Grandezze scalari e vettoriali
|
|
|
- Ricardo Lupi
- 8 anni fa
- Visualizzazioni
Transcript
1 Grandezze scalari e vettoriali Per caratterizzare completamente una grandezza fisica, a volte è sufficiente dare soltanto un numero (scalare), mentre altre volte questo non è sufficiente. Massa, lunghezza, temperatura: grandezze scalari. Spostamento, velocità: grandezze vettoriali. 1. Quanto veloce? Modulo (lunghezza del segmento). 2. In quale direzione? Direzione (retta su cui giace). 3. Con quale verso? Verso (orientamento) Una grandezza vettoriale è quindi caratterizzata SEMPRE da un valore numerico (modulo), da una direzione e da un verso. K Verso Notazione: K, K, K direzione modulo Modulo K Vettori - Capitolo 3 HRW 1
2 Grandezze vettoriali e loro rappresentazione Così come le informazioni fornite da una grandezza scalare possono venire rappresentate mediante un punto su una retta, le informazioni fornite da una grandezza vettoriale possono venire rappresentate mediante un punto nello spazio. z y x Cerchiamo quindi di capire come si rappresenta una grandezza vettoriale (in 2-D e in 3-D) Strumento matematico utilizzato: i vettori Cosa sono? Insiemi di segmenti orientati..., di cui si rappresenta quello con un estremo nell origine Vettori - Capitolo 3 HRW 2
3 Rappresentazione in un sistema di coordinate Va data specificando l origine. In due dimensioni: Y X θ Si possono dare le due componenti cartesiane K = (k x,k y ) o polari K = ( K, θ) k x = K Cos (θ) K = (k x 2 +k y 2 ) 1/2 k y = K Sen (θ) θ = artg (k y /k x ) 3D: coordinate cartesiane e polari sferiche Vettori - Capitolo 3 HRW 3
4 Caso tridimensionale Coordinate cartesiane z y x Coordinate polari sferiche x = y = z = r sin r sin r cos ( θ ) cos( ϕ ) ( θ ) sin( ϕ ) ( θ ) Coordinate polari cilindriche x = r cos y = r sin z = z ( θ ) ( θ ) Vettori - Capitolo 3 HRW 4
5 Deve essere possibile definire delle operazioni di somma (algebrica) e prodotto per i vettori. Esiste una branca della matematica che se ne occupa (algebra vettoriale). Per la fisica che trattiamo in questo corso serve solo un sottoinsieme di tutte le operazioni che si possono definire. Ho un tipo di somma algebrica: vettore + vettore Risultato: vettore Posso avere invece quattro diversi tipi di prodotto: 1) Prodotto di un vettore per un numero: scalare vettore Risultato: vettore 2) Prodotto Scalare: vettore vettore Risultato: scalare 3) Prodotto Vettoriale: vettore vettore Risultato: vettore 4) Prodotto Tensoriale: vettore vettore Risultato: tensore Vettori - Capitolo 3 HRW 5
6 Somma algebrica di vettori Metodo Grafico + = = Metodo Algebrico La somma di due vettori è quel terzo vettore che ha per componente x (y, z) la somma delle componenti x (y, z) dei due vettori addendi. A(3,2) + B(2,-3) = C C = A+B = (3+2, 2-3) = (5,-1). Nota: La somma di due vettori A(a 1,a 2 ) e B(b 1,b 2 ) ha modulo pari a: A+B = C = ( A 2 + B 2-2 A B cos(θ a -θ b )) 1/2 Vettori - Capitolo 3 HRW 6
7 Prodotto di un vettore per un numero ha come risultato un vettore. Si ottiene moltiplicando le componenti cartesiane del vettore per il numero. Se si hanno le coordinate polari: si moltiplica il modulo per il numero (NON l angolo). V(a,b) oppure V( v,q) 4 V = V (4a, 4b) = V (4 v,q) Le operazioni di somma vettoriale e di prodotto di un vettore per un numero ci permettono di introdurre una nuova rappresentazione dei vettori Vettori - Capitolo 3 HRW 7
8 Rappresentazione mediante i versori Definisco 2 vettori (nello spazio a 2 dimensioni) con: Modulo = 1 Direzione = rispettivamente l asse x e l asse y Verso = quello delle coordinate positive Questi vettori si dicono versori e si indicano con j 1 i Un generico vettore si scrive k = 3 i + 2 j k y = 3 k = ( 3, 2 ) k x = 2 Ovviamente esistono versori anche nella rappresentazione polare k Vettori - Capitolo 3 HRW 8
9 Prodotto Scalare ha come risultato uno scalare. E il prodotto tra i moduli dei due vettori e il coseno dell angolo compreso, OVVERO il prodotto della proiezione del primo vettore sulla direzione del secondo per il modulo del secondo. A(a 1,a 2 ), B(b 1,b 2 ) A( a,θ a ), B( b,θ b ) C = A Β = (a 1 b 1 + a 2 b 2 ) C = A B = a b cos (θ a -θ b ) Ovviamente: Il Prodotto scalare tra due vettori ortogonali è nullo! Il Prodotto scalare tra due vettori paralleli è il prodotto dei loro moduli A B = B A dato che cos (θ a - θ b ) = cos (θ b - θ a ) Vettori - Capitolo 3 HRW 9
10 Prodotto Vettoriale ha come risultato un vettore A(a 1,a 2 ), B(b 1,b 2 ) oppure A( a,θ a ), B( b,θ b ) C = A x B = A Λ B Modulo α C = a b sen (θ a - θ b ) Direzione α Ortogonale al piano individuato da A e B Verso α Regola della mano destra C C B B A A Con le dita della mano destra (indice e medio) far girare il vettore A verso il vettore B, ed il pollice indicherà la direzione del vettore C. Ovviamente: Il prodotto vettoriale tra due vettori paralleli è nullo A x B = - B x A (non commutativo!) Vettori - Capitolo 3 HRW 10
11 Prodotto Vettoriale in 3 dimensioni Z A(x a,y a,z a ) B(x b,y b,z b ) C B A X Y C = x y z c c c = = = A ( yazb za yb ) ( zaxb zbxa ) ( x y y x ) a B b a b i j k x a y a z a x b y b z b Esempio i j k A(1,1,1) B(2,2,0) C = A Λ B Cx = Cy = +2 Cz = Vettori - Capitolo 3 HRW 11
12 Obiettivi generali degli esercizi svolti in aula: Saper passare da un vettore (modulo e direzione) alle componenti e dalle componenti al vettore. Saper compiere le operazioni fondamentali con i vettori (somma, prodotto per un numero, prodotto scalare e prodotto vettore). Vettori - Capitolo 3 HRW 12
VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.
VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:
DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:
DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione
Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)
Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione
ELEMENTI DI CALCOLO VETTORIALE
ELEMENTI DI CALCOLO VETTORIALE Vettori liberi e vettori applicati o Vettore libero: - individuato da una direzione orientata ed una lunghezza - non ha un'ubicazione fissa nello spazio: - puo' essere traslato
e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b
8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B
CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO
CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,
a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni
Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)
Argomenti Capitolo 1 Richiami
Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax
I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 [email protected] www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia
Lezione 1
Lezione 1 Ordini di grandezza Dimensioni fisiche Grandezze scalari e vettoriali Algebra dei vettori Coordinate Cartesiane e rappresentazioni grafiche Verifica Cenno sulle dimensioni delle grandezze fisiche
Grandezze scalari e vettoriali
VETTORI Grandezze scalari e vettoriali Tra le grandezze misurabili alcune sono completamente definite da un numero e da un unità di misura, altre invece sono completamente definite solo quando, oltre ad
1 Sistemi di riferimento
Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate
RELAZIONI e CORRISPONDENZE
RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)
che sommato ai vettori v
CALCOLO VETTORIALE EX 1 Due vettori a e b soddisfano le seguenti condiioni: i) a b 1, ii) ( a + b ) a 1, iii) ( a + b ) b 8. Calcolare i moduli dei vettori e l angolo compreso. EX Un vettore a di modulo
Nel Sistema Internazionale l unità di misura dell angolo è il radiante
Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale
1- Geometria dello spazio. Vettori
1- Geometria dello spazio. Vettori I. Generalità (essenziali) sui vettori. In matematica e fisica, un vettore è un segmento orientato nello spazio euclideo tridimensionale. Gli elementi che caratterizzano
Vettori e geometria analitica in R 3 1 / 25
Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte
Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.
Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),
Capitolo 1 Vettori applicati e geometria dello spazio
Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore
misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x
4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto
Esercitazione di Analisi Matematica II
Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare
Geometria Analitica nello Spazio
Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,
VETTORI GEOMETRICI / RICHIAMI
M.GUIDA, S.ROLANDO, 2016 1 VETTORI GEOMETRICI / RICHIAMI Chiamiamo vettore un qualsiasi segmento orientato del piano o dello spazio. Orientare un segmento significa scegliere un verso per percorrerlo,
Corso di Fisica I per Matematica
Corso di Fisica I per Matematica DOCENTE: Marina COBAL: [email protected] Tel. 339-2326287 TESTO di RIFERIMENTO: Mazzoldi, Nigro, Voci: Elementi d fisica,meccanica e Termodinamica Ed. EdiSES FONDAMENTI
I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag.
I VETTORI Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori pag.1 Grandezze scalari e vettoriali Per una descrizione completa del fenomeno
Appunti sul corso di Complementi di Matematica (modulo Analisi)
Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto
1 Applicazioni lineari
1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di
Prodotto scalare e prodotto vettoriale. Elisabetta Colombo
Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a
Prodotto interno (prodotto scalare definito positivo)
Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi
Grandezze Fisiche, Sistema Internazionale e Calcolo Vettoriale
Grandezze Fisiche, Sistema Internazionale e Calcolo Vettoriale Soluzioni ai Quiz 1 Il Sistema Internazionale di Unità di Misura Le grandezze fisiche di base sono sei, ognuna delle quali ha una unità di
La matematica del CAD. Vettori e Matrici
La matematica del CAD Vettori e Matrici IUAV Disegno Digitale Camillo Trevisan I programmi CAD riducono tutti i problemi geometrici in problemi analitici: la proiezione di un punto su un piano viene, ad
Geometria analitica del piano pag 12 Adolfo Scimone
Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due
Corso di Fisica. Lezione 2 Scalari e vettori Parte 1
Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare
1 Distanza di un punto da una retta (nel piano)
Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di
ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,
ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,
Spazi vettoriali euclidei.
Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti
CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO
LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA
Geometria analitica del piano pag 32 Adolfo Scimone
Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema
Esercizi sul Calcolo Vettoriale 10/10/2014
Esercizi sul Calcolo Vettoriale 10/10/2014 Problema 1. Fissata una terna cartesiana eortogonale e dati due vettori a=11 î 7 ĵ +9 k, b=14 î+5 ĵ k determinare modulo, direzione e verso sia della somma a+
( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come
Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata
Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale
Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento
Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1
Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria [email protected] Prodotto scalare in R n. Piani nello spazio. 19 Dicembre 2016 Indice 1 Prodotto scalare nello spazio 2
Angoli e loro misure
Angoli e loro misure R s Unità di misura: gradi, minuti, secondi 1 o =60' 1'=60'' Es: 35 o 41'1'' radianti α(rad) s R Angolo giro = 360 o = R/R = rad R=1 arco rad Es.: angolo retto R Arco 4 : se R=1 π
Note di geometria analitica nel piano
Note di geometria analitica nel piano e-mail: [email protected] Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................
Coordinate e Sistemi di Riferimento
Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo
Meccanica. 1. Vettori. Domenico Galli. Dipartimento di Fisica e Astronomia
Meccanica 1. Vettori http://campus.cib.unibo.it/2421/ Domenico Galli Dipartimento di Fisica e Astronomia 3 febbraio 2017 Traccia 1. Grandezze Fisiche 2. Vettori 3. Calcolo Vettoriale 4. Somma e Differenza
figura. A figura. B Il modulo è la lunghezza o intensità del vettore. Il punto di applicazione è l origine del vettore detto anche coda.
Martinelli Sara 1A Lab. Di fisica del Liceo Scopo: verificare la regola del parallelogramma. Materiale utilizzato: Telaio 5 morse Asta orizzontale Base metallica 2 piantane verticali Pesi Goniometro stampato
= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ
Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti
Lezione I Vettori geometrici e spazi vettoriali
.. Lezione I Vettori geometrici e spazi vettoriali A. Bertapelle 2 ottobre 2012 Vettori geometrici Definizione naïf di vettore Un vettore geometrico è un ente dotato di direzione, lunghezza e verso. Si
- Fondamenti di calcolo vettoriale - VETTORI
VETTORI Definizione: Il vettore è un segmento orientato ovvero un segmento su cui è fissato un verso di percorrenza. Graficamente il verso del vettore è rappresentato da una freccia. A A A Segmento orientato
Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte
Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2
Grandezze scalari e vettoriali
Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze
ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008
LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento
SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE
SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio
GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);
VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Nel Piano
Istituzioni di Matematiche Modulo B (SG)
Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.
Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura.
UNITÀ 3 LE GRANDEZZE FISICHE VETTORIALI E I VETTORI 1. Grandezze fisiche scalari e vettoriali. 2. I vettori. 3. Le operazioni con i vettori. 4. Addizione e sottrazione di vettori. 5. Prodotto di un numero
COMPOSIZIONE DELLE FORZE
Andrea Ferrari e Stefano Mazzotta 1 G Sabato 5-02-2011, Laboratorio di fisica del liceo scientifico Leonardo da Vinci. Viale dei tigli. Gallarate. COMPOSIZIONE DELLE FORZE Materiale utilizzato: Telaio,
, c di modulo uguale sono disposti in modo da formare un triangolo equilatero come mostrato in fig. 15. Si chiarisca quanto vale l angolo formato da
22 Tonzig Fondamenti di Meccanica classica ta) Un esempio di terna destra è la terna cartesiana x, y, z [34] Per il prodotto vettoriale vale la proprietà distributiva: a ( b c) = a b a c, ma non vale la
Funzioni vettoriali di variabile scalare
Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.
Prof. Luigi De Biasi VETTORI
VETTORI 1 Grandezze Scalari e vettoriali.1 Le grandezze fisiche (ciò che misurabile e per cui è definita una unità di misura) si dividono due categorie, grandezze scalari e grandezza vettoriali. Si definisce
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA
Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere
ESERCIZI SUI VETTORI CON SOLUZIONE di Mauro Morganti e Juri Riccardi
ESERCIZI SUI VETTORI CON SOLUZIONE di Mauro Morganti e Juri Riccardi Esercizio 1 Rispetto ad una terna cartesiana ortogonale di origine O e versori i ˆ, ĵ, ˆk due vettori spostamento a e b hanno componenti
(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.
5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola
Sistemi di coordinate
Sistemi di coordinate Servono a descrivere la posizione di una punto nello spazio. Un sistema di coordinate consiste in Un punto fisso di riferimento chiamato origine Degli assi specifici con scale ed
I VETTORI DELLO SPAZIO
I VETTORI DELLO SPAZIO Riferimento cartesiano ortogonale nello spaio Bisogna assegnare nello spaio un punto O (detto origine e tre rette per esso a due a due perpendicolari e orientate in modo concorde
Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1
ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria [email protected] ette e piani nello spazio. 9 Gennaio
Prodotto scalare e norma
Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o
NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori :
NOTA 1 VETTOI LIBEI e VETTOI APPLICATI Negli esempi visti sono stati considerati due tipi di vettori : 1) Vettori liberi, quando non è specificato il punto di applicazione. Di conseguenza ad uno stesso
Geometria analitica: rette e piani
Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Coniche
Lez. 3 Vettori e scalari
Lez. 3 Vettori e scalari Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli [email protected] +39-081-676137 2 Un
Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3
Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori
Momento angolare L. P. Maggio Prodotto vettoriale
Momento angolare L. P. Maggio 2007 1. Prodotto vettoriale 1.1. Definizione Il prodotto vettoriale di due vettori tridimensionali a e b è un vettore c così definito: a) Il modulo di c è pari all area del
GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z
GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono
