Proprietà delle notazioni asintotiche
|
|
|
- Vincenzo Pastore
- 9 anni fa
- Visualizzazioni
Transcript
1 Proprietà delle notazioni asintotiche
2 Punto della situazione Cos è un algoritmo Tempo di esecuzione T(n) Analisi di algoritmi: analisi asintotica di T(n) Notazioni asintotiche Argomento di oggi Proprietà delle notazioni asintotiche Motivazioni Confrontare tempi di esecuzione di algoritmi fra loro o con funzioni standard (lineare, polinomiale, esponenziale )
3 Notazioni asintotiche Nell analisi asintotica analizziamo T(n) 1. A meno di costanti moltiplicative (perché non quantificabili) 2. Asintoticamente (per considerare input di taglia arbitrariamente grande, quindi in numero infinito) Le notazioni asintotiche: O, Ω, Θ ci permetteranno il confronto tra funzioni, mantenendo queste caratteristiche. Idea di fondo: O, Ω, Θ rappresentano rispettivamente,, = in un analisi asintotica
4
5 Notazione asintotica Ω Notazione duale di O: f(n) = Ω (g(n)) se esistono costanti c > 0, n 0 0 tali che per ogni n n 0 si ha f(n) c g(n)
6
7 Analisi asintotica di T(n) T(n) = O(g(n)) significa che il tempo di esecuzione, anche nel caso peggiore, è limitato superiormente da g(n) T(n) = Ω(g(n)) significa che il tempo di esecuzione, anche nel caso migliore, è limitato inferiormente da g(n) T(n) = Θ(g(n)) significa che nel caso peggiore è O(g(n)) e nel caso migliore è Ω(g(n)) (in pratica non vi è distinzione fra tempo di esecuzione nel caso peggiore e migliore) Esempio. T I (n), tempo di esecuzione di InsertionSort è T I (n)= Ω(n) e T I (n) =O(n 2 ) T M (n ), tempo di esecuzione di MergeSort è T M (n)= Θ(n log n)
8 Asymptotic Order of Growth Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n 0 0 such that for all n n 0 we have T(n) c f(n). Lower bounds. T(n) is (f(n)) if there exist constants c > 0 and n 0 0 such that for all n n 0 we have T(n) c f(n). Tight bounds. T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n)). Ex: T(n) = 32n n T(n) is O(n 2 ), O(n 3 ), (n 2 ), (n), and (n 2 ). T(n) is not O(n), (n 3 ), (n), or (n 3 ). 8
9 Funzioni più utilizzate Scaletta: Man mano che si scende troviamo funzioni che crescono più velocemente (in senso stretto)
10 Asymptotic Bounds for Some Common Functions Polynomials. a 0 + a 1 n + + a d n d is (n d ) if a d > 0. Polynomial time. Running time is O(n d ) for some constant d independent of the input size n. Logarithms. O(log a n) = O(log b n) for any constants a, b > 0. can avoid specifying the base Logarithms. For every x > 0, log n = O(n x ). log grows slower than every polynomial Exponentials. For every r > 1 and every d > 0, n d = O(r n ). 10 every exponential grows faster than every polynomial
11 Più in dettaglio Informalmente. Più precisamente: Un esponenziale cresce più velocemente di qualsiasi polinomio n d = O (r n ) per ogni d>0 e r>1 Un polinomio cresce più velocemente di qualsiasi potenza di logaritmo log b n k = O (n d ) per ogni k, d>0 e b>1
12 E ancora Informalmente. Per esempio: Nel confronto fra esponenziali conta la base Nel confronto fra polinomi conta il grado Nel confronto fra logaritmi la base non conta 2 n = O(3 n ) n 2 = O(n 3 ) log 10 n = log 2 n (log 10 2) = Θ (log 2 n)
13 Polinomi vs logaritmi Un polinomio cresce più velocemente di qualsiasi potenza di logaritmo. Per esempio Lo proveremo con c=1 e n 0 =1, cioè log 2 n n, n 1
14 In pratica Per stabilire l ordine di crescita di una funzione dovremo tenere ben presente la «scaletta» e alcune proprietà delle notazioni asintotiche
15 Transitivity Properties (analoga ad a b e b c allora a c per i numeri) If f = O(g) and g = O(h) then f = O(h). If f = (g) and g = (h) then f = (h). If f = (g) and g = (h) then f = (h). Additivity. If f = O(h) and g = O(h) then f + g = O(h). If f = (h) and g = (h) then f + g = (h). If f = (h) and g = (h) then f + g = (h). 15 (Attenzione: l analoga per i numeri sarebbe se a c e b c allora a+b c, che non è vera!!)
16 Transitività Se f = O(g) e g = O(h) allora f = O(h) Ipotesi: esistono costanti c,n 0 > 0 tali che per ogni n n 0 si ha f(n) c g(n) esistono costanti c,n 0 > 0 tali che per ogni n n 0 si ha g(n) c h(n) Tesi (Dobbiamo mostrare che): esistono costanti c,n 0 > 0 tali che per ogni n n 0 si ha f(n) c h(n) Quanto valgono c, n 0? f(n) c g(n) c c h(n) per ogni n n 0 e n n 0 c = c c n 0 = max {n 0, n 0 }
17 Ipotesi: Additività Se f = O(h) e g = O(h) allora f + g = O(h) esistono costanti c,n 0 > 0 tali che per ogni n n 0 si ha f(n) c h(n) esistono costanti c,n 0 > 0 tali che per ogni n n 0 si ha g(n) c h(n) Tesi (Dobbiamo mostrare che): esistono costanti c,n 0 > 0 tali che per ogni n n 0 si ha f(n )+g(n) c h(n) Quanto valgono c, n 0? f(n )+g(n) c h(n) + c h(n)= (c+c ) h(n) per ogni n n 0 e n n 0 c = c + c n 0 = max {n 0, n 0 }
18 Due regole fondamentali Nel determinare l ordine di crescita asintotica di una funzione 1. Possiamo trascurare i termini additivi di ordine inferiore 2. Possiamo trascurare le costanti moltiplicative ATTENZIONE! Le regole NON servono però per determinare esplicitamente le costanti c ed n 0.
19 Prima regola «Possiamo trascurare i termini additivi di ordine inferiore» Cosa significa formalmente? Se g = O(f) allora f + g = (f) Ipotesi: g è di ordine inferiore a f: g=o(f): esistono costanti c,n 0 > 0 tali che per ogni n n 0 si ha g(n) c f(n) Tesi (Dobbiamo mostrare che): f + g = O(f): dato che f=o(f) e g=o(f) per l additività: f+g=o(f). f + g = (f): esistono c, n 0 > 0 tali che per ogni n n 0 si ha f(n )+g(n) c f(n): f(n )+g(n) f(n) essendo g(n) 0; c =1 ed n 0 = 0
20 Seconda regola «Possiamo trascurare le costanti moltiplicative» Cosa significa formalmente? Per ogni costante a > 0 allora a f = (f) Ipotesi: a>0 Tesi esistono costanti c>0, n 0 0 tali che per ogni n n 0 si ha a f(n) c f(n) esistono costanti c >0, n 0 0 tali che per ogni n n 0 si ha a f(n) c f(n) c = c = a n 0 = n 0 = 0
21 Per confrontare crescita di due funzioni Basterà usare: La «scaletta» Le proprietà di additività e transitività Le due regole fondamentali
22 Domanda Per questo genere di esercizi: a cosa serve la calcolatrice? Suggerimento: ricorda che f(n) = O(g(n)) significa f(n) c g(n) per ogni n n 0 cioè per un numero infinito di valori di n. QUINDI: NON basta dimostrare che per qualche costante c f(1) c g(1), f(2) c g(2), f(10.000) c g(10.000)!!! Perché potrebbe essere invece f(n) c g(n) per ogni n
23 Esercizio 1
24 Esercizio 1bis Dimostrare che 3n 5-16n+ 2 = (n 5 ) per definizione, cioè mostrando dei possibili valori per le costanti c ed n 0.
25 Esercizio 2 NOTA: Esistono anche funzioni (particolari) non confrontabili tramite O
26 Esercizio 3
Algoritmi e Strutture Dati
Analisi Asintotica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Un graduale processo di astrazione Passo 1: abbiamo ignorato il costo effettivo
Algoritmi e Strutture Dati
Analisi asintotica e Ricorrenze Esercizi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Notazioni O, Ω e Θ Parte I Notazioni
Tempo e spazio di calcolo
Tempo e spazio di calcolo Modelli di calcolo e metodologie di analisi F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04) In quale modo stimiamo il tempo di calcolo? Possiamo considerare
poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando termine a termine: Quindi possiamo concludere che f(n)+g(n) = Θ(max{f(n),g(n)})
Sol Esercizio 1 Es. Notazione asintotica: 1. Si dimostri che f(n)+g(n) = Θ(max{f(n),g(n)}) sotto l ip. f(n),g(n) >0, a partire da un certo n 0. poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando
Esercizi Capitolo 2 - Analisi di Algoritmi
Esercizi Capitolo - Analisi di Algoritmi Alberto Montresor 19 Agosto, 014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare
Algoritmi di ricerca. Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati.
E. Calabrese: Fondamenti di Informatica Algoritmi-1 Algoritmi di ricerca Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati. Per esempio: - cercare
Esercizi di Algoritmi e Strutture Dati
Esercizi di Algoritmi e Strutture Dati Moreno Marzolla http://www.moreno.marzolla.name/ Ultima Modifica: 7 ottobre 202 Copyright Portions of this work are Copyright 202, Moreno Marzolla. This work is licensed
Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort
Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio
Macchina RAM. Modelli di calcolo e metodologie di analisi. Linguaggio di una macchina RAM. Algoritmi e Strutture Dati. Istruzioni.
Algoritmi e Strutture Dati Macchina RAM Nastro di ingresso Modelli di calcolo e metodologie di analisi Contatore istruzioni Programm a Accumulatore Unità centrale M[0] M[1] Nastro di uscita Basato su materiale
Esercizi per il corso di Algoritmi, anno accademico 2014/15
1 Esercizi per il corso di Algoritmi, anno accademico 2014/15 Esercizi sulle Notazioni Asintotiche 1. Esercizio: Provare le seguenti relazioni, esibendo opportune costanti c 1,c 2 ed n 0. Si assuma per
Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia
Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione informale di algoritmo Insieme di istruzioni, definite
Algoritmi (9 CFU) (A.A )
Algoritmi (9 CFU) (A.A. 2009-10) Equazioni di ricorrenza Prof. V. Cutello Algoritmi 1 Overview Definiamo cos è una ricorrenza Introduciamo 3 metodi per risolvere equazioni di ricorrenza Sostituzione e
Algoritmi e Strutture Dati. Capitolo 4 Ordinamento
Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare una lista di nomi alfabeticamente, o un
Tempo e spazio di calcolo (continua)
Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza
5) Equazioni di ricorrenza
Pag 37 5) Equazioni di ricorrenza Valutare la complessità di un algoritmo ricorsivo è, in genere, più laborioso che nel caso degli algoritmi iterativi. Infatti, la natura ricorsiva della soluzione algoritmica
Ricerca binaria. Operazione dominante: confronto
procedure ordinaperfusioni(var a: nelements; n: integer); var b: nelements; procedure mergesort(var a,b: nelements; primo,ultimo:integer); var q: integer; procedure merge(var a,b: nelements; primo, ultimo,
Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi
Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare
Corso di Analisi Matematica Successioni e loro limiti
Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione
Sviluppi e derivate delle funzioni elementari
Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim
Progettazione di Algoritmi
Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai
Primo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale
Primo allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini [email protected] - [email protected] 10 marzo 2016 Programma 1. Lettura di un problema tratto dalle
4.1 Modelli di calcolo analisi asintotica e ricorrenze
4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Soluzione esercizi di approfondimento Stefano Leucci [email protected] Una terza variante dell IS InsertionSort3 (A) 1. for k=1 to n-1 do 2. x = A[k+1] 3. j = ricerca_binaria(a[1,k],x)
La complessità del calcolo
1 La complessità del calcolo In questo corso: Cominciamo con un esame critico del problema e dell approccio cosa è il costo di una computazione come lo misuriamo Andiamo alla ricerca di principi di validità
L algoritmo AKS. L algoritmo AKS. Seminario per il corso di Elementi di Algebra Computazionale. Oscar Papini. 22 luglio 2013
L algoritmo AKS Seminario per il corso di Elementi di Algebra Computazionale Oscar Papini 22 luglio 2013 Test di primalità Come facciamo a sapere se un numero n è primo? Definizione (Test di primalità)
Complementi di Analisi Matematica Ia. Carlo Bardaro
Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo
Ordinamenti per confronto: albero di decisione
Ordinamenti per confronto: albero di decisione Albero di decisione = rappresentazione grafica di tutte le possibili sequenze di confronti eseguite da un algoritmo assegnato di ordinamento per confronto
Limiti di successioni
Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche
Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti
Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente,
A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.
A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)
Algoritmi e Strutture Dati
[email protected] Laurea di Informatica - Università di Ferrara 2011-2012 [1] Fabio Schifano INFN, Palazzina B stanza 208 [email protected] Obiettivi: imparare a definire procedure di calcolo efficienti
Appunti di Algoritmi e Strutture Dati. Alberto Carraro
Appunti di Algoritmi e Strutture Dati Alberto Carraro 2 Contents 1 Introduzione informale agli algoritmi 7 1.1 I numeri di Fibonacci...................................... 7 1.1.1 Algoritmo numerico...................................
Esercizi sulla complessità di frammenti di pseudo-codice
Esercizi sulla complessità di frammenti di pseudo-codice Esercizio 1 Si determini la complessità temporale del seguente frammento di pseudo-codice in funzione di n. Il ciclo contiene solo istruzioni elementari;
0.1 Numeri complessi C
0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni
Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi
Dispense del corso di Algebra 1 Soluzioni di alcuni esercizi Esercizio 1.1. 1) Vero; ) Falso; 3) V; 4) F; 5) F; 6) F (infatti: {x x Z,x < 1} {0}); 7) V. Esercizio 1.3. Se A B, allora ogni sottoinsieme
Sommario. Ordinamento. Selection Sort Bubble Sort/ Shaker Sort Shell Sort
Ordinamento Sommario Ordinamento Selection Sort Bubble Sort/ Shaker Sort Shell Sort Cosa e' l'ordinamento Il problema consiste nell elaborare insiemi di dati costituiti da record I record hanno sono costituiti
UNIVERSITA DEGLI STUDI DI PERUGIA
UNIVERSITA DEGLI STUDI DI PERUGIA REGISTRO DELLE LEZIONI E DELLE ALTRE ATTIVITÀ DIDATTICHE Anno accademico 2006-2007 Dott./Prof. Pinotti Maria Cristina Settore scientifico-disciplinare INF01 Facoltà Scienze
LIMITI. 1. Definizione di limite.
LIMITI 1. Definizione di limite. Sia A un sottoinsieme di IR; se il numero reale x 0 è di accumulazione per A in ogni intorno di x 0 si trovano elementi di A distinti da x 0. Allora ha senso chiedersi
Massimo e minimo limite di successioni
Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,
Potenze reali, esponenziali e logaritmi
Potenze reali, esponenziali e logaritmi Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Potenze reali, esponenziali e logaritmi 1 / 14 Potenza ad esponente intero positivo
Esercitazione sugli sviluppi in serie di Taylor
Esercitazione sugli sviluppi in serie di Taylor Davide Boscaini Queste sono le note da cui ho tratto le lezioni frontali del 1 e 13 Gennaio 011. Come tali sono ben lungi dall essere esenti da errori, invito
Funzioni Complesse di variabile complessa
Funzioni Complesse di variabile complessa Docente:Alessandra Cutrì Richiami sui numeri complessi Indichiamo con C il campo dei Numeri complessi z = x + iy C, ses x, y R i := 1 (Rappresentazione cartesiana
2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.
Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
1 Primitive e integrali indefiniti
Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione
Funzioni Monotone. una funzione f : A B. si dice
Funzioni Monotone una funzione f : A B si dice strettamente crescente: 1, 2 A, 1 < 2 f( 1 ) < f( 2 ). crescente: 1, 2 A, 1 < 2 f( 1 ) f( 2 ). strettamente decrescente: 1, 2 A, 1 < 2 f( 1 ) > f( 2 ). decrescente:
3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura
Problemi, istanze, soluzioni
lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un
CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia
CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni
1 Limiti e continuità per funzioni di una variabile
1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è R\ {0}. Problema: non è possibile calcolare il valore di f per
Corso di Geometria III - A.A. 2016/17 Esercizi
Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare
Algoritmi (9 CFU) (A.A ) Heap e Algoritmo HeapSort. Prof. V. Cutello Algoritmi 1
Algoritmi (9 CFU) (A.A. 2009-10) Heap e Algoritmo HeapSort. Prof. V. Cutello Algoritmi 1 Overview Definiamo la struttura dati heap Operazioni di costruzione e gestione di un heap Algoritmo Heapsort Code
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione)
RICERCA OPERATIVA Tema d esame del 04/03/2008 (Simulazione) COGNOME: NOME: MATRICOLA:. Una nota azienda automobilistica produce due modelli di auto (un utilitaria e una berlina), che rivende con un guadagno
MATEMATICA DI BASE 1
MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme
Esercizi sui sistemi di equazioni lineari.
Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la
Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93
Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim
A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame
COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni
Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)
Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo
ANALISI 1 - Teoremi e dimostrazioni vari
ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite
Codice Gray. (versione Marzo 2007)
Codice Gray (versione Marzo 27) Data una formula booleana con n variabili, per costruire una tavola di verità per questa formula è necessario generare tutte le combinazioni di valori per le n variabili.
una possibile funzione unidirezionale
una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile (vedremo poi) fattorizzare
CORSO DI LAUREA IN FISICA
CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi
Laboratorio di Algoritmi e Strutture Dati. Aniello Murano. people.na.infn.it/~murano/ Murano Aniello - Lab. di ASD Terza Lezione
Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ Heap e Heapsort Algoritmi di ordinamento Insertion Sort Quicksort Heapsort Insertion Sort L
Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015
1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)
Geometria BIAR Esercizi 2
Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si
Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE
RIPASSO SULLE POTENZE Proprietà delle potenze La formula a n indica l operazione chiamata potenza, ( a è la base ed n l esponente) che consiste nel moltiplicare la base a per se stessa n volte. Per le
Corso di Analisi Numerica
Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione
Minimo albero di copertura
apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.
Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0
Corso di Potenziamento a.a. 009/00 I Logaritmi Fissiamo un numero a > 0, a. Dato un numero positivo t, l equazione a x = t ammette un unica soluzione x che si chiama logaritmo in base a di t e si scrive
Algoritmi e Strutture Dati (Elementi)
Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti
CORSO DI LAUREA IN MATEMATICA
CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia
Cosa dobbiamo già conoscere?
Cosa dobbiamo già conoscere? Come opera la matematica: dagli ai teoremi. Che cosa è una funzione, il suo dominio e il suo codominio. Che cosa significa n j=1 A j dove A j sono insiemi. Che cosa significa
