DIFFRAZIONE ATTRAVERSO UNA FENDITURA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DIFFRAZIONE ATTRAVERSO UNA FENDITURA"

Transcript

1 3 DIFFRAZIONE ATTRAVERSO UNA FENDITURA Fenditura apertura rettangolare di lunghezza >> della sua larghezza (Esempio: mm) Quando un fascio di luce passa attraverso una fenditura stretta si sparpaglia su una certa area. Questo effetto è il più semplice esempio di diffrazione, cioè il fallimento della luce nel viaggiare in linea retta. Può essere spiegato solo assumendo che la luce aia una natura ondulatoria. Esistono tipi di diffrazione: 1. Fraunhofer sorgente all infinito. Fresnel sorgente a distanza finita Delle due, la diffrazione di Fraunhofer è la più semplice da trattare dal punto vista teorico. Le due lenti, L1 e L, servono a simulare la condizione per la diffrazione di Fraunhofer. La spiegazione dell effetto di diffrazione da singola fenditura si asa sul principio di Huygens: i fronti d onda secondari generati da ogni punto interno alla fenditura interferiscono fra di loro producendo sul rivelatore strisce luminose (dette anche frange) alternate a zone scure

2 4 Consideriamo una fenditura di larghezza illuminata da fronti d onda piani. Sia ds un elemento della fenditura che genera onde sferiche, le quali raggiungono la superficie di uno schermo o di un rivelatore. Poniamo ds al centro della fenditura (origine O). Avremo che le parti delle onde secondarie che viaggiano ortogonali al piano della fenditura vanno a fuoco sullo schermo nel punto P o, mentre quelli che viaggiano ad angolo θ arrivano in posizione P. L ampiezza delle onde che raggiungono P sarà direttamente proporzionale alla dimensione dell elemento ds e inversamente proporzionale alla sua distanza dallo schermo. a ds sin ωt k ω= P k= ω =v k dy o = Se spostiamo ds a distanza s da O, in P arriveranno onde con differenza di fase rispetto a prima dovuta a differenza di cammino ottico.

3 5 a ds sin [ ωt k Δ ] a ds dy s= sin [ ωt k s sin θ ] a ds dy s= sin [ ωt k ks sin θ ] dy s= Se vogliamo conoscere l effetto complessivo di tutti gli elementi ds compresi fra / e +/ doiamo integrare. In questo caso conviene considerare le coppie simmetriche rispetto ad O e integrare fra 0 e /. dy=dy s dy s a ds dy= [ sin ωt k ks sin θ sin ωt k ks sin θ ] Usando la relazione sin α sin β= cos α β α β sin si ottiene dy= a ds [ cos ks sin θ sin ωt k ] Integrando questa quantità, si ha a y= sin ωt k / cos ks sin θ ds [ 0 ] / sin ks sin θ a y= sin ωt k k sin θ 0 k sin sin θ a y= sin ωt k k sin θ k sin sin θ a y= sin ωt k k sin θ sin β y= A0 sin ωt k β avendo posto k sin θ = sin θ a A0= β=

4 6 L intensità sullo schermo sarà data da I A = A0 sin β β Se la luce, anziché incidere perpendicolarmente alla fenditura, arriva con un angolo i, l espressione per β sarà β= sin i sin θ Si nota che il ma di intensità della forte anda centrale sta nel punto P 0 dove tutti i fronti d onda arrivano in fase poiché la differenza di cammino ottico è Δ = 0. Per β=0 si ha sin β =1 A= A0 β e A0 è il valore della intensità ma al centro della figura di diffrazione. I0 è noto come massimo principale, mentre gli altri sono detti massimi secondari. Le posizioni dei minimi nella figura di diffrazione si trovano a β=m Le posizioni dei massimi saranno date da m=1,,3,...

5 7 da d sin β =0 A0 =0 dβ dβ β β cos β sin β A0 =0 β tg β= β 0 β=±1. 43, ±. 46, ±3. 47,... Si nota che i ma secondari non cadono esattamente in mezzo ai punti di minimo, ma risultano spostati verso il centro della figura di una quantità che decresce con il crescere di m. Per determinare le intensità di questi ma possiamo comunque considerarli nelle posizione intermedie dei minimi, cioè per 3 5 β=,, sin β 4 =, β 9 7, ,,...,,, La posizione angolare dei minimi può essere ottenuta partendo dall espressione di β e assumendo che θ sia piccolo. In questo caso sin θ θ m θ θ m β= Invece la larghezza lineare della figura di diffrazione sullo schermo sarà proporzionale alla distanza dello schermo dalla fenditura, che sarà la lunghezza focale f della lente. Per cui la distanza lineare fra minimi successivi sarà data da d m f Si nota: 1. la larghezza della figura cresce con la ; se si usa luce ianca, il ma centrale è ianco, mentre i ordi esterni sono rossi. la larghezza della figura è inversamente proporzionale alla larghezza della fenditura; quando la fenditura si allarga la figura rapidamente diminuisce di dimensione Inoltre dall espressione della posizione angolare dei minimi si ha sin θ = m 1 m

6 8 ossia, se la fenditura è più stretta della lunghezza d onda della luce incidente non si ha passaggio di luce. Se è larga tanto quanto, la diffrazione è trascuraile. Se è molto più larga, la figura di diffrazione di riduce al ma centrale. CASO DELL APERTURA RETTANGOLARE Finora aiamo considerato quello che avviene su un piano ortogonale alla fenditura. Ma la fenditura è un apertura rettangolare con dimensioni finite (l ). Se teniamo conto anche dell altra dimensione, otteniamo una nuova espressione per l intensità della figura di diffrazione I l sin β sin γ β γ β= sin ϑ γ= l sin con θ e Ω misurati dalla normale all apertura nel suo centro. Quando ~ l si ottiene una figura concentrata in due direzioni coincidenti con i lati dell apertura. A causa della relazione inversa fra larghezza della fenditura e dimensione della figura di diffrazione, le frange saranno meno spaziate nella direzione della dimensione maggiore. Per l >> il termine sin γ 0 γ e quindi la figura di diffrazione si limita alla direzione perpendicolare alla fenditura. Per Potere Risolutivo di un apertura rettangolare si intende la sua capacità di separare immagini di oggetti molto vicini. E la figura di diffrazione che fissa il limite teorico superiore del potere risolutivo. Le immagini di due oggetti non saranno risolte se la loro separazione è molto minore della larghezza del ma centrale. Consideriamo due sorgenti puntiformi vicine, con separazione angolare α. Le loro figure di diffrazione siano tali che il ma principale dell una cada sul secondo minimo dell altra e viceversa. La separazione angolare dei due ma sarà β =, ossia

7 9 β= sin θ = sin θ sin θ = θ Se avviciniamo le due sorgenti, le figure di diffrazione si avvicinano e l intensità cresce finché al centro resta un solo ma.

8 10 La profondità del minimo camia molto rapidamente con la separazione. A β= sin β 4 = 0. 4 β quindi la somma dei contriuti in questo punto è circa 0.8. Il minimo si trova all 80% di altezza dei due massimi. Criterio di Rayleigh (aritrariamente) la risoluzione angolare è definita dall espressione θ= ossia, due sorgenti sono risolte quando il ma della figura dell una cade sul primo minimo della figura dell altra. CASO DELL APERTURA CIRCOLARE La figura di diffrazione prodotta da onde piane che passano attraverso un apertura circolare è un prolema di difficile soluzione, poiché richiede una doppia integrazione. Il prolema è stato risolto da Airy (1835). La figura di diffrazione consiste in un disco centrale rillante noto come disco di Airy, circondato da una serie di anelli più deoli. In pratica la distriuzione dell intensità è simile a quella che si avree ruotando la figura di diffrazione della fenditura attorno all asse del ma principale. Per la fenditura aiamo visto che la posizione angolare dei minimi è data in prima approssimazione dalla relazione θ m con m=1,,3,... mentre per un apertura circolare m non assume valori interi. mmin = 1.,.33, 3.4, mma = 0, 1.63,.68, 3.70, Ima = 1, , 0.004, ,

9 11 Il caso dell apertura circolare si applica ovviamente a un telescopio di diametro D e focale F. Se vogliamo calcolare il raggio del primo anello scuro che si forma sul piano focale, questo sarà dato da θ = 1. D Per un telescopio di diametro D=6 m e focale F=4 m, alla lunghezza d onda visiile = 5500 Å, si ottiene θ = 0.03 θ = θ F =.68 μ Estensione del criterio di Rayleigh due figure sono risolte quando il ma centrale dell una cade sul primo anello scuro dell altra. SEEING Il seeing è una misura del degrado dell immagine dovuto alla condizione di turolenza della nostra atmosfera. I fronti d onda piani incontrano vortici di varie dimensioni che causano camiamenti nell indice di rifrazione. Questi camiamenti spaccano il fronte d onda in elementi non perturati di dimensione r0 (parametro di Fried), che dipendono da l6/5. Nel visiile r0 è dell ordine di 10 cm. In sostanza la figura di diffrazione non è mai quella teorica, ma è dominata dalla dimensione di r0. Maggiore è r0 e migliore è il seeing.

10 1 Il seeing quindi è caratterizzato da 3 parametri: allargamento FWHM ~ -1/5 F(z; n(h)) agitazione sy ~ D-1/3 r0-5/3 scintillazione si ~ D-7/3 F (z;n(h)) si ~ -7/6 F (z;n(h)) per grandi telescopi per piccoli telescopi Dove F, F e F sono funzioni della distanza zenitale z e della variazione dell indice di rifrazione n con l altitudine h. Si nota che osservando con telescopi di piccoli diametri, il cui limite di risoluzione approssima le dimensioni del parametro di Fried, il seeing sarà dominato dall agitazione. Detto in altri termini, con un piccolo telescopio una stella appare muoversi attorno ad una posizione media, mentre con un grande telescopio appare quasi ferma, ma molto allargata.

11 13 TRASFORMATE DI FOURIER E CONVOLUZIONE Data una funzione F(), la sua trasformata di Fourier f( ) è una funzione che descrive l ampiezza e la fase delle sinusoidi, che sommate assieme riproducono F(). F f σ = F e i σ d con (,s) dette coppie di Fourier, e con: e i σ =cos σ i sin σ L operazione inversa, o antitrasformata, è data da: f σ F = f σ e i σ dσ Si nota che anche se F() è una funzione reale, f(s) è una funzione complessa. Essa si riduce al caso reale solo quando F() è una funzione pari, cioè quando F()=F(-). Essendo infatti sin(ps) una funzione dispari, la f(s) diventa: f σ = F cos σ d Si nota inoltre che: Per σ=0 f 0 = F d Per =0 F 0 = f σ dσ cioè il punto zero della trasformata corrisponde all area sottesa dalla funzione F(), mentre il punto zero della funzione F() corrisponde all area sottesa dalla trasformata. Queste osservazioni sono utili quando si vuole studiare la trasformata di Fourier di una riga spettrale: infatti il valore di f(0) non è altro che il flusso della riga. Torniamo al caso della fenditura di larghezza illuminata da un fascio di luce collimato. La distriuzione della luce sulla fenditura può essere descritta da una funzione o del tipo: F =0 F =1

12 14 Calcolando la trasformata di Fourier di questa funzione si ha: f σ = F e i σ d f σ = F cos σ d f σ = cos σ d sin σ f σ = σ Cioè, la funzione o trasforma nella funzione sin()/. Oppure, detto in altri termini, il fenomeno della diffrazione attraverso una fenditura è di fatto la trasformata di Fourier del segnale proveniente dalla fenditura stessa. Consideriamo adesso la funzione triangolo, del tipo: F =0 F = 1 0 F = 1 0 Calcolando la trasformata di Fourier, si ottiene: f σ sin σ σ Ossia, la funzione che descrive l andamento dell intensità della figura di diffrazione è la trasformata di Fourier della funzione triangolo. Infine, consideriamo la funzione di Gauss: F =e β La trasformata di Fourier della gaussiana è l integrale di Laplace, la cui soluzione è ancora una funzione di Gauss: f σ = e β cos σ d= β e β σ

13 15 Come sono legate fra di loro tutte queste cose? convoluzione La convoluzione fra due funzioni F() e G() è definita come: F G = K σ = F σ ' G σ σ ' dσ ' Questa espressione è molto utile quando si trattano funzioni nello spazio di Fourier perché la trasformata di Fourier di una convoluzione corrisponde alla moltiplicazione delle rispettive trasformate (Teorema della convoluzione). La convoluzione della funzione o con se stessa è la funzione triangolo. La convoluzione di due gaussiane sarà: G A G B g A σ g B σ e β A σ β B σ e =e βc σ avendo posto β C = β A β B ossia, ancora una gaussiana! Questo fatto è molto importante per lo studio dei profili delle righe negli spettri per esempio di galassie attive. Le righe di emissione che si osservano hanno una larghezza che è il risultato della convoluzione di un profilo gaussiano con larghezza strumentale e di una distriuzione gaussiana con larghezza intrinseca.

14 16

Ottica fisica - Diffrazione

Ottica fisica - Diffrazione Ottica fisica - Diffrazione 1. Diffrazione di Fraunhofer 2. Risoluzione di una lente 3. Reticoli di diffrazione IX - 0 Diffrazione Interferenza di un onda con se stessa, in presenza di aperture od ostacoli

Dettagli

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1 La diffrazione Il fenomeno della diffrazione si incontra ogni volta che la luce incontra un ostacolo o un apertura di dimensioni paragonabili alla sua lunghezza d onda. L effetto della diffrazione è quello

Dettagli

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore Capitolo 15 L interferenza e la natura ondulatoria della luce 15.2 Il principio di sovrapposizione e l interferenza della luce Quando due onde luminose passano per uno stesso punto, i loro effetti si sommano

Dettagli

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO 1 INTERFERENZA Massimi di luminosità Onda incidente L onda prodotta alla fenditura S0, che funge da sorgente, genera due onde alle fenditure

Dettagli

Diffrazione della luce

Diffrazione della luce 1 Introduzione 1 Diffrazione della luce Attenzione! Nel corso della presente esperienza è previsto l utilizzo di laser di classe II: laser che emettono radiazione visibile nell intervallo di lunghezze

Dettagli

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente OTTICA FISICA Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente gli effetti sperimentali non sono spiegabili

Dettagli

Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia Laboratorio di Ottica e Spettroscopia Quarta lezione Applicazione di tecniche di diffrazione (Laboratorio II) Antonio Maggio e Luigi Scelsi Istituto Nazionale di Astrofisica Osservatorio Astronomico di

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

SPETTROSCOPIO A RETICOLO

SPETTROSCOPIO A RETICOLO SPETTROSCOPIO A RETICOLO Scopo dell esperienza: determinazione passo del reticolo separazione tra le due righe del doppietto della luce gialla del sodio determinazione della lunghezza d onda di un fascio

Dettagli

5 Lenti e Specchi. Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali

5 Lenti e Specchi. Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Laboratorio di didattica della Fisica (III modulo): Metodologie di insegnamento del Laboratorio di Ottica Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali 5

Dettagli

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE Scopo dell esperimento: studiare l ottica geometrica e i fenomeni di diffrazione MATERIALE A DISPOSIZIONE: 1 banco ottico 1 blocco di plexiglass 2 lenti con

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

5 Fondamenti di Ottica

5 Fondamenti di Ottica Laboratorio 2B A.A. 2012/2013 5 Fondamenti di Ottica Formazione immagini Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Ottica geometrica In ottica geometrica si analizza la formazione

Dettagli

MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE

MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE Il reticolo di diffrazione può essere utilizzato per determinare la lunghezza d onda di una radiazione monocromatica. Detto d

Dettagli

sia fa(a la luce, e la luce fu. Genesi, 1,3

sia fa(a la luce, e la luce fu. Genesi, 1,3 sia fa(a la luce, e la luce fu. Genesi, 1,3 PLS Astronomia Secondo anno I. Cose è uno SPETTRO e come si costruisce II. Gli spettri delle stelle: che informazioni fisiche ci forniscono? (osservazione di

Dettagli

L'interferenza. Lezioni d'autore

L'interferenza. Lezioni d'autore L'interferenza Lezioni d'autore L'esperimento di Young (I) VIDEO L'esperimento di Young (II) Una luce monocromatica illumina due piccole aperture su una lastra opaca. La stessa onda quindi è suddivisa

Dettagli

CLT di TECNICHE DI LABORATORIO BIOMEDICO. C.I. di Fisiologia Umana Modulo di Fisica Strumentale

CLT di TECNICHE DI LABORATORIO BIOMEDICO. C.I. di Fisiologia Umana Modulo di Fisica Strumentale CLT di TECNICHE DI LABORATORIO BIOMEDICO C.I. di Fisiologia Umana Modulo di Fisica Strumentale P. Calvini Potere risolutivo di uno strumento ottico Con potere risolutivo di uno strumento ottico s intende

Dettagli

ESPERIENZA 5 OTTICA FISICA INTERFERENZA E DIFFRAZIONE

ESPERIENZA 5 OTTICA FISICA INTERFERENZA E DIFFRAZIONE ESPERIENZA 5 OTTICA FISICA INTERFERENZA E DIFFRAZIONE Lo scopo di quest esperimento è osservare la natura ondulatoria della luce, nei fenomeni della diffrazione e dell interferenza propri delle onde. In

Dettagli

Lo Spettro Elettromagnetico

Lo Spettro Elettromagnetico Spettroscopia 1 Lo Spettro Elettromagnetico Lo spettro elettromagnetico è costituito da un insieme continuo di radiazioni (campi elettrici e magnetici che variano nel tempo, autogenerandosi) che va dai

Dettagli

La luce. Quale modello: raggi, onde, corpuscoli (fotoni)

La luce. Quale modello: raggi, onde, corpuscoli (fotoni) La luce Quale modello: raggi, onde, corpuscoli (fotoni) Le onde luminose onde elettromagnetiche con frequenza compresa tra 4. 10 14 e 8. 10 la lunghezza d onda e compresa fra 400nm e 750nm 10 14 Hz 14

Dettagli

4.5 Polarizzazione Capitolo 4 Ottica

4.5 Polarizzazione Capitolo 4 Ottica 4.5 Polarizzazione Esercizio 98 Un reticolo con N fenditure orizzontali, larghe a e con passo p, è posto perpendicolarmente a superficie di un liquido con n =.0. Il reticolo è colpito normalmente alla

Dettagli

RIFLESSIONE. Riflessione - 1/17

RIFLESSIONE. Riflessione - 1/17 RIFLESSIONE Sommario Leggi della riflessione... 2 Specchi piani... 3 Specchi sferici... 6 Lunghezza focale di specchi sferici... 9 Immagine generata da specchi sferici... 11 Ingrandimento generato da specchi

Dettagli

Interferenza della luce

Interferenza della luce 1 Introduzione 1 Interferenza della luce Attenzione! Nel corso della presente esperienza è previsto l utilizzo di laser di classe II: laser che emettono radiazione visibile nell intervallo di lunghezze

Dettagli

Esperimento sull ottica

Esperimento sull ottica Esperimento sull ottica Gruppo: Valentina Sotgiu, Irene Sini, Giorgia Canetto, Federica Pitzalis, Federica Schirru, Jessica Atzeni, Martina Putzu, Veronica, Orgiu e Deborah Pilleri. Teoria di riferimento:

Dettagli

Spettroscopia. Reticolo di diffrazione Spettrometro a reticolo Spettroscopia Raman

Spettroscopia. Reticolo di diffrazione Spettrometro a reticolo Spettroscopia Raman Spettroscopia Reticolo di diffrazione Spettrometro a reticolo Spettroscopia Raman Di nuovo l'esperimento di Young delle due fenditure Onda piana incidente Se la larghezza d delle fenditure tende a zero:

Dettagli

4.4 Reticoli Capitolo 4 Ottica

4.4 Reticoli Capitolo 4 Ottica 4.4 Reticoli Esercizio 92 Un fascio piano di onde e.m. con frequenza ν = 10 11 Hz incide su uno schermo conduttore piano su cui sono praticate 5 fenditure parallele e lunghe, di larghezza a = 6 mm e passo

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Note di ottica geometrica.

Note di ottica geometrica. Note di ottica geometrica. Mauro Saita e-mail: [email protected] Versione provvisoria, novembre 2012. Indice 1 ttica geometrica 1 2 Riflessione. 2 2.1 La legge della riflessione..............................

Dettagli

SOLIDI DI ROTAZIONE. Superficie cilindrica indefinita se la generatrice è una retta parallela all asse di rotazione

SOLIDI DI ROTAZIONE. Superficie cilindrica indefinita se la generatrice è una retta parallela all asse di rotazione SOLIDI DI ROTAZIONE Dato un semipiano α limitato dalla retta a, sia g una linea qualunque appartenente al semipiano α; ruotando il semipiano α di un angolo giro attorno alla retta a, la linea g genera

Dettagli

La riflessione: formazione delle immagini 2016

La riflessione: formazione delle immagini 2016 Vogliamo provare che l immagine prodotta da uno specchio piano, si trova alla stessa distanza della sorgente dallo specchio. Con riferimento alla figura, vogliamo provare che AC = CB. Per provare l affermazione,

Dettagli

DIMOSTRAZIONE DELLA NATURA ONDULATORIA DELLA LUCE E DETERMINAZIONE DELLA LUNGHEZZA D ONDA.

DIMOSTRAZIONE DELLA NATURA ONDULATORIA DELLA LUCE E DETERMINAZIONE DELLA LUNGHEZZA D ONDA. Ottica Ottica ondulatoria Diffrazione da fenditure multiple e reticoli DIMOSTRAZIONE DEA NATURA ONDUATORIA DEA UCE E DETERMINAZIONE DEA UNGHEZZA D ONDA. Analisi della diffrazione da doppie fenditure con

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la 1 E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la lunghezza d onda ( ), definita come la distanza fra due

Dettagli

Relazione del laboratorio di ottica a.a Ottica geometrica e ottica Fisica

Relazione del laboratorio di ottica a.a Ottica geometrica e ottica Fisica Relazione del laboratorio di ottica a.a. 2005-2006 Ottica geometrica e ottica Fisica Bina Michele Bina Nicola Capaci Luciano [email protected] Mittica Patrizia [email protected] Saliceti Simona [email protected]

Dettagli

POLARIZZAZIONE. I = < (E 0 cos ϕ) 2 > (1) dove < (E 0 cos ϕ) 2 > è il valore mediato nel tempo.

POLARIZZAZIONE. I = < (E 0 cos ϕ) 2 > (1) dove < (E 0 cos ϕ) 2 > è il valore mediato nel tempo. POLARIZZAZIONE ESERCIZIO 1 Un fascio di luce naturale attraversa una serie di polarizzatori ognuno dei quali ha l asse di polarizzazione ruotato di 45 rispetto al precedente. Determinare quale frazione

Dettagli

1 S/f. M = A t = A + CT = 1 S f

1 S/f. M = A t = A + CT = 1 S f Ot Una lente sottile con focale f 50 mm è utilizzata per proiettare su di uno schermo l immagine di un oggetto posto a 5 m. SI determini la posizione T dello schermo e l ingrandimento che si ottiene La

Dettagli

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2 OTTICA GEOMETRICA L ottica geometrica si occupa di tutta quella branca della fisica che ha a che fare con lenti, specchi, vetri e cose simili. Viene chiamata geometrica in quanto non interessa la natura

Dettagli

Fisica Generale B. 3. Esercizi di Ottica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II) ! 1. = v = c 2.

Fisica Generale B. 3. Esercizi di Ottica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II)  ! 1. = v = c 2. Fisica Generale B 3. Esercizi di Ottica http://campus.cib.unibo.it/490/ May 7, 0 Esercizio La fiamma di un fornello, continuamente e regolarmente rifornita di sale da cucina, costituisce una sorgente estesa

Dettagli

Lezioni LINCEI per la Scuola La Spettroscopia

Lezioni LINCEI per la Scuola La Spettroscopia Lezioni LINCEI per la Scuola La Spettroscopia Roberto Casalbuoni Dipartimento di Fisica e Astronomia, Sezione INFN Istituto G. Galilei per la Fisica Teorica (GGI), Terza Cultura Firenze - [email protected]

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche SQ Campo determinato da cariche in moto Campo elettrico E dato da una carica puntiforme collocata in E {x 0, y 0, z 0 } E(x, y, z) = q r 4πɛ 0 r 2 con r = {x x 0, y y 0, z z 0 }

Dettagli

Percorso ottico attraverso un corpo semicircolare: osservazione. Studio del cammino dei raggi di luce attraverso un corpo semicircolare

Percorso ottico attraverso un corpo semicircolare: osservazione. Studio del cammino dei raggi di luce attraverso un corpo semicircolare ESPERIENZA 4 Percorso ottico attraverso un corpo semicircolare: osservazione 1 Argomenti Studio del cammino dei raggi di luce attraverso un corpo semicircolare 2 Montaggio Fig. 1 3 Note al montaggio 3.1

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Diffusione dei raggi X da parte di un elettrone

Diffusione dei raggi X da parte di un elettrone Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un

Dettagli

Esercizi di Fisica LB - Ottica

Esercizi di Fisica LB - Ottica Esercizi di Fisica LB - Ottica Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Esercizio Un sistema ottico centrato è costituito (da sinistra a destra) da una lente sottile biconcava (l indice

Dettagli

Esercizi selezionati per l esame scritto del corso di Fotonica. Laser

Esercizi selezionati per l esame scritto del corso di Fotonica. Laser Esercizi selezionati per l esame scritto del corso di Fotonica Laser Si consideri un laser Nd-YAG con cavità ad anello (vedi figura). Il cristallo Nd-YAG ha lunghezza L = 2.5 cm e R A = R C = 100%. Supponendo

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2)

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano [email protected]

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2 Corso di Laurea in Astronomia Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA A.A. 01-013 Indice 1 Introduzione 5 1.1 Indice di rifrazione.............................. 5 1. Riflessione e rifrazione............................

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

ESERCIZI DI OTTICA GEOMETRICA

ESERCIZI DI OTTICA GEOMETRICA ESERCIZI DI OTTICA GEOMETRICA Prima di ogni argomento sono raccolte alcune formule utili, e non banali, per lo svolgimento degli esercizi. Si presuppongono lo studio e la comprensione teorica delle stesse.

Dettagli

Spettrometro a reticolo e a prisma

Spettrometro a reticolo e a prisma Spettrometro a reticolo e a prisma Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) 1 Introduzione 1.1 Introduzione ai feomeni in esame Quando la luce viene fatta incidere normalmente alla superficie

Dettagli

Spettro elettromagnetico

Spettro elettromagnetico Spettro elettromagnetico Sorgenti Finestre Tipo Oggetti rilevabili Raggi γ ev Raggi X Lunghezza d onda E hc = hν = = λ 12. 39 λ( A o ) Visibile Infrarosso icro onde Onde-radio Dimensione degli oggetti

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]

Dettagli

Misura del campo magnetico terrestre con le bobine di Helmholtz

Misura del campo magnetico terrestre con le bobine di Helmholtz Misura del campo magnetico terrestre con le bobine di Helmholtz Le bobine di Helmholtz sono una coppia di bobine con alcune caratteristiche particolari: hanno entrambe raggio ; hanno una lunghezza L molto

Dettagli

Definizioni riguardo alle lenti sferiche Una lente è un mezzo trasparente limitato da due superfici di cui almeno una curva.

Definizioni riguardo alle lenti sferiche Una lente è un mezzo trasparente limitato da due superfici di cui almeno una curva. 1 Le lenti Definizioni riguardo alle lenti sferiche Una lente è un mezzo trasparente limitato da due superfici di cui almeno una curva. Si chiama asse ottico della lente la retta che congiunge i centri

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

CARATTERISTICHE DELLE STELLE

CARATTERISTICHE DELLE STELLE CARATTERISTICHE DELLE STELLE Lezioni d'autore di Claudio Censori VIDEO Introduzione I parametri stellari più importanti sono: la le la la luminosità, dimensioni, temperatura e massa. Una stella è inoltre

Dettagli

Diffrazione di Raggi-X da Monocristalli A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

Diffrazione di Raggi-X da Monocristalli A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Diffrazione di Raggi-X da Monocristalli A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Raccolta Dati di Diffrazione: Diffrazione di Raggi X Raccolta

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Lenti. Capitolo Lenti sottili

Lenti. Capitolo Lenti sottili Capitolo 3 Lenti 3. Lenti sottili Indichiamo con il termine lente un sistema ottico costituito da materiale trasparente e omogeneo limitato da due superfici che possono essere entrambe sferiche oppure

Dettagli

Principio di Huygens

Principio di Huygens Ottica fisica La luce è stata considerata una particella da Newton fino a Young (inizi XIX secolo) Nell'800 si sono studiati i fenomeni ondulatori associati alla luce Nel secolo scorso alcuni effetti (fotoelettrico,

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una

Dettagli

Un percorso di ottica parte III. Ottica ondulatoria

Un percorso di ottica parte III. Ottica ondulatoria Un percorso di ottica parte III Ottica ondulatoria Isabella Soletta Liceo Fermi Alghero Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare con materiali

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile)

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile) Ottica geometrica Propagazione per raggi luminosi (pennello di luce molto sottile) All interno di un mezzo omogeneo la propagazione e rettilinea: i raggi luminosi sono pertanto rappresentati da tratti

Dettagli

Effetto convergente di uno specchio concavo: osservazione. Dimostrare la riflessione di raggi paralleli su uno specchio concavo

Effetto convergente di uno specchio concavo: osservazione. Dimostrare la riflessione di raggi paralleli su uno specchio concavo ESPERIENZA 7 Effetto convergente di uno specchio concavo: osservazione 1. Argomenti Dimostrare la riflessione di raggi paralleli su uno specchio concavo 2. Montaggio Fig. 1 3. Note al montaggio 3.1 Fissare

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

VISTA ottica geometrica

VISTA ottica geometrica Corso di Laurea Specialistica in MEDICINA e CHIRURGIA corso integrato FISICA - disciplina FISICA VISTA ottica geometrica - ANATOMIA DELL'OCCHIO - SISTEMA OTTICO - ACUITA' VISIVA - DIFETTI OTTICI DELL'OCCHIO

Dettagli

1 Equilibrio statico nei corpi deformabili

1 Equilibrio statico nei corpi deformabili Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Corso di Geometria III - A.A. 2016/17 Esercizi

Corso di Geometria III - A.A. 2016/17 Esercizi Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss Prof. A.Guarrera Liceo Scientifico Galilei - Catania Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme (filo carico) di densità lineare di carica.

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio 2012 Campo magnetico e suoi effetti Alunno:................................................ Domande a risposta

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

09/10/15. 1 I raggi luminosi. 1 I raggi luminosi. L ottica geometrica

09/10/15. 1 I raggi luminosi. 1 I raggi luminosi. L ottica geometrica 1 I raggi luminosi 1 I raggi luminosi Per secoli si sono contrapposti due modelli della luce il modello corpuscolare (Newton) la luce è un flusso di particelle microscopiche il modello ondulatorio (Christiaan

Dettagli

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI I ONDE PIANE E MATERIALI OP 1 Il campo elettrico nel punto A ha un modulo di 1V/m e forma un angolo di 6 o con la normale alla superficie. Calcolare e(b). ε 1 ε 2 A B 6 o e ε 1 =, ε 2 = 2 Nel punto A le

Dettagli

LASER. Proprietà dei fasci laser

LASER. Proprietà dei fasci laser LASER Proprietà dei fasci laser Sorgenti di luce: Proprietà dei fasci laser lampade (alogena, a tungsteno, a kripton, lampadina ad incandescenza): emettono luce bianca e calda su tutto l angolo solido;

Dettagli

SUPERFICI CONICHE. Rappresentazione di coni e cilindri

SUPERFICI CONICHE. Rappresentazione di coni e cilindri SUPERFICI CONICHE Rappresentazione di coni e cilindri Si definisce CONO la superficie che si ottiene proiettando tutti i punti di una curva, detta DIRETTRICE, da un punto proprio, non appartenente al piano

Dettagli

Gruppo A (indicativamente dopo le prime 2-3 settimane di lezione

Gruppo A (indicativamente dopo le prime 2-3 settimane di lezione Gruppo A (indicativamente dopo le prime 2-3 settimane di lezione 1) Un prisma retto di vetro con indice di rifrazione n=1.55. ha come base un triangolo retto isoscele, la cui ipotenusa misura 8 cm. Un

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Interferenza Interferenza.

Interferenza Interferenza. Interferenza 01 - Interferenza. Attorno all'anno 1800, l'eclettico medico inglese Thomas Young compì un esperimento che mise in crisi il modello corpuscolare della luce, modello fino ad allora considerato

Dettagli

Formazione dell'immagine

Formazione dell'immagine Ottica geometrica Percepiamo la luce perché ci arriva direttamente dalla sorgente oppure riflessa dagli oggetti L'emissione della luce è complessa da capire, mentre la propagazione è, di solito, più semplice

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss prof. Alessandro ALTERIO (FISICA) 5ªD (P.N.I.) liceo scientifico Marconi di Grosseto pagina 1 di 8 Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme

Dettagli