Problemi di Fisica I Vettori
|
|
|
- Leonzia Ventura
- 9 anni fa
- Visualizzazioni
Transcript
1 Problemi di isica I Vettori PROBLEMA N. Determinare la risultante, sia dal punto di vista grafico che analitico, delle seguenti forze: (; 6) (-; ) 3 (-6; -3) (0; -) Metodo grafico Rappresentiamo graficamente queste forze e con l aiuto dell algebra vettoriale (regola del parallelogramma) determiniamo la forza risultante:
2 Metodo analitico Tenendo presente il verso delle componenti delle quattro forze, le componenti della forza totale sono date da: N N (-8; ) XT X 8 YT Y per cui il modulo della forza totale è dato da: mentre l argomento è: ( 8) + ( ) 65 8.N T XT + YT yt tg 0,5 7, 7, 9 8 xt
3 PROBLEMA N. Determinare la risultante, sia dal punto di vista grafico che analitico, delle seguenti forze: 30 N 70 N N N 50 Metodo grafico Rappresentiamo graficamente queste forze, riportandole in scala sul sistema di assi cartesiani, e con l aiuto dell algebra vettoriale (regola del parallelogramma) determiniamo la forza risultante:
4 Metodo analitico Le componenti delle singole forze sono: X Y cos sen 30 cos 30 6N 30 sen30 5N X Y cos sen 0 cos 35 99N 0 sen35 99N 3X 3Y 0 3 cos 3 70 cos 80 70N X Y cos sen 80 cos 50 7N 80 sen50 75N Le componenti della forza totale sono date da: XT X N N (-70; 39) YT Y 39 Pertanto l intensità della forza risultante è data da: ( 70) + ( 39) N T XT + YT 7 mentre l argomento è: YT 39 tg 0, XT
5 PROBLEMA N. 3 Un automobile si sposta di 0 km verso est spostamento risultante. e di 30 km verso nord. Determinare lo Rappresentiamo graficamente il problema: dove il vettore risultante è stato trovato applicando la regola della poligonale, detta anche punta coda. Il modulo e l argomento dello spostamento risultante sono dati da: S km 30 tg 0, 75 36, 9 0
6 PROBLEMA N. Considera i due vettori spostamento AB e BC della seguente figura. Calcolare il vettore somma AC, sapendo che il modulo di AB e quello di BC sono 00 m. Graficamente il vettore somma è dato dalla regola della poligonale. Dal punto di vista analitico si procede nel seguente modo: Calcoliamo le componenti di S e S : 0 00m S x S x S cos S y 00 cos(90 60 ) S 86,6m y S sen 00 sen(90 60 ) 50m Il vettore somma avrà come componenti: S S + S ,6 86,6m S S + S m S T (86,6; 50) Tx x x Ty y y Pertanto, l intensità e l argomento sono dati da: ST STx + STy 86, m STY 50 tg, S 86, 6 TX
7 PROBLEMA N. 5 Un ragazzo attraversa a nuoto un fiume con una velocità V 5 km/h. Se la velocità della corrente è V C 3 km/h, quale sarà la velocità effettiva del ragazzo e la sua direzione di nuoto? Rappresentiamo il problema dal punto di vista vettoriale: Il ragazzo si muoverà con una velocità effettiva V che è la risultante tra le velocità V e V C, il cui modulo e argomento è dato da: V tg V V V C + V C , ,83km / h PROBLEMA N. 6 Il vettore a è rivolto verso Nord ed ha intensità a,0. Il vettore b è rivolto verso Nord Est, formando un angolo di 30 con il primo, ed ha intensità b 6,5. Determinare il loro prodotto scalare e vettoriale: Prodotto scalare r r c a b a b cos, 0 6, 5 cos 30, 5 c scalare Prodotto vettoriale r r r c a b c a b sen, 0 6, 5 sen30 3 c è un vettore di modulo 3, diretto perpendicolarmente al piano contenente i vettori a e b e orientato verso il basso (regola del cavatappi o regola della mano destra).
8 PROBLEMA N. 7 Siano dati il vettore a (; -) ed il vettore b (3; ). Calcolare il prodotto scalare e vettoriale. Rappresentiamo i due vettori su un sistema di assi cartesiani: Calcoliamo modulo ed argomento di ogni singolo vettore: a + ( ), 5 tg 0, 5 6, 6 b 3 + 3, tg 0,3 3 8, Pertanto l angolo tra i due vettori sarà: In definitiva: + 5 r r c a b a b cos, 5 3, cos 5 0, r r r c a b c a b sen, 5 3, sen5 0, Prodotto scalare c scalare Prodotto vettoriale c è un vettore di modulo 0, e diretto perpendicolarmente al piano contenente i vettori a e b e con verso uscente dal piano, cioè verso l osservatore (regola del cavatappi o regola della mano destra).
9 PROBLEMA N. 8 Un protone (p,6 0-9 C; m, kg) entra in un campo magnetico uniforme B0,30 T, con una velocità V,0 0 m/s perpendicolare al campo magnetico. Calcolare la forza magnetica sul protone. Gli esperimenti dimostrano che una carica elettrica immersa in un campo magnetico subisce una forza magnetica data da: r r r q V B Poiché è una grandezza vettoriale, avrà un intensità pari a: 9 6 q V B sen,6 0,0 0 0,30,8 0 N dove: 90 sen90 Un verso e una direzione dati dalla regola della mano destra: ponendo il pollice della mano destra nel verso della velocità e le altre dita nel verso del campo magnetico, la forza magnetica avrà direzione perpendicolare al palmo della mano e verso uscente.
10 PROBLEMA N. 9 Dati i vettori a (; 6) e b (-3; ), calcolare il loro prodotto scalare e vettoriale. Poiché sono note le coordinate cartesiane dei vettori, calcoliamo il prodotto scalare e vettoriale nel seguente modo: r r c a b a x b x + a y b y ( 3) punto di applicazione: lo stesso dei vettori a e b direzione: perpendicolare al piano che contiene i vettori a e b verso: entrante intensità: c a x b y a y b x 6 (-3) 6 Esprimendo i vettori a e b attraverso le coordinate polari (modulo ed argomento): 6 a + 6 7, tg,5 56, 3 b ( 3) + 3,6 tg 0,67 33, 7 3 il prodotto scalare e vettoriale si calcolano come: r v c a b ab cos 7, 3,6 cos 90 0 punto di applicazione: lo stesso dei vettori a e b direzione: perpendicolare al piano che contiene i vettori a e b verso: entrante intensità: c ab sen 7, 3,6 sen90 6 dove: 80 (56,3 + 33,7 ) 90
Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico
LROSAICA Problemi di isica lettrostatica La Legge di Coulomb e il Campo elettrico LROSAICA ata la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta
Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura.
UNITÀ 3 LE GRANDEZZE FISICHE VETTORIALI E I VETTORI 1. Grandezze fisiche scalari e vettoriali. 2. I vettori. 3. Le operazioni con i vettori. 4. Addizione e sottrazione di vettori. 5. Prodotto di un numero
Angoli e loro misure
Angoli e loro misure R s Unità di misura: gradi, minuti, secondi 1 o =60' 1'=60'' Es: 35 o 41'1'' radianti α(rad) s R Angolo giro = 360 o = R/R = rad R=1 arco rad Es.: angolo retto R Arco 4 : se R=1 π
Grandezze scalari e vettoriali
VETTORI Grandezze scalari e vettoriali Tra le grandezze misurabili alcune sono completamente definite da un numero e da un unità di misura, altre invece sono completamente definite solo quando, oltre ad
Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb
Problemi di isica Elettromagnetismo La arica Elettrica e la Legge di oulomb Data la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta nell origine
LA CARICA ELETTRICA E LA LEGGE DI COULOMB Problemi di Fisica ELETTROMAGNETISMO La carica elettrica e la legge di Coulomb
Problemi di isica ELEROMAGEISMO La carica elettrica e la legge di oulomb Data la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta nell origine
modulo assegnato, se il modulo del vettore somma assume il valore minimo, qual è l angolo formato dai due vettori?
1-verifica vettori nel piano classe 1F data nome e cognome A Illustra il metodo del parallelogramma, infine risolvi il quesito che segue. Dati due vettori di modulo assegnato, se il modulo del vettore
modulo assegnato, se il modulo del vettore somma assume il valore minimo, qual è l angolo formato dai due vettori?
1-verifica vettori nel piano classe 1F data nome e cognome A Illustra il metodo del parallelogramma, infine risolvi il quesito che segue. Dati due vettori di modulo assegnato, se il modulo del vettore
, c di modulo uguale sono disposti in modo da formare un triangolo equilatero come mostrato in fig. 15. Si chiarisca quanto vale l angolo formato da
22 Tonzig Fondamenti di Meccanica classica ta) Un esempio di terna destra è la terna cartesiana x, y, z [34] Per il prodotto vettoriale vale la proprietà distributiva: a ( b c) = a b a c, ma non vale la
Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI
Algebra dei vettori Il vettore è un oggetto matematico che è caratterizzato da modulo, direzione e verso. Si indica graficamente con una freccia. Un vettore è individuato da una lettera minuscola con sopra
Richiamo trigonometria
ESERCIZI Richiamo trigonometria 2 sin Sin, Cos, Tan a y R P α s R R a y P P (x P,y P ) s x P cos a x R P tan a y x P P Richiamo trigonometria 3 c a 2 b 2 a c cosa b b c a sina tana b a sina cosa tana cos
I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag.
I VETTORI Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori pag.1 Grandezze scalari e vettoriali Per una descrizione completa del fenomeno
figura. A figura. B Il modulo è la lunghezza o intensità del vettore. Il punto di applicazione è l origine del vettore detto anche coda.
Martinelli Sara 1A Lab. Di fisica del Liceo Scopo: verificare la regola del parallelogramma. Materiale utilizzato: Telaio 5 morse Asta orizzontale Base metallica 2 piantane verticali Pesi Goniometro stampato
Anno Accademico Fisica I 12 CFU Esercitazione n.1 Operazioni con i vettori
Anno Accademico 2017-2018 Fisica I 12 CFU Esercitazione n.1 Operazioni con i vettori Esercizio n.1 (28-11-2007, 8 CFU con soluz.) In un sistema di riferimento Oxyz, assegnati i punti A e B di coordinate
Coppia di forze LEZIONE N 10. Corso di fisica I Prof. Giuseppe Ciancio
Coppia di forze LEZIONE N 10 1 Definizione delle coppia di forze: È un sistema di due forze () uguali e opposte agenti su rette d azione parallele distinte. La distanza minima tra le rette d azione delle
Operazioni coi vettori
Operazioni coi ettori Opposto di un ettore I ersori Somma e differenza tra ettori Componenti di un ettore Prodotto scalare Prodotto ettoriale Rappresentazione matriciale di un ettore I ettori Per definire
Il modulo del vettore è: = = = ,6.
LE GRANDEZZE VETTORIALI ESERCIZI Esercizio 1 Le componenti cartesiane di un vettore sono 18 ; 12. Determina il modulo del vettore e l angolo che esso forma con l asse. 18 ; 12?? Il modulo del vettore è:
CALCOLO VETTORIALE ELEMENTI DI ANALISI MATEMATICA
ELEMENTI DI ANALISI MATEMATICA CALCOLO VETTORIALE - DEFINIZIONE DI VETTORE - COMPONENTI DI UN VETTORE - SOMMA E DIFFERENZA - PRODOTTO SCALARE - PRODOTTO VETTORIALE - VETTORE GRADIENTE - FLUSSO DI UN VETTORE
a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni
Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)
Introduzione FISICA 1. Dott.ssa Elisabetta Bissaldi
Introduzione FISICA 1 Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Introduzione alla Fisica FISICA: Scienza basata sull esperienza Descrive il mondo reale mediante
5. LE GRANDEZZE VETTORIALI
5. LE GRANDEZZE VETTORIALI 5.1 Definizione di grandezze scalari e vettoriali Le grandezze fisiche possono essere classificate in grandezze scalari e grandezze vettoriali. La massa, il volume, la densità,
Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ
Visione d insieme DMANDE E RISPSTE SULL UNITÀ Come si sommano gli spostamenti? Lo spostamento è una grandezza vettoriale: due o più spostamenti consecutivi si sommano algebricamente se sono sulla stessa
Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ
Visione d insieme DMANDE E RISPSTE SULL UNITÀ Come si sommano gli spostamenti? Lo spostamento è una grandezza vettoriale: due o più spostamenti consecutivi si sommano algebricamente se sono sulla stessa
Lez. 3 Vettori e scalari
Lez. 3 Vettori e scalari Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli [email protected] +39-081-676137 2 Un
Nel Sistema Internazionale l unità di misura dell angolo è il radiante
Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale
MANCA : VETTORI, FORZE E MOMENTO DI UNA FORZA
MANCA : prodotto vettoriale prodotto scalare VETTOI, OZE E MOMENTO DI UNA OZA Immaginiamo un corpo in movimento, ad esempio un ciclista, un motociclista, un automobile o un aeroplano. Corpo in movimento
1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,
ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di
CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis
CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis 1) 2) 3) 4) Due correnti rispettivamente di intensità pari a 5 A e 4 A percorrono due fili conduttori
1 Sistemi di riferimento
Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate
e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b
8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B
Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.
Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),
CLASSE 5^ C LICEO SCIENTIFICO 14 Settembre 2018 Elettrostatica
CLASSE 5 C LICEO SCIENTIFICO 4 Settembre 0 Elettrostatica. Siano date due cariche poste sul semiasse positivo delle x: la carica,60 0 nell origine e la carica,0 0 a una distanza 0,000 dalla prima. A. Calcola
Lezione 1
Lezione 1 Ordini di grandezza Dimensioni fisiche Grandezze scalari e vettoriali Algebra dei vettori Coordinate Cartesiane e rappresentazioni grafiche Verifica Cenno sulle dimensioni delle grandezze fisiche
MOVIMENTO - MOTO RETTILINEO UNIFORME DOMANDE ESERCIZI 1. Cosa significa dire che un oggetto è in movimento?
1. Cosa significa dire che un oggetto è in movimento? 2. Quali grandezze fisiche si utilizzano per descrivere come un oggetto si muove? 3. Cosa significa dire che il movimento è un concetto relativo? 4.
Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P
Grandezze scalari e vettoriali
Grandezze scalari e vettoriali Per caratterizzare completamente una grandezza fisica, a volte è sufficiente dare soltanto un numero (scalare), mentre altre volte questo non è sufficiente. Massa, lunghezza,
IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.
IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE
VETTORI GEOMETRICI / RICHIAMI
M.GUIDA, S.ROLANDO, 2016 1 VETTORI GEOMETRICI / RICHIAMI Chiamiamo vettore un qualsiasi segmento orientato del piano o dello spazio. Orientare un segmento significa scegliere un verso per percorrerlo,
VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.
VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:
Esercizi di Elementi di Matematica Corso di laurea in Farmacia
Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando
FORZE MAGNETICHE SU CORRENTI ELETTRICHE
Fisica generale, a.a. 013/014 SRCTAZON D: FORZ MAGNTCH SU FORZ MAGNTCH SU CORRNT LTTRCH D.1. Una spira rettangolare di dimensioni a 10 cm e b 5 cm, percorsa da una corrente s 5 A, è collocata in prossimità
Equazioni del moto in 1 dimensione:
Equazioni del moto in 1 dimensione: O Velocità media come rapporto incrementale tra spazio percorso e tempo In generale la velocità varia istante per istante 1 Velocità istantanea: limite del rapporto
2. SIGNIFICATO FISICO DELLA DERIVATA
. SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo
1 Vettori. Formulario. Operazioni tra vettori. Versori. (20 problemi, difficoltà 46, soglia 32) Differenza d = a b d = a 2 + b 2 2abcos (1.
1 Vettori (0 problemi, difficoltà 46, soglia 3) Formulario Operazioni tra vettori Somma s = a + b s = a + b +abcos (1.1) Differenza d = a b d = a + b abcos (1.) Prodotto scalare a b = a b +a +a z b z =abcos
CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO
CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,
Il segno del momento è positivo perché il corpo ruota in senso antiorario.
MOMENTO DI UNA FORZA E DI UNA COPPIA DI FORZE Esercizi Esempio 1 Calcola il momento della forza con cui si apre una porta, ruotando in verso antiorario, nell'ipotesi che l'intensità della forza applicata
Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali
Capitolo 5 5.1 Grandezze scalari Si definiscono scalari quelle grandezze fisiche che sono descritte in modo completo da un numero accompagnato dalla sua unità di misura. La temperatura dell aria in una
GRANDEZZE SCALARI E VETTORIALI
GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 010-011 Prova di Matematica : Piano cartesiano e retta Alunno: Classe: C 10.03.011 prof. Mimmo Corrado Dato il triangolo di vertici: 6; 3, ; 1, 4;
GRANDEZZE SCALARI E VETTORIALI
GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni. (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo
GRANDEZZE SCALARI E VETTORIALI
GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni. (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo
Esercitazioni di Fisica Corso di Laurea in Biotecnologie e Geologia
Esercitazioni di Corso di Laurea in Biotecnologie e Geologia Ninfa Radicella Università del Sannio 6 Aprile 2016 Moto in due dimensioni Cinematica delle particelle in moto su un piano Cosa ci serve: Vettore
CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO
LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA
Cinematica nello Spazio
Cinematica nello Spazio Abbiamo introdotto, nelle precedenti lezioni, le grandezze fisiche: 1) Spostamento; 2) Velocità; 3) Accelerazione; 4) Tempo. Abbiamo ricavato le equazioni per i moti: a) uniforme;
Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU)
Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU) Docente: Daniele Chiriu Ricevimento: Mar e Mer 11:00-13:00 email: [email protected] Stanza 2B21 Dipartimento di Fisica
FORZE E PRINCIPI DELLA DINAMICA (1/29)
FORZE E PRINCIPI DELLA DINAMICA (1/29) una forza applicata ad un corpo, libero di muoversi, lo mette in movimento o lo arresta (effetto dinamico della forza); una forza, applicata ad un corpo vincolato,
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 15 giugno 2012
CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 5 giugno 202 ) Un corpo di massa m = 400 g comprime di un tratto x una molla di costante elastica k = 2000 N/m. Il corpo m e la molla sono
Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota:
Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Punteggio: Problemi Vero/Falso: +1 risposta corretta, 0 risposta sbagliata
1 Nozioni utili sul piano cartesiano
Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x
Prodotto scalare e prodotto vettoriale. Elisabetta Colombo
Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a
Lez. 20 Magnetismo. Prof. Giovanni Mettivier
Lez. 20 Magnetismo Prof. Giovanni Mettivier 1 Dott. Giovanni Mettivier, PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli [email protected]
Esercizi con campi magnetici statici
Esercizi con campi magnetici statici Il problema più generale è il calcolo del campo magnetico generato da uno o più fili percorsi da corrente. In linea di principio, questo tipo di problema dovrebbe essere
Le forze. 2. Sono forze a distanza la forza elettrostatica, la forza magnetica e la forza peso.
1 La forza è una grandezza fisica che può causare la deformazione di un corpo vincolato o modificare la velocità di un corpo libero di muoversi. La forza è una grandezza vettoriale in quanto per poterla
MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A
MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera
Liceo Scientifico Marconi Delpino. Classi 1^ Materia: Fisica
Liceo Scientifico Marconi Delpino Classi 1^ Materia: Fisica Compiti per le vacanze estive Gli alunni promossi devono svolgere soltanto gli esercizi del libro di testo, gli alunni con sospensione del giudizio
Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2
Elettronica II Grandezze elettriche microscopiche (parte 1) Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/
ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Tema di Matematica e Fisica
ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Tema di Matematica e Fisica Sessione ordinaria 2019 - Seconda prova scritta Quesiti Quesito 1 Una data funzione è esprimibile nella forma, dove e è un
Problemi di dinamica
Problemi di dinamica Cosa vogliamo scoprire? Come si muove un corpo Cosa sappiamo? Quali forze agiscono sul corpo Com'è fatto l'ambiente in cui si muove il corpo Che velocità e che posizione occupava il
