» è. Presentiamo un altro esempio di corretto ragionamento secondo lo schema modus tollens: 1) Se x è maggiore di 10 allora x è maggiore di 7 2) x non è maggiore di 7 3) x non è maggiore di 10 Logica proposizionale: le regole di deduzione (da Battelli & Moretti) 2
3 Supponendo vere le, si deduce sicuramente che anche la è. II sillogismo ipotetico II sillogismo, dal greco "sillogismós", rappresenta il tipo fondamentale di ragionamento deduttivo della logica aristotelica; esso è composto da tré proposizioni: le prime due costituiscono le, e si suppongono vere, mentre la terza proposizione è la, la cui verità discende necessariamente dalle. Le regole modus ponens e modus tollens sono due tra i più importanti sillogismi della logica. La regola di deduzione detta sillogismo ipotetico, si può sintetizzare mediante lo schema seguente: 1) P1 => P2 2) P2 => P3 3) P1 => P3 Il sillogismo ipotetico si può così enunciare: «Se l implicazione P1 => P2 è e l implicazione P2 => P3 è allora anche l implicazione P1 => P3 è» f(p1, P2, P3) = [ (P1 => P2 ) and (P2 => P3 ) P1 ] => (P1 => P3) è sempre e quindi, in base alla verità delle, necessariamente anche la Pi=>P3 risulta. Ad esempio, è corretto il seguente ragionamento rappresentante un sillogismo ipotetico: 1) Se Pierino supera l'esame di maturità allora accede all'università 2) Se Pierino accede all'università allora si iscrive a Filosofia _ 3) Se Pierino supera l'esame di maturità si iscrive a Filosofia II sillogismo disgiuntivo Questa regola di deduzione si può sintetizzare mediante lo schema seguente: 1) P1 or P2 2) not P2 3) P1 Logica proposizionale: le regole di deduzione (da Battelli & Moretti) 3
4 Il sillogismo disgiuntivo si può, quindi, enunciare come segue: «Se la disgiunzione P1 or P2 è e la negazione di not P2 è allora la P1 è» f(p1, P2) = [ (P1 or P2 ) and (not P2)] => P1 è sempre (a sostegno di questa affermazione compilatela corrispondente tavola di verità) e quindi, in base alla verità delle, necessariamente anche la. P1, risulta. Ad esempio, è corretto il seguente ragionamento rappresentante un sillogismo disgiuntivo: 1) Pierino ascolta musica oppure studia 2) Pierino non studia 3) Pierino ascolta musica Riportiamo un altro esempio: 1) x appartiene ad A oppure a B 2) x non appartiene a B 3) x appartiene ad A NOTA: esistono altre regole di deduzione oltre a quelle da noi presentate che, tuttavia, riteniamo si possano trascurare in questa trattazione elementare della logica matematica. Esercizi proposti In ciascuno dei seguenti schemi di ragionamento ricavate la relativa, indicando anche la regola di deduzione applicata. 1. : : 1) Se x e un pino allora è una conifera 2) Se x è una conifera allora è un vegetale 3) : : 1) Se x è un rombo allora ha i lati isometrici 2) x non ha i lati isometrici 3)... Logica proposizionale: le regole di deduzione (da Battelli & Moretti) 4
5 3. : 1) Se a = b, con a, b e N allora a + 1 > b 2) a = b : 3) : 1) Se (x, y, z) è una terna pitagorica allora x 2 + y 2 = z 2 : 2) x 2 + y 2 <> z 2 3).. Logica proposizionale: le regole di deduzione (da Battelli & Moretti) 5
Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;
Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,
DI CHE COSA SI OCCUPA LA LOGICA
Di Emily Rinaldi DI CHE COSA SI OCCUPA LA LOGICA La logica si occupa dell esattezza dei ragionamenti Nei tempi antichi solo verbale. Nell epoca moderna la logica viene applicata per l ordinamento sistemazione
Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita.
Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Intenderemo per PROPOSIZIONE (o ENUNCIATO) una qualunque
LOGICA. Definizione: una proposizione semplice è una frase della quale si possa dire se è
LOGICA La logica nasce nell antica Grecia ed in particolare possiamo far risalire il suo inizio al grande filosofo Aristotele (384 a.c. 322 a.c.) che la tratta principalmente negli Analitici I e Analitici
Un po di logica. Christian Ferrari. Laboratorio di matematica
Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare
Appunti di geometria euclidea
Appunti di geometria euclidea Il metodo assiomatico Appunti di geometria Euclidea Lezione 1 Prima di esaminare nel dettaglio la Geometria dal punto di vista dei Greci è opportuno fare unrichiamo di Logica.
Proposizione logica Argomento/i Predicato Roma è la capitale d Italia Roma è la capitale d Italia 2>3 2 e 3 è maggiore di
1. Un pò di storia Logica Il primo studioso che si occupò di logica fu il filosofo greco Aristotele (384-322 a.c.). Fino al Cinquecento la logica restò sostanzialmente entro i confini tracciati da Aristotele;
DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini
DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini INFERENZE CORRETTE E TAUTOLOGIE Il Calcolo Proposizionale permette di formalizzare
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente
I.2 Logica. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica
I.2 Logica Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Logica 1 Logica 2 3 Logica Si occupa dello studio delle strutture e delle regole
NOZIONI DI LOGICA PROPOSIZIONI.
NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale
Richiami teorici ed esercizi di Logica
Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla
LA LOGICA ESERCIZI. Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità.
LA LOGICA 1. Le proposizioni logiche ESERCIZI Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità. 1 A «1 1 è uguale a 5»; «Non si
Logica proposizionale
Logica proposizionale Linguaggio comune Nel linguaggio comune si utilizzano spesso frasi imprecise o ambigue Esempio Un americano muore di melanoma ogni ora! Assurdo: significa che c è un americano (sfortunato)
Logica proposizionale
Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite
Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.
Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore
04 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,
METODI MATEMATICI PER L INFORMATICA
METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una
Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia
Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione
4. Logica. Insegnamento di Informatica. Elisabetta Ronchieri. I semestre, anno Corso di Laurea di Economia, Universitá di Ferrara
4. Logica Insegnamento di Informatica Elisabetta Ronchieri Corso di Laurea di Economia, Universitá di Ferrara I semestre, anno 2014-2015 Elisabetta Ronchieri (Universitá) Insegnamento di Informatica I
PROGRAMMA CONSUNTIVO
PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi
Prof. Roberto Capone. Nozioni di logica matematica
Prof. Roberto Capone Nozioni di logica matematica Premesse In matematica non è ammesso un linguaggio ambiguo. Le parole chiave di questo linguaggio sono soltanto sette: Connettivi Non E O Se. allora Se
Una Breve Introduzione alla Logica
Una Breve Introduzione alla Logica LOGICA La LOGICA è la disciplina che studia le condizioni di correttezza del ragionamento Occorre dire, anzitutto, quale oggetto riguardi ed a quale disciplina spetti
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)
LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema
Introduzione alla logica
Corso di Intelligenza Artificiale 2011/12 Introduzione alla logica iola Schiaffonati Dipartimento di Elettronica e Informazione Sommario 2 Logica proposizionale (logica di Boole) Logica del primo ordine
L'algebra Booleana. Generalità. Definizioni
L'algebra Booleana Generalità L algebra booleana è stata sviluppata da George Boole nel 1854, ed è diventata famosa intorno al 1938 poiché permette l analisi delle reti di commutazione, i cui soli stati
ELEMENTI DI LOGICA PER IL CORSO DI LAUREA IN MATEMATICA. Prof. Giangiacomo Gerla Dipartimento di Matematica ed Informatica. Università di Salerno
ELEMENTI DI LOGICA PER IL CORSO DI LAUREA IN MATEMATICA Prof. Giangiacomo Gerla Dipartimento di Matematica ed Informatica Università di Salerno [email protected] II INTRODUZIONE Sotto il termine di logica
R. De Leo 9 Febbraio Liceo Scientifico L.B. Alberti. Invito alla Logica Matematica. attraverso gli Indovinelli
Liceo Scientifico L.B. Alberti 9 Febbraio 2010 1 / 40 Outline 2 / 40 La come gioco da tavolo Quali sono gli elementi fondamentali di un gioco da tavolo? I Pezzi 3 / 40 La come gioco da tavolo Quali sono
Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1
Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze
Calcolo proposizionale
1 Il calcolo delle proposizioni Una proposizione logica si dice semplice o atomica se contiene soltanto un predicato. Due o più proposizioni semplici collegate mediante l'uso di connettivi formano proposizioni
Es. quadrilatero: specie di poligono, genere di quadrato. La specie ha più caratteristiche, il genere è riferito a più elementi.
La logica di Aristotele La logica non si trova tra le scienze dell enciclopedia aristotelica, poiché essa ha per oggetto la forma comune a tutte le scienze, cioè il procedimento dimostrativo, o le varie
Elementi di Logica Teoria degli insiemi
Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università
I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico
Anno Scolastico 2012/13 Disciplina: Matematica Classe: I Liceo classico (nuovo ordinamento) Docente: prof. Roberto Capone ALGEBRA I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Specifica dettagliata degli
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013 Prova di Matematica : Insiemi e logica Alunno: Classe: 1B 23.11.2012 prof. Mimmo Corrado 1. Dati gli insiemi: = è = è " = è " = è " = è
Introduzione alla logica matematica
Introduzione alla logica matematica 1 PROPOSIZIONE LOGICA Ogni discorso è fatto mediante espressioni di vario tipo che sono dette: proposizioni. Nel linguaggio ordinario, si chiama proposizione qualunque
Aristotele, gli Stoici e la nascita della moderna Teoria della Dimostrazione
Aristotele, gli Stoici e la nascita della moderna Teoria della Dimostrazione Roberto Maieli Università degli Studi Roma Tre [email protected] Logica - CdS Magistrale in Teoria della Comunicazione - Roma
GEOMETRIA EUCLIDEA O RAZIONALE. Prof.ssa Angela Donatiello
GEOMETRIA EUCLIDEA O RAZIONALE Prof.ssa Angela Donatiello Non vi sono dubbi che la geometria storicamente sia partita dalla realtà (il nome stesso letteralmente vuol dire misura della terra ), pensiamo
Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A
Cenni di logica Hynek Kovarik Università di Brescia Analisi Matematica A Hynek Kovarik (Università di Brescia) Cenni di logica Analisi Matematica A 1 / 21 Scopo: introdurre nozioni di logica & terminologia
Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco».
Ripasso Scheda per il recupero Il metodo assiomatico-deduttivo OMNE he cos è un assioma? he cos è un concetto primitivo? he cos è un teorema? he cosa significa affrontare lo studio della geometria secondo
La logica modale e la dimostrazione dell esistenza di Dio di Gödel. LOGICA MODALE
La logica modale e la dimostrazione dell esistenza di Dio di Gödel. In alcuni giornali ho letto che di recente ci sono stati diversi studi che hanno riportato alla ribalta la dimostrazione dell esistenza
Percorso 2010: Introduzione alla Logica Proposizionale
Percorso 2010: Introduzione alla Logica Proposizionale Francesca Poggiolesi Facoltà di Medicina e Chirurgia 26 Agosto 2010, Firenze Dal test alla logica Alcuni esempi di test 1 Dal test alla logica Alcuni
Logica Matematica. Informatica Filosofia. Simone Martini
Logica Matematica Informatica Filosofia Simone Martini Dipartimento di Scienze dell Informazione [email protected] Newsgroups: unibo.cs.informatica.logica Ricevimento studenti: Mercoledì 14-15 1 / 29
INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.
INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme
ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1
ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1 Logica e connettivi logici Esercizio 0.1. Si costruiscano le tabelle di verità delle seguenti espressioni booleane; cioè, al variare dei valori di verit delle
Introduzione ad alcuni sistemi di logica modale
Introduzione ad alcuni sistemi di logica modale Laura Porro 16 maggio 2008 1 Il calcolo proposizionale Prendiamo come primitivi i simboli del Calcolo Proposizionale (PC) tradizionale a due valori 1 : un
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico A= x x=2n n 5 n N B= x N 2 x<8 C= x x=4n n<5
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013 Prova di Matematica : Insiemi e logica Alunno: Classe: 1C 22.11.2012 prof. Mimmo Corrado 1. Dato l insieme universo U= x N x
LOGICA PER LA PROGRAMMAZIONE. Franco Turini [email protected]
LOGICA PER LA PROGRAMMAZIONE Franco Turini [email protected] IPSE DIXIT Si consideri la frase: in un dato campione di pazienti, chi ha fatto uso di droghe pesanti ha utilizzato anche droghe leggere. Quali
PIANO DI LAVORO DI MATEMATICA Classe 1 ^A - Liceo Scientifico. Docente: Mario Donno. Obiettivi specifici della disciplina
PIANO DI LAVORO DI MATEMATICA Classe 1 ^A - Liceo Scientifico Docente: Mario Donno Obiettivi specifici della disciplina Applicare i principi e i processi matematici nel contesto quotidiano Cogliere analogie
DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione
DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI Corso di Logica per la Programmazione SULLE LEGGI DEL CALCOLO PROPOSIZIONALE Abbiamo visto le leggi per l'equivalenza ( ),
1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):
. equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale
La Logica Proposizionale. (Algebra di Boole)
1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY La Logica Proposizionale (Algebra di Boole) Prof. G. Ciaschetti 1. Cenni storici Sin dagli antichi greci, la logica è intesa come lo studio del logos, che in greco
Maiuscole e minuscole
Maiuscole e minuscole Abilità interessate Distinguere tra processi induttivi e processi deduttivi. Comprendere il ruolo e le caratteristiche di un sistema assiomatico. Riconoscere aspetti sintattici e
2. Quesiti dell area scientifica e scientifico-tecnologica
2. Quesiti dell area scientifica e scientifico-tecnologica Logica 01 Scegliere fra le alternative proposte quella che completa la serie: a b c d e 02 Un auto percorre 20.000 km nel corso di un lungo viaggio.
I circuiti elementari
I circuiti elementari Nel lavoro diprogrammazione con il computer si fa largo uso della logica delle proposizioni e delle regole dell algebra delle proposizioni o algebra di Boole. L algebra di Boole ha
3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune...
Capitolo 3. Logica 3. Logica Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... sei una persona priva di logica è logico comportarsi cosí fai l
Elementi di logica. 1. Introduzione. 2. Operatori logici (connettivi)
Elementi di logica. Introduzione La logica elementare si interessa della verità di affermazioni complesse a partire dalla verità di quelle più semplici che le compongono. Si può parlare di verità/falsità
LOGICA E PSICOLOGIA DEL PENSIERO. Logica, Linguistica e Scienza Cognitiva
titolo LOGICA E PSICOLOGIA DEL PENSIERO Claudia Casadio PRIMA LEZIONE Logica, Linguistica e Scienza Cognitiva Tre ambiti scientifici logica Logica Studia i processi in base a cui traiamo inferenze a partire
Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio
Appunti di informatica Lezione 7 anno accademico 2016-2017 Mario Verdicchio L algoritmo di Euclide per l MCD Dati due numeri A e B, per trovare il loro MCD procedere nel seguente modo: 1. dividere il maggiore
LOGICA E FILOSOFIA DELLA SCIENZA
LOGICA E FILOSOFIA DELLA SCIENZA Claudia Casadio PRIMA LEZIONE Logica, Linguistica e Scienza Cognitiva Tre ambiti scientifici Logica Studia i processi in base a cui traiamo inferenze a partire dalle nostre
Logica. 7: Conseguenza ed equivalenza logica in logica classica proposizionale. Claudio Sacerdoti Coen. Universitá di Bologna
Logica 7: Conseguenza ed equivalenza logica in logica classica proposizionale Universitá di Bologna 30/11/2016 Outline Conseguenza logica per la logica proposizionale Wikipedia:
Proposizioni Algebra di Boole Condizioni Operatori di relazione
Proposizioni Algebra di Boole Condizioni Operatori di relazione Proposizione ( o Asserzione) Una frase con valore di verità Mario è andato al cinema I pinguini volano Oggi è domenica Una proposizione può
La matematica non è un opinione, lo è oppure...?
La matematica non è un opinione, lo è oppure...? Giulio Giusteri Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Brescia 26 Febbraio 2010 Vecchie conoscenze Dedurre... dedurre...
Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA
Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori
I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011
I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011 1 Un test problematico Sapendo che in questo test una sola risposta
ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI
ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni
Prerequisiti Matematici
Prerequisiti Matematici Richiami di teoria degli insiemi Relazioni d ordine, d equivalenza Richiami di logica Logica proposizionale, tabelle di verità, calcolo dei predicati Importante: Principio di Induzione
PROGRAMMAZIONE DISCIPLINARE
Modello A2 Istituto d Istruzione Superiore POLO-LICEO ARTISTICO - VEIS02400C VENEZIA Liceo Artistico, Liceo Classico e Musicale Dorsoduro, 1073 30123 Venezia tel. 0415225252, fax 041 2414154 PROGRAMMAZIONE
SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.
SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga
Verifica per la classe prima COGNOME... NOME... Classe... Data...
Capitolo Gli insiemi Insiemi Insiemi Sottoinsiemi Operazioni.a Rappresentare per tabulazione e tramite l uso dei diagrammi di Eulero-Venn i seguenti insiemi dati per caratteristica: A {n n H 0 ; n 7} B
APPUNTI DI ANALISI MATEMATICA Parte Prima
APPUNTI DI ANALISI MATEMATICA Parte Prima Versione preliminare del 24 settembre 2008 Pierpaolo Omari Dipartimento di Matematica e Informatica Università degli Studi di Trieste Maurizio Trombetta Dipartimento
A Simone piacciono tutti i giochi di squadra. Il basket è un gioco di squadra. A Simone non piace giocare a basket.
Logica La logica si occupa della correttezza del ragionamento, un ragionamento è formato da un insieme di proposizioni (enunciati di cui è possibile stabilire se sono veri o falsi) Carlo è un alunno di
12 Sulle orme di Euclide. Volume 1: i Poligoni
PREFAZIONE Solitamente, le rare opere scientifiche dell antichità che sono giunte fino a noi rivestono solo un interesse storico. La maggior parte degli autori precedenti a Galileo viene studiata per conoscere
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
Problema dell impacchettamento. (caso particolare del cubo)
Problema dell impacchettamento (caso particolare del cubo) Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this paper we show an our idea about total packing in a cubic space Riassunto
5. UNA TAVOLA DI VERITA ANCHE PER L IMPLICAZIONE? IL PROCESSO ALLA TAVOLA DELLE CONTROVERSIE
350 CENNI DI LOGICA (PARTE 2) [prosecuzione della Parte 1, pagg. 74 78] 5. UNA TAVOLA DI VERITA ANCHE PER L IMPLICAZIONE? IL PROCESSO ALLA TAVOLA DELLE CONTROVERSIE Dopo aver descritto i connettivi ET,
Cenni di logica matematica Dott.ssa Sandra Lucente 1
Cenni di logica matematica Dott.ssa Sandra Lucente 1 Il linguaggio della logica matematica integra e traduce il linguaggio comune sostituendolo quando questo presenta ambiguità. Procediamo come quando
