Esercizi Teoria dei Campi
|
|
|
- Renato Verde
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercizi Teoria dei Campi Legenda: (L) esercizio svolto a lezione; (A) possibile approfondimento. 1. Ordini di grandezza. Stimare il numero medio giornaliero di turisti a Firenze. Confrontare con la letteratura (cf. Wikipedia). Inventare un proprio calcolo di ordine di grandezza di qualsiasi tipo e verificarne la validità. Esempio 1: confrontare la massa di Planck con quella di un moscerino; discutere lo scattering elastico fra i due. Esempio 2: calcolare la quantità di moto di un fascio di protoni a LHC (E = 1 TeV) e confrontarla con quella di un Eurostar; calcolare la potenza persa per radiazione di ciclotrone e confrontarla col consumo degli abitanti di un paesino. Calcolare la potenza che sarebbe persa da un fascio di elettroni della stessa energia. Esempio 3: riderivare l energia di un chilotone (liberata da 10 3 t di tritolo) e stimare i chilotoni di una bomba atomica e H. 2. L Calcolare il propagatore scalare massless e massivo nelle coordinate (x) in n dimensioni spazio-temporali. Utilizzare la forma nello spazio-tempo Euclideo e discutere la continuazione analitica a Minkowski. Analizzare il limite a massa nulla, m 0 e in due dimensioni d = 2 + ε, ε A Studiare la continuazione analitica della funzione ipergeometrica, dallo sviluppo in serie in z = 0 a quello in z = 1 (cf. Erdelyi et al, Bateman project ) 4. L Calcolare il path-integral della particella libera. Verificare l eq. di Schrödinger. Verificare la legge di composizione dell operatore d evoluzione. Calcolare l operatore d evoluzione come funzione di Green dell eq. di Schrödinger. Riderivare l eq. di Schrödinger dal path-integral Lagrangiano. 5. Calcolare il path-integral per l oscillatore armonico (cf. Feynman Hibbs). 6. L Calcolare la funzione a 4 punti della teoria di campo scalare dal funzionale generatore. Dimostrare il teorema di Wick per la funzione a 2n punti dal funzionale generatore (cf. Itzykson Zuber). 1
2 7. Dimostrare la formula di Backer-Campbell-Hausdorff, e A+B = e A e B e [A,B]/2, (1) dove A, B sono operatori e [A, B] = C, con C operatore proporzionale all identità. Successivamente, calcolare il termine correttivo se C non è proporzionale all identità ma [A, C] e [B, C] lo sono. 8. L Analisi dell integrale Z(g) = dt exp ( t 2 g 4). (2) Calcolare la serie perturbativa, stimarne l andamento asintotico, studiare Z(g) nel piano complesso di g (cf. Zinn-Justin). 9. L Verificare l esponenziazione dei diagrammi connessi nello sviluppo perturbativo nella teoria λφ 4 ad un ordine significativo, per le funzioni a 2 e 4 punti. 10. Considera la teoria λφ 3 descritta dalla Lagrangiana: L = 1 2 ( µφ) 2 m2 2 φ2 λ 0 3! φ3 (3) Disegna i grafici divergenti a 1-loop, e rinormalizza la teoria nello schema di sottrazione minimale (MS). 11. Studiare le matrici di gamma Euclidee e confrontarle con quelle Minkowskiane. 12. A Calcolare il path-integral di un fermione di Majorana, ovvero neutro, in 2 dimensioni Euclidee e a massa nulla (cf. Zinn-Justin). Discutere le proprieta del Pfaffiano. Confrontare col fermione di Dirac in due dimensioni. 13. A Discutere lo stato fondamentale di un sistema di meccanica quantistica con potenziale a doppia buca; stimare il gap in approssimazione semiclassica (cf. Landau, Meccanica Quantistica). 14. L Studiare le conseguenze dell invarianza di gauge nello sviluppo perturbativo del correlatore J µ J ν in QED, ovvero esplicitare le identità di Ward sui diagrammi. 2
3 15. A Calcolo della funzione beta per λφ 4 a N componenti con potenziale che rompe la simmetria O(N) (cf. Brezin, Les Houches 1975). 16. L Calcolo del diagramma di polarizzazione del vuoto in QED: utilizzare la regolarizzazione dimensionale, derivare la parte immaginaria e scrivere l espressione come integrale dispersivo. 17. L Soluzione dell equazione di Callan-Symanzik per il correlatore φ(q)φ( q) nella teoria λφ 4 in d = 4 ɛ. Utilizzare le espressioni del primo ordine perturbativo: dove a, b sono constanti. β(g) = ɛg bg 2, γ(g) = ɛ ag 2, (4) 18. A Calcolo della funzione beta di QCD col metodo del background field (cf. Peskin). 19. A Regolarizzazione dimensionale di espressioni con matrici gamma e anomalia chirale (cf. t Hooft Veltmann, Phys Lett B (1975)) 20. L Calcolo della sezione d urto non polarizzata del processo e + e µ + µ in QED (considera per semplicità m e = m µ = 0) 21. L Il funzionale generatore per un campo di gauge libero in R ξ - gauge è: Z 0 [J] = [da µ ] exp {i d 4 x[ 1 2 Aa µk µν ab (x)ab ν + JµA a µa ]} (5) con K µν ab (x) = δ ab[g µν 2 (1 1 ξ ) µ ν ]. (6) Definendo la funzione di Green G µν ab (x y) come: d 4 yk µν ab (x y)gbc νλ(y z) = g µ λ δc aδ 4 (x z) (7) con K µν ab (x y) = δ4 (x y)k µν (x), (8) ricavare il propagatore per il campo di gauge nello spazio degli impulsi. 3 ab
4 22. L La Lagrangiana per un campo di gauge libero massivo è data da: L 0 = 1 4 V µνv µν M 2 V µ V µ con V µν = µ V ν ν V µ (9) seguendo le linee dell esercizio precedente derivare l espressione per il propagatore nello spazio degli impulsi. Studiare la convergenza dei diagrammi di Feynman della QED massiva. Studiare il limite di massa nulla. 23. Il gauge assiale corrisponde a n µ A µ = 0 con n µ quadrivettore space-like. Il corrispondente termine di gauge-fixing è 1 2ξ (n µa µ ) 2 (10) Derivare l espressione per il propagatore nello spazio degli impulsi. Il gauge di Coulomb corrisponde a A = 0. Derivare l espressione per il propagatore nello spazio degli impulsi. (Suggerimento: riscrivere la condizione di gauge come: µ A µ c µ µ (c ν A ν ) = 0 con c µ = (1, 0, 0, 0)) 24. L In una teoria di gauge non-abeliana con fermioni, descritta dalla Lagrangiana: L = 1 4 F µνa F a µν + i ψγ µ D µ ψ m ψψ (11) con D µ ψ = ( µ igt a A aµ )ψ, mostrare che, all ordine più basso nella costante di accoppiamento g, l ampiezza di scattering fermionica ψ a + ψ b ψ c + ψ d (12) è la stessa nelle gauge covarianti, in gauge assiale e in gauge di Coulomb. 25. L Mostrare l invarianza di gauge dell ampiezza di scattering Compton e γ e γ (trascurando la massa dell elettrone). (Suggerimento: è sufficiente mostrare che per ε µ k µ il contributo alla somma delle 2 ampiezze è nullo) 26. Fai un esempio di una Lagrangiana invariante sotto una trasformazione di simmetria discreta e mostra come non vi siano bosoni di Goldstone nello spettro (cf. Cheng e Li) 27. Considera una teoria di gauge abeliana, con campo di gauge A µ, spontaneamente rotta. Siano Φ 1 e Φ 2 le componenti reali di un campo Φ con < Φ 1 >= v, < Φ 2 >= 0. 4
5 Mostra che l ampiezza: Φ 1(k 1 ) + Φ 1(k 2 ) A(k 3 ) + A(k 4 ) (13) è indipendente da ξ (ξ= parametro di gauge delle R ξ gauges e Φ 1 = Φ 1 v). Fare il conto a livello albero. 28. Il potenziale scalare usuale del Modello Standard è: V (φ) = µ 2 φ φ + λ(φ φ) 2 (14) Scrivere altri 2 invarianti di SU(2) U(1) quartici in φ che si riconducono alla forma in V (φ). (Soluzione: λ 1 (φ τφ) (φ τφ); λ 2 a,b (φ τ a τ b φ)(φ τ a τ b φ)) 29. Considera un set di scalari che si trasformano come un doppietto di SU(2) W ed un tripletto di SU(3) c : h i α (i = 1, 2; α = 1, 2, 3). Mostra che sia il numero leptonico L che il numero barionico B sono non conservati, ma la combinazione B L lo è. (Soluzione: Gli accoppiamenti di Yukawa che si possono scrivere sono: L Y = f 1 lil h i αq α R + f 2 q iαl h i β qc γr ɛαβγ...) 30. Calcolare la larghezza di decadimento di un bosone vettore V con massa M ed accoppiamento ai fermioni dato da: L int = ig V γ µ 1 2 (cf V cf A γ 5). 31. Mostrare che nel Modello Standard la larghezza di decadimento del bosone di Higgs in due bosoni W è: Γ W W = 2GF M 2 W M H 8π 1 xw 2x W (3x 2 W 4x W + 4) (15) con x W = (4MW 2 )/(M H 2 ). (Suggerimento: usa il sitema di riferimento in cui il bosone di Higgs è a riposo) 32. Calcola la larghezza di decadimento del bosone di Higgs in due bosoni Z (supponendo M H > 2M Z ). 33. Calcola la larghezza di decadimento del bosone di Higgs in t t (supponendo M H > 2m t ). 5
6 34. Mostra che nel limite M H >> M W il decadimento H W + W e dominato da H W + L W L, dove W L sono le componenti longitudinali di W. 6
Test 1 - Teoria dei Campi 2010
Test - Teoria dei Campi 200 Discutere il path-integral della QCD in gauge assiale (nell Euclideo) n µ A a µ = 0, a =,..., 8, () dove n µ e un vettore assegnato. Derivare: - regole di Feynman; - identitaà
Fisica Quantistica III Esercizi Natale 2009
Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe ([email protected]) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como
Introduzione. Elementi di Fisica delle Particelle Elementari. Diego Bettoni Anno Accademico
Introduzione Elementi di Fisica delle Particelle Elementari Diego Bettoni Anno Accademico 006-007 Programma del corso 1. Introduzione.. Simmetrie discrete: P, C, T. 3. Isospin, stranezza, G-parità. 4.
PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico
PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2013-2014 (1) Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si
Meccanica quantistica, equazioni d onda e diagrammi di Feynman
Meccanica quantistica, equazioni d onda e diagrammi di Feynman (Appunti per il corso di Fisica Nucleare e Subnucleare 2011/12) Fiorenzo Bastianelli In queste note introduciamo equazioni d onda libere associate
Simmetrie di gauge estese: modelli senza Higgs
Simmetrie di gauge estese: modelli senza Higgs (De)costruzione dimensionale Modello minimale con simmetrie di gauge estese Correzioni elettrodeboli Unitarietá senza bosoni di Higgs Delocalizzazione dei
Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica
Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti
FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17)
FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata
FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16)
FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata
ROTTURA SPONTANEA DI SIMMETRIA: DAL FERROMAGNETISMO ALLA FISICA DELLE PARTICELLE
ROTTURA SPONTANEA DI SIMMETRIA: DAL FERROMAGNETISMO ALLA FISICA DELLE PARTICELLE 2 Indice Indice Indice... 2 Introduzione... 3 Bosoni massivi in fisica della particelle... 3 Correnti schermanti: la massa
Introduzione: Concetti fondamentali della Fisica delle Particelle e Modello Standard
Corso di Astroparticelle - Univ. di Roma Tor Vergata Anno Accademico 2010-2011 Introduzione: Concetti fondamentali della Fisica delle Particelle e Modello Standard Dott. Carlotta Pittori Lezione I Richiami.
Lezioni di Meccanica Quantistica
Luigi E. Picasso Lezioni di Meccanica Quantistica seconda edizione Edizioni ETS www.edizioniets.com Copyright 2015 EDIZIONI ETS Piazza Carrara, 16-19, I-56126 Pisa [email protected] www.edizioniets.com
L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)
L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto
I Neutrini e l'asimmetria tra la materia e l'antimateria nell'universo
I Neutrini e l'asimmetria tra la materia e l'antimateria nell'universo Journal Club 20 marzo 2015 Serena Palazzo Il Modello Standard Teoria fisica che descrive le componenti prime della materia e le loro
Particelle e Interazioni Fondamentali
Sylvie Braibant Giorgio Giacomelli Maurizio Spurio Particelle e Interazioni Fondamentali Il mondo delle particelle Febbraio 2009 Springer Prefazione Questo libro intende fornire le conoscenze teoriche
Bosone. Particella a spin intero, che obbedisce alla statistica di Bose-Einstein, che è opposta a quella di Fermi-Dirac.
Particelle ed Interazioni fondamentali Fermione. Particella a spin semintero, che obbedisce alla statistica di Fermi-Dirac, cioè due fermioni con gli stessi numeri quantici non possono coesistere in uno
Meccanica quantistica (5)
Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (
Modello Standard e oltre. D. Babusci MasterClass 2007
Modello Standard e oltre D. Babusci MasterClass 2007 Fisica delle Particelle Elementari (FdP) Si interessa del comportamento fisico dei costituenti fondamentali del mondo, i.e. di oggetti al contempo molto
Simmetrie e leggi di conservazione
Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 5 Simmetrie e leggi di conservazione Simmetrie in meccanica classica Un sistema classico è descritto dal suo insieme di coordinate:
Misura del momento magnetico dell elettrone
FACOLTÀ Università degli Studi di Roma Tre DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Fisica Misura del momento magnetico dell elettrone Candidato: Andrea Sciandra Matricola 4480 Relatore:
Calcolo Numerico con elementi di programmazione
Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni
Effetto Zeeman anomalo
Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli
OSCILLATORE ARMONICO SEMPLICE
OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato
TEORIA DEI SISTEMI SISTEMI LINEARI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.
introduzione alla fisica subnucleare
introduzione alla isica subnucleare AA 2006/07 Giovanni Busetto 1 la isica subnucleare oggi gli elementi del Modello Standard AA 2006/07 Giovanni Busetto 2 la isica subnucleare oggi 3 interazioni ondamentali
Teoria dei campi - Riassuntone
Capitolo Teoria dei campi - Riassuntone. Rottura spontanea della simmetria.. Il teorema di Goldstone Il teorema di Goldstone afferma che in presenza di una simmetria rotta spontaneamente, nascono dei campi
Trasformazioni di Lorentz
Trasformazioni di Lorentz Regole di trasformazione fra un sistema inerziale S (descritto da x, y, z, t) ed uno S (descritto da x, y, z, t ) che viaggia a velocità V lungo x rispetto a S: x = γ(x V t) y
5.4 Larghezza naturale di una riga
5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,
Esercizi di elettrostatica (prima parte)
Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero
Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata
Radioattività 1. Massa dei nuclei 2. Decadimenti nucleari 3. Legge del decadimento XVI - 0 Nucleoni Protoni e neutroni sono chiamati, indifferentemente, nucleoni. Il numero di protoni (e quindi di elettroni
Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni
Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,
Derivata materiale (Lagrangiana) e locale (Euleriana)
ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,
Esercizi Riepilogativi Svolti. = 1 = Or(v, w)
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini
Compitino 1 di Meccanica Quantistica I
Compitino di Meccanica Quantistica I Facoltà di Scienze, M.F.N., Università degli Studi di Pisa, 5 dicembre 00 (A.A. 0/) (Tempo a disposizione: 3 ore ) Problema. Un sistema a due stati è caratterizzato
8.16.1 Forme bilineari di fermioni di Dirac...231 8.16.2 Interazione debole corrente-corrente...235
Indice 1 Introduzione. Note storiche e concetti fondamentali... 1 1.1 Introduzione... 1 1.2 Notizie storiche. La scoperta delle particelle... 3 1.3 Il concetto di atomo. Indivisibilità... 5 1.4 Il Modello
Diffusione dei raggi X da parte di un elettrone
Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un
La Matematica del Mondo dei Quanti
La Matematica del Mondo dei Quanti Gerardo Morsella Dipartimento di Matematica Scienza Orienta 2017 Università di Roma Tor Vergata 13 febbraio 2017 Gerardo Morsella (Mat) La Matematica del Mondo dei Quanti
Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo.
Indice Elettrostatica nel vuoto. Campo elettrico e potenziale 1 1. Azioni elettriche 1 2. Carica elettrica e legge di Coulomb 5 3. Campo elettrico 8 4. Campo elettrostatico generato da sistemi di cariche
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.
Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con
I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010
IIS MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO AS 2009-2010 Modulo A Grandezze fisiche e misure Le basi dell algebra e dei numeri relativi Proporzionalità tra grandezze Calcolo di equivalenze tra
Elementi di Algebra Lineare Spazi Vettoriali
Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali
Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003
Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,
Analisi del decadimento W τν in CMS a LHC
FACOLTÀ Università degli Studi di Pisa DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Magistrale in Scienze Fisiche Tesi di laurea magistrale Analisi del decadimento W τν in CMS a LHC Candidato:
Esame di Geometria - 9 CFU (Appello del 14 gennaio A)
Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire
Meccanica. 1. Vettori. Domenico Galli. Dipartimento di Fisica e Astronomia
Meccanica 1. Vettori http://campus.cib.unibo.it/2421/ Domenico Galli Dipartimento di Fisica e Astronomia 3 febbraio 2017 Traccia 1. Grandezze Fisiche 2. Vettori 3. Calcolo Vettoriale 4. Somma e Differenza
s at a ica Teoria del Big Bang Teoria inflazionaria Energia Oscura
INFLAZIONE DELL'UNVERSO E BOSONE DI HIGGS Claudio Firmani UNAM-INAF ELEMENTI STORICI
ONDE ELETTROMAGNETICHE
ONDE ELETTROMAGNETICHE ESERCIZIO 1 Un onda elettromagnetica piana di frequenza ν = 7, 5 10 14 Hz si propaga nel vuoto lungo l asse x. Essa è polarizzata linearmente con il campo E che forma l angolo ϑ
Introduzione alla Teoria Quantistica dei Campi
Introduzione alla Teoria Quantistica dei Campi Manlio De Domenico Univeristà degli studi di Catania Dipartimento di Fisica e Astronomia 2 Indice I Teoria relativistica e teoria quantistica 13 1 Fondamenti
Esercizi per Geometria II Geometria euclidea e proiettiva
Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si
Convezione Conduzione Irraggiamento
Sommario Cenni alla Termomeccanica dei Continui 1 Cenni alla Termomeccanica dei Continui Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità
REGISTRO DELLE LEZIONI 2005/2006. Tipologia
Struttura formale della meccanica quantistica Rapprestazione matriciale Addì 03-10-2005 Addì 03-10-2005 15:00-16:00 Teorema della compatibilità Theorema dell'indeterminazione per operatori non commutanti
Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi
Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema
Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario
Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella
