I POLIEDRI SEMIREGOLARI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I POLIEDRI SEMIREGOLARI"

Transcript

1 I POLIEDRI SEMIREGOLARI Il matematico, come il pittore o il poeta, è un creatore di forme. E se le forme che crea sono più durature delle loro è perché sono fatte di idee Godfrey H. Hardy In geometria un poliedro semiregolare è una figura convessa le cui facce sono formate da due o più tipi di poligoni regolari che si incontrano in vertici identici. Iniziamo il nostro percorso sui poliedri semiregolari dividendoli in due categorie: - alla prima categoria appartengono i poliedri archimedei, i prismi e gli antiprismi; - alla seconda categoria appartengono i diamanti, gli antidiamanti e i poliedri di Catalan (ciascuno rispettivamente duali ai prismi, agli antiprismi e ai poliedri di Archimede). Ciò che differenza questi due gruppi sono le proprietà che caratterizzano le facce, gli spigoli e i vertici di tali poliedri. Perciò andiamo a vedere più nel dettaglio le loro caratteristiche.

2 1^ CATEGORIA: I POLIEDRI ARCHIMEDEI Le facce sono dei poligoni regolari di due o più tipi. I vertici sono isometrici, vale a dire che in ogni vertice convergono delle stesse figure con lo stesso ordine. Gli spigoli sono congruenti. Gli spigoli di questi poliedri sono tutti congruenti e poiché le facce sono poligoni regolari possiamo ricavare l area della superficie e il volume del solido in funzione dello spigolo. Inoltre poiché sono presenti almeno due tipi di facce distinte (altrimenti avremmo un solido platonico), i solidi archimedei si possono considerare i più regolari dopo quelli platonici. I vertici di questi solidi sono omogenei, cioè per ogni coppia di questi esiste una simmetria del solido che sposta il primo nel secondo. Quindi i vertici sono tutti uguali. Inoltre i vertici sono isometrici, cioè le facce convergenti in uno di esso sono disposte in un ordine preciso e il vertice riceve ugual numero di spigoli. Ad esempio l'icosidodecaedro alterna due triangoli e due pentagoni intorno a ogni vertice. Infine per tutti i vertici passa la sfera circoscritta al solido. Per incidenza sui vertici si intende il numero di lati che caratterizzano i poligoni regolari che incidono in ogni vertice e questa sequenza viene riportata partendo dal poligono con il numero minore di lati e procedendo in senso orario attorno al vertice. Tutti questi poliedri semiregolari si possono quindi classificare in base al numero di facce, di spigoli, di vertici e incidenza dei vertici. Ad esempio l icosidodecaedro ha 30 vertici con un incidenza di 3,5,3,5 (dal momento che in ogni suo vertice troviamo un triangolo, un pentagono, un triangolo e poi nuovamente un pentagono. I solidi archimedei sono tredici: il cubottaedro, l icosidodecaedro, il tetraedro, il cubo, l ottaedro (o poliedro di Lord Kelvin), il dodecaedro, l icosaedro, il rombicubottaedro, il cubottaedro (o grande rombicubottaedro), il rombicosidodecaedro, l Icosidodecaedro (o grande rombicosidodecaedro), il cubo camuso e il dodecaedro camuso. Il cubo camuso e il dodecaedro camuso, riportati qui a sinistra, vengono chiamati anche chirali (cioè che non sono equivalenti alla loro immagine riflessa). Il cubottaedro e l icosidodecaedro, riportati qui a destra, si definiscono anche quasi regolari perché hanno anche gli spigoli omogenei oltre ai vertici.

3 Ma come si è giunti a tali figure? Archimede utilizzò il troncamento: partendo dai cinque solidi platonici, troncò ciascuno di essi in modo da ricavare cinque nuovi poliedri, i solidi platonici troncati, e poi procedette troncandoli ulteriormente, ottenendo con questo metodo i 13 solidi archimedei che abbiamo appena classificato. Questo processo consiste nella limatura di un vertice del poliedro fino ad ottenere un poligono, che costituisce una nuova faccia del poliedro, che incontra tutti gli n spigoli del poliedro che incidono sul vertice considerato. Più precisamente il troncamento è la rimozione di una cuspide del poliedro: un taglio vicino al vertice elimina una piramide, la cui base è ottenuta dal piano lungo cui è fatto il taglio. Il poliedro iniziale non possiede più un vertice, ma ha una nuova faccia (la base della piramide eliminata) e n nuovi vertici e anche n nuovi spigoli. I solidi archimedei si realizzano con il troncamento prima di tutti i vertici dei cinque poliedri regolari e poi con ulteriori troncamenti dei cinque poliedri troncati così ottenuti, in modo che i nuovi poliedri abbiano tutti gli spigoli identici; di conseguenza anche le facce saranno dei poligoni regolari, di due o più tipi, e i vertici saranno isometrici. Vediamo il primo troncamento dei cinque poliedri regolari. Cubo Cubo Tetraedro Tetraedro Ottaedro Ottaedro

4 Icosaedro Icosaedro Dodecaedro Dodecaedro Gli studiosi moderni comprendono nel gruppo dei poliedri di Archimede anche il prisma archimedeo e l antiprisma archimedeo. Sono definiti impropriamente con questo nome dato che il matematico greco non aveva analizzato i due poliedri. Ricordiamo che: - un prisma archimedeo è un poliedro che ha come basi due poligoni regolari congruenti di n lati e tra loro paralleli, e le cui facce laterali sono date da n quadrati congruenti; - un antiprisma archimedeo è un poliedro che ha come basi due poligoni regolari congruenti di n lati (con n>3) con i centri allineati e situati su piani ruotati tra loro di 45, in modo che i vertici si proiettino reciprocamente, e le cui facce laterali sono date da un numero di triangoli equilateri pari al doppio del numero dei lati dei poligoni di base (2n). Gli antiprismi si differenziano quindi dai prismi perché hanno le basi ruotate una rispetto l altra di 45, collegate tra loro da triangoli anziché da quadrati. Questi tipi di solidi differiscono dai poliedri di Archimede poiché sono infiniti e possiedono solo il gruppo di simmetria diedrale, meno complesso rispetto ai gruppi di simmetria dei solidi archimedei. Qui di seguito abbiamo riportato un prisma e un antiprisma archimedei a basi esagonali

5 2^ CATEGORIA Le facce sono tra loro isometriche, è cioè possibile trasformare una faccia in un altra faccia. Gli angoli che convergono sullo stesso vertice sono congruenti. Essi sono circoscrivibili a una sfera che è a sua volta tangente alle facce del solido. Tra le due categorie si verifica la dualità, precisamente tra prismi e diamanti, antiprismi e antidiamanti, poliedri di Archimede e di Catalan. Ricordiamo che per ottenere un poliedro duale si circoscrive una sfera al solido iniziale; dai vertici che toccano la superficie della sfera si tracciano dei piani tangenti alla sfera e si viene a formare il nuovo solido dall intersezione di questi piani. Perciò al vertice di uno dei due poliedri corrisponde una faccia di un altro e viceversa. In questi tipi di poliedri si può osservare che tutte le facce sono uguali ma non regolari. Quindi: Numero vertici poliedro di Catalan = numero facce rispettivo poliedro archimedeo. Numero di facce poliedro di Catalan = numero vertici corrispondente poliedro di Archimede. In geometria un solido di Catalan è un poliedro convesso duale dei poliedri di Archimede. Questi solidi sono totalmente differenti da quelli archimedei, rispetto ai duali dei solidi platonici che si mostrano come la stessa famiglia. Il primo a descrivere questi solidi nel 1865 fu il matematico belga Eugène Charles Catalan ( ) e da quest ultimo prendono il nome. I tredici poliedri semiregolari duali sono: il dodecaedro rombico, il triacontaedro rombico, il triacistetraedro, il triacisottaedro, il tetracisesaedro, il triacisicosaedro, il pentacisdodecaedro, l esacisottaedro, l esacisicosaedro, l icositetraedro trapezoidale, l esacontaedro trapezoidale, l icositetraedro pentagonale e l esacontaedro pentagonale. Il dodecaedro rombico e il triacontaedro rombico sono omogenei sugli spigoli, caratteristica riscontrata anche nei primi due poliedri di Archimede. Anche gli ultimi due solidi di questo gruppo, l icositetraedro pentagonale e l esacontaedro pentagonale, sono chiamati chirali e non sono quindi equivalenti alla loro immagine riflessa. Diamante Antidiamante

6 Tricontaedro rombico Dodecaedro rombico I POLIEDRI STELLATI Giovanni Keplero fu tra i primi studiosi dei poligoni stellati ( come il pentagramma e la stella di David) e si concentrò sulle loro analogie tridimensionali, i poliedri stellati. Per creare stellazioni poliedriche partendo da un poliedro lo scienziato usò due metodologie: la prima è la stellazione con inizio dagli spigoli, cioè il prolungamento degli spigoli del poliedro principale fino a quando si incontrano nuovamente tra loro; la seconda ha invece inizio dalle facce, cioè il prolungamento di quest ultime finché non si incontrano nuovamente. Con questi procedimenti Keplero riuscì ad ottenere la prima coppia di poliedri stellati attraverso l estensione di un dodecaedro e di un icosaedro; a prima vista sulle loro facce sembrano essere create delle piramidi regolari tutte identiche. I due poliedri trovati furono denominati piccolo dodecaedro stellato (12 punte) e grande dodecaedro stellato (20 punte); essi sono considerati poliedri regolari concavi per la molta regolarità posseduta. Keplero notò inoltre che l estensione degli atri tre poliedri regolari non faceva nascere alcuna stellazione. Keplero era estasiato dalla perfezione estetica dei poliedri regolari e da quella dei due poliedri stellati da lui scoperti; infatti a tal proposito scriveva: alle 'congruenze' perfettissime e regolari si possono aggiungere anche altre due 'congruenze' di dodici stelle pentagonali. Lo studio preciso dei poliedri stellati effettuato dal fisico matematico Louis Poinsot agli inizi del novecento permise la scoperta di due nuove forme: il grande dodecaedro e il grande icosaedro. Questi poliedri regolari stellati hanno come facce poligoni regolari usuali che è possibile intrecciare, cioè hanno in comune dei segmenti che non sono lati delle facce. Sono quindi differenti dai poliedri di Keplero, le cui facce sono poligoni stellati. Poinsot ipotizzò che i quattro solidi trovati fossero gli unici poliedri stellati regolari che si potessero ottenere; l ipotesi venne confermata nel 1812 attraverso le dimostrazioni di

7 Augustin Louis Cauchy. Per questo motivo i quattro poliedri sopra descritti prendono il nome di poliedri di Keplero - Poinsot. Piccolo dodecaedro stellato Grande dodecaedro stellato Grande dodecaedro Grande icosaedro

I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H

I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H Cosa è un poliedro? Definizioni: Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due

Dettagli

ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI

ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI Ho affermato che le matematiche sono molto utili per abituare la mente a un raziocinio esatto e ordinato; con ciò non è che io creda necessario che tutti gli

Dettagli

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da

Dettagli

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.

Dettagli

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso

Dettagli

Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b)

Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b) Riferimenti bibliografici: Poliedri regolari - Forme Maria Dedò Ed. Zanichelli - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: (a) e (c) non (b) Definizione: Un poliedro

Dettagli

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è. DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la

Dettagli

SCHEDA 1: ICOSAEDRO OTTAEDRO E TETRAEDRO SCHEDA 2: CUBO E DODECAEDRO. Costruisci e osserva i tre solidi della scheda 1:

SCHEDA 1: ICOSAEDRO OTTAEDRO E TETRAEDRO SCHEDA 2: CUBO E DODECAEDRO. Costruisci e osserva i tre solidi della scheda 1: Seguendo il filo conduttore del convegno, queste schede vogliono offrire alcuni spunti e proposte di attività di didattica informale e laboratoriale da svolgere in classe. Sulle 8 pagine si trovano gli

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE:

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: IL CUBO IL PARALLELEPIPEDO LA PIRAMIDE HANNO LA SUPERFICIE COSTITUITA DA POLIGONI (QUADRATO, RETTANGOLO, TRIANGOLO) E PRENDONO

Dettagli

LA GEOMETRIA DELLO SPAZIO

LA GEOMETRIA DELLO SPAZIO LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

Le cupole geodetiche

Le cupole geodetiche Le cupole geodetiche Una cupola geodetica é una struttura semisferica composta da aste che si intersecano in triangoli. Dal punto di vista matematico possiamo definire cupola geodetica un tipo di triangolazione

Dettagli

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel

Dettagli

APPUNTI DI GEOMETRIA SOLIDA

APPUNTI DI GEOMETRIA SOLIDA APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti

Dettagli

Le simmetrie dei poliedri regolari

Le simmetrie dei poliedri regolari Le simmetrie dei poliedri regolari Le isometrie del piano e dello spazio sono state classificate da due illustri matematici. Per quanto riguarda il piano, il teorema di Chasles, del 8, afferma che nel

Dettagli

SPAZIO E FIGURE: ROMPIAMO LE SCATOLE

SPAZIO E FIGURE: ROMPIAMO LE SCATOLE SPAZIO E FIGURE: ROMPIAMO LE SCATOLE 1) Procurati una scatola vuota e bada che sia richiusa bene. Apri i lati necessari ad ottenere il suo sviluppo. Quanti lati è necessario aprire come minimo? 2) Lavora

Dettagli

Simmetrie nei Poliedri Regolari

Simmetrie nei Poliedri Regolari Simmetrie nei Poliedri Regolari Francesca Benanti Dipartimento di Matematica ed Informatica Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo Tel: 09123891105 Email: fbenanti@math.unipa.it

Dettagli

piastrelle piastrelle piastrelle

piastrelle piastrelle piastrelle Perché le celle delle api hanno una struttura esagonale regolare? Università delle Liberetà 2008 09 appunti di marinella bassi 1 2 Il tessuto di molti vegetali e il pigmento della retina nei nostri occhi

Dettagli

Le palline hanno buchi a forma di triangolo, di rettangolo e di pentagono. Guardiamo attraverso un foro, la faccia opposta ha la stessa forma.

Le palline hanno buchi a forma di triangolo, di rettangolo e di pentagono. Guardiamo attraverso un foro, la faccia opposta ha la stessa forma. Angoli e poligoni regolari Ci serviranno bastoncini blu e qualche pallina. Le palline hanno buchi a forma di triangolo, di rettangolo e di pentagono. Guardiamo attraverso un foro, la faccia opposta ha

Dettagli

CONCETTI DI GEOMETRIA

CONCETTI DI GEOMETRIA LA GEOMETRIA EUCLIDEA SI BASA SU TRE CONCETTI INTUITIVI: IL PUNTO, LA RETTA, IL PIANO IL PUNTO E' UN ENTE GEOMETRICO PRIVO DI DIMENSIONI. LA RETTA E' UN INSIEME DI PUNTI ALLINEATI. IL PIANO E' UN INSIEME

Dettagli

Simmetrie nei poliedri

Simmetrie nei poliedri Simmetrie nei poliedri Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere nel mondo reale le figure. geometriche note e descriverle con la terminologia specifica. Analizzare con strumenti

Dettagli

Eulero e i poliedri V + F - S = 2. è nota la relazione. V = numero dei vertici. F = numero delle facce. S = numero degli spigoli. perché?

Eulero e i poliedri V + F - S = 2. è nota la relazione. V = numero dei vertici. F = numero delle facce. S = numero degli spigoli. perché? 1 Eulero e i poliedri è nota la relazione V + F - S = 2 V = numero dei vertici F = numero delle facce S = numero degli spigoli perché? per quali poliedri? conseguenze? 2 Perché V + F - S = 2? Vari modi

Dettagli

Laboratorio di informatica

Laboratorio di informatica Laboratorio di informatica GEOMETRIA DELLO SPAZIO Introduzione a Geogebra 3D La versione 5 di Geogebra prevede anche la possibilità di lavorare in ambiente 3D. Basta aprire Visualizza - Grafici 3D: sullo

Dettagli

I N F I N I T I T R I A N G O L I. (Tk) D I T A R T A G L I A. (possibili applicazioni in geometria (k + 2) - dimensionale)

I N F I N I T I T R I A N G O L I. (Tk) D I T A R T A G L I A. (possibili applicazioni in geometria (k + 2) - dimensionale) I N F I N I T I T R I A N G O L I (Tk) D I T A R T A G L I A (possibili applicazioni in geometria (k + 2) - dimensionale) Gruppo B. Riemann * Francesco Di Noto, Michele Nardelli *Gruppo amatoriale per

Dettagli

December 16, solidi_generalità e prisma_sito scuola.notebook. da studiare solo sul file. La geometria solida. nov

December 16, solidi_generalità e prisma_sito scuola.notebook. da studiare solo sul file. La geometria solida. nov da studiare solo sul file La geometria solida nov 20 8.33 1 I SOLIDI SI SUDDIVIDONO IN DUE GRANDI CATEGORIE POLIEDRI SOLIDI ROTONDI nov 20 8.40 2 POLIEDRI Cos'è un poligono? E' una parte di spazio delimitata

Dettagli

La piramide. BM 3 teoria pag ; esercizi 52 71, pag

La piramide. BM 3 teoria pag ; esercizi 52 71, pag La piramide. BM teoria pag. 4-49; esercizi 52 71, pag.120-127 Ricorda: I poliedri: sono solidi ottenuti accostando dei poligoni in modo da racchiudere parti di spazio limitate, essi si dividono in prismi

Dettagli

MATeXp Geometria. Capitolo G37: Poliedri convessi. Contenuti delle sezioni

MATeXp Geometria. Capitolo G37: Poliedri convessi. Contenuti delle sezioni MATeXp Geometria Capitolo G37: Poliedri convessi Contenuti delle sezioni a. Nozioni basilari sui poliedri convessi p.1 b. Dualità tra poliedri p.6 c. Formula di Eulero per i poliedri p.8 d. Poliedri regolari

Dettagli

GEOMETRIA SOLIDA PIRAMIDE. Prof.ssa M. Rosa Casparriello

GEOMETRIA SOLIDA PIRAMIDE. Prof.ssa M. Rosa Casparriello GEOMETRIA SOLIDA PIRAMIDE Prof.ssa M. Rosa Casparriello Scuola media di Cervinara 2007/2008 DEFINIZIONE La piramide è un poliedro limitato da un poligono qualsiasi e da tanti triangoli quanti sono i lati

Dettagli

La formula di Eulero per i poliedri, un approccio laboratoriale

La formula di Eulero per i poliedri, un approccio laboratoriale 10 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE Firenze, 10 maggio 2015 La formula di Eulero per i poliedri, un approccio laboratoriale Ivan Casaglia Liceo Scientifico Guido Castelnuovo Firenze La formula

Dettagli

PARTE B: Simmetrie 5. Le simmetrie dei solidi platonici

PARTE B: Simmetrie 5. Le simmetrie dei solidi platonici PARTE B: Simmetrie 5. Le simmetrie dei solidi platonici La relazione di dualità suggerisce di ripartire i cinque solidi platonici in tre famiglie distinte: cubo e ottaedro da una parte, dodecaedro e icosaedro

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Uno spazio per lo spazio.

Uno spazio per lo spazio. Uno spazio per lo spazio. Il gruppo di matematica del Laboratorio Franco Conti ha lavorato quest anno nella direzione di ripensare l insegnamento della geometria dello spazio, unendo la riflessione teorica

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare Pag. 20 Nomenclatura geometrica (colonna n 4) Da pag. 154 a pag. 164 Sviluppo solidi Argomento interdisciplinare Tecnologia-Matematica 1 Sono corpi TRIDIMENSIONALI, aventi cioè tre dimensioni: 1. Lunghezza

Dettagli

Introduzione. Al termine della lezione sarai in grado di:

Introduzione. Al termine della lezione sarai in grado di: Anno 4 Prismi 1 Introduzione In questa lezione parleremo di un particolare poliedro detto prisma. Ne daremo una definizione generale e poi soffermeremo la nostra attenzione su alcuni prismi particolari.

Dettagli

Geometria solida 2. Veronica Gavagna

Geometria solida 2. Veronica Gavagna Geometria solida 2 Veronica Gavagna Lo sviluppo del parallelepipedo B Superficie laterale Area laterale e area totale Dato il parallelepipedo Area laterale A l = (a + b + a + b) c = P c b Area totale A

Dettagli

POLIEDRI IN CRISTALLOGRAFIA

POLIEDRI IN CRISTALLOGRAFIA POLIEDRI IN CRISTALLOGRAFIA L'universo è composto di materia, ovviamente. E la materia è composta di particelle: elettroni, neutroni e protoni. Dunque l'intero universo è composto di particelle. Ora, di

Dettagli

Uno spazio per lo spazio.

Uno spazio per lo spazio. Uno spazio per lo spazio. Il gruppo di matematica del Laboratorio Franco Conti ha lavorato quest anno nella direzione di ripensare l insegnamento della geometria dello spazio, unendo la riflessione teorica

Dettagli

Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2.

Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2. PAS 2014 GEOMETRIA Programma di massima: Elementi di logica elementare. La geometria degli Elementi di Euclide. De nizioni, assiomi e postulati. La geometria del triangolo. Criteri di uguaglianza. Teorema

Dettagli

Prontuario di geometria euclidea nello spazio. Per la scuola secondaria di I grado

Prontuario di geometria euclidea nello spazio. Per la scuola secondaria di I grado Prontuario di geometria euclidea nello spazio Per la scuola secondaria di I grado N. B. Gli argomenti presentati sono una sintesi di quelli trattati in classe e non sostituiscono ma integrano il libro

Dettagli

LE TASSELLAZIONI DELLO SPAZIO

LE TASSELLAZIONI DELLO SPAZIO LE TASSELLAZIONI DELLO SPAZIO In questo capitolo vogliamo mostrare esempi di poliedri che hanno la singolare e attraente proprietà di tassellare lo spazio. Si tratta di poliedri che, una volta disposti

Dettagli

Indice. Parte prima Metodi. XI Gli autori

Indice. Parte prima Metodi. XI Gli autori XI Gli autori XIII Prefazione Parte prima Metodi 5 Capitolo 1 Elementi di geometria proiettiva 5 1.1 Gli enti geometrici 6 1.2 Convenzioni 7 1.3 L operazione di proiezione 9 1.4 L ampliamento proiettivo

Dettagli

Lezione introduttiva allo studio della GEOMETRIA SOLIDA

Lezione introduttiva allo studio della GEOMETRIA SOLIDA Lezione introduttiva allo studio della GEOMETRIA SOLIDA Geometria solida Lo spazio euclideo è un insieme infinito di elementi detti punti e contiene sottoinsiemi propri ed infiniti : le rette e i piani..

Dettagli

Riempimenti dello spazio

Riempimenti dello spazio periodici e aperiodici Dipartimento di Matematica e Fisica Niccoló Tartaglia Università Cattolica, Brescia Passo Pramollo, agosto 2014 Indice Riempimenti periodici Il problema di Kelvin Riempimenti aperiodici

Dettagli

LA MATEMATICA DEI POLIEDRI REGOLARI

LA MATEMATICA DEI POLIEDRI REGOLARI LA MATEMATICA DEI POLIEDRI REGOLARI Essi simbolizzano il desiderio di Armonia e di ordine dell uomo, ma nello stesso tempo la loro perfezione desta in noi il senso della nostra impotenza. I poliedri regolari

Dettagli

Matematica creativa e packaging

Matematica creativa e packaging Matematica creativa e packaging Elena Marchetti - Luisa Rossi Costa Dipartimento di Matematica F. Brioschi Politecnico di Milano Piazza Leonardo da Vinci, 32-20133 Milano POLIGONI E TASSELLAZIONI DEL PIANO

Dettagli

A B C D E F G H I L M N O P Q R S T U V Z

A B C D E F G H I L M N O P Q R S T U V Z IL VOCABOLARIO GEOMETRICO A B C D E F G H I L M N O P Q R S T U V Z A A: è il simbolo dell area di una figura geometrica Altezza: è la misura verticale e il segmento che parte da un vertice e cade perpendicolarmente

Dettagli

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali Anno 2 Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali 1 Introduzione In questa lezione tratteremo i poligoni inscritti e circoscritti a una circonferenza, descrivendone

Dettagli

I Solidi. ( Teoria pag ; esercizi pag ) Osserva queste immagini e commentale.

I Solidi. ( Teoria pag ; esercizi pag ) Osserva queste immagini e commentale. I Solidi. ( Teoria pag. 66 70 ; esercizi pag. 139 142 ) Osserva queste immagini e commentale. Immagine 1 Immagine 2 Immagine 3 Immagine 4 Immagine 5 Immagine 6 Conclusioni: Un solido è una parte di spazio

Dettagli

Prof. Faccincani Giorgio Unità Didattica: disegno e storia dell arte discipline geometriche e architettoniche. TITOLO: POLIEDRI E CUPOLE RETICOLARI

Prof. Faccincani Giorgio Unità Didattica: disegno e storia dell arte discipline geometriche e architettoniche. TITOLO: POLIEDRI E CUPOLE RETICOLARI Prof. Faccincani Giorgio Unità Didattica: disegno e storia dell arte discipline geometriche e architettoniche. TITOLO: POLIEDRI E CUPOLE RETICOLARI Scheda didattica. Prerequisiti Obiettivi Metodologia

Dettagli

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell

Dettagli

La riflessione: formazione delle immagini 2016

La riflessione: formazione delle immagini 2016 Vogliamo provare che l immagine prodotta da uno specchio piano, si trova alla stessa distanza della sorgente dallo specchio. Con riferimento alla figura, vogliamo provare che AC = CB. Per provare l affermazione,

Dettagli

PNI QUESITO 1 QUESITO 2

PNI QUESITO 1 QUESITO 2 www.matefilia.it PNI 0014 QUESITO 1 Per il teorema dei seni risulta: = da cui sen α = Quindi α = arcsen ( ) che porta alle due soluzioni: α 41,810 41 49 α 138 11 QUESITO I poliedri regolari (solidi platonici)

Dettagli

SOLIDI PLATONICI E DINTORNI

SOLIDI PLATONICI E DINTORNI LUCIANO BATTAIA SOLIDI PLATONICI E DINTORNI Appunti dalle lezioni del corso di Matematica per il Design per l ISIA di Roma, sede di Pordenone www.batmath.it Solidi Platonici e dintorni Appunti dalle lezioni

Dettagli

Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Solidi di rotazione Un solido di rotazione è generato dalla rotazione

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento

Esame di Stato di Liceo Scientifico Corso di Ordinamento Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 006 Sessione Ordinaria 006 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto Finale 4 Problema

Dettagli

Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso.

Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso. Poligoni In geometria un poligono è una figura geometrica piana delimitata da una linea spezzata chiusa. I segmenti che compongono la spezzata chiusa si dicono lati del poligono e i punti in comune a due

Dettagli

Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune.

Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune. Le figure solide Nozioni generali Un piano nello spazio può essere individuato da: 1. tre punti A, B e C non allineati. 2. una retta r e un punto A non appartenente ad essa. 3. due rette r e s incidenti.

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

117. Lo studio dei poliedri col software libero Cartesio di Rosa Marincola 1

117. Lo studio dei poliedri col software libero Cartesio di Rosa Marincola 1 117. Lo studio dei poliedri col software libero Cartesio di Rosa Marincola 1 Sunto Cartesio è un software libero che, permettendo la costruzione e la manipolazione di poliedri, favorisce l esplorazione

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare 1 Argomento interdisciplinare Tecnologia-Matematica Libro consigliato: Disegno Laboratorio - IL MANUALE DI TECNOLOGIA _G.ARDUINO_LATTES studiare da pag.19.da 154 a 162 Unità aggiornata: 7/2012 2 Sono corpi

Dettagli

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2) circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio

Dettagli

Le proprietà dei poligoni regolari. La similitudine tra figure piane. Il contenuto delle schede della sezione C e della scheda D1.

Le proprietà dei poligoni regolari. La similitudine tra figure piane. Il contenuto delle schede della sezione C e della scheda D1. D3 Le piramidi Che cosa imparerai Che cosa devi sapere Imparerai a costruire vari tipi di piramidi e ne scoprirai un importante proprietà. Le proprietà dei poligoni regolari. La similitudine tra figure

Dettagli

Superfici e solidi di rotazione. Cilindri indefiniti

Superfici e solidi di rotazione. Cilindri indefiniti Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco. Poligoni stellati

Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco. Poligoni stellati Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco Poligoni stellati I poligoni regolari che abbiamo incontrato finora sono tutti poligoni convessi; esistono anche dei particolari

Dettagli

N. Domanda A B C D. circonferenza in quattro parti la base del triangolo isoscele che genera il cono

N. Domanda A B C D. circonferenza in quattro parti la base del triangolo isoscele che genera il cono 1 Se in un triangolo circocentro e incentro coincidono allora esso come è? 2 Un angolo di un triangolo misura 50 gradi. Quanto misrano gli altri due angoli? 3 In un trapezio avente l'area di 320 m^2 le

Dettagli

Test di autovalutazione di Matematica - I parte

Test di autovalutazione di Matematica - I parte Test di autovalutazione di Matematica - I parte M1.1 Una circonferenza è individuata da: (A) due punti (C) quattro punti non allineati (E) cinque punti. (B)quattro punti allineati (D) tre punti non allineati

Dettagli

Il pallone di Luca di Marcello Falco

Il pallone di Luca di Marcello Falco Il pallone di Luca di Marcello Falco Usando un pennarello, Luca sta cercando di tracciare un circuito chiuso sulla superficie del pallone di cuoio regalatogli dai genitori. Le regole che Luca si è imposto

Dettagli

COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA

COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA PRISMI E PIRAMIDI COS È UN PRISMA È UN POLIEDRO DELIMITATO DA Due POLIGONI congruenti e paralleli, come basi. Tanti PARALLELOGRAMMI quanti sono i lati del poligono di base (come facce laterali). PRISMA

Dettagli

Soluzione esercizi Gara Matematica 2009

Soluzione esercizi Gara Matematica 2009 Soluzione esercizi Gara Matematica 009 ( a cura di Stefano Amato, Emanuele Leoncini e Alessandro Martinelli) Esercizio 1 In una scacchiera di 100 100 quadretti, Carlo colora un quadretto di rosso, poi

Dettagli

PROGETTO ARCHIMEDE nomentano Classi 4G-4F 5G-5F

PROGETTO ARCHIMEDE nomentano Classi 4G-4F 5G-5F PROGETTO ARCHIMEDE nomentano 2013-2014 Classi 4G-4F 5G-5F Il nostro primo incontro all Università Incontriamo gli studenti degli altri licei che lavoreranno al progetto e insieme ascoltiamo quanto è stato

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 2

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 2 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 2 La simmetria L'etimologia della parola simmetria è greca. = stessa misura Per estensione, se ne amplia il significato ad espressioni del tipo 'equilibrio fra

Dettagli

Geometria nello spazio

Geometria nello spazio Geometria nello spazio Def. Lo spazio è l insieme di infiniti elementi A, B, C detti punti; esso è dotato di sottoinsiemi non vuoti a, b, c detti rette e α, β, γ detti piani.. POSTULATI DI INCIDENZA. Dati

Dettagli

4.1 I triedri Def triedro vertice spigoli facce triedro

4.1 I triedri Def triedro vertice spigoli facce triedro 1 FIGURE NELLO SPAZIO Rette, piani, semispazi, di cui abbiamo visto le prime proprietà, delimitano le figure solide che si sviluppano nello spazio. Introduciamo gradualmente le figure solide e le loro

Dettagli

PROBLEMA DI FEBBRAIO Congiungendo i centri delle facce (con uno spigolo in comune) di un cubo si ottengono gli spigoli di un poliedro.

PROBLEMA DI FEBBRAIO Congiungendo i centri delle facce (con uno spigolo in comune) di un cubo si ottengono gli spigoli di un poliedro. FLATlandia PROBLEMA DI FEBBRAIO 006 Congiungendo i centri delle facce (con uno spigolo in comune) di un cubo si ottengono gli spigoli di un poliedro. 1) Di quale poliedro si tratta? E regolare? ) Determinare

Dettagli

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati I Poligoni Spezzata C A cosa vi fa pensare una spezzata? Qualcosa che si rompe in tanti pezzi A me dà l idea di un spaghetto che si rompe Se noi rompiamo uno spaghetto e manteniamo uniti i vari pezzi per

Dettagli

APPUNTI SU POLIGONI E POLIEDRI Fiammetta Battaglia

APPUNTI SU POLIGONI E POLIEDRI Fiammetta Battaglia APPUNTI SU POLIGONI E POLIEDRI Fiammetta Battaglia 1. DEFINIZIONI Definizioni preliminari. Le definizioni elementari sono le più difficili. Consideriamo definizioni intuitive. Poligono. Una possibile definizione:

Dettagli

Sapreste dire che cosa sono vertice, spigolo e faccia di un poliedro? Indicatelo negli appositi spazi della figura sottostante:

Sapreste dire che cosa sono vertice, spigolo e faccia di un poliedro? Indicatelo negli appositi spazi della figura sottostante: Laboratorio formazione primaria.. 2008-2009 1. SSERVZINE DI LIEDRI sservate le costruzioni presenti in sala, realizzate con tessere colorate. In generale le costruzioni in cui le tessere si incastrano

Dettagli

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA CERCHIO SIMMETRIA GEOMETRIA SOLIDA A cura di Maurizio Cesca PROGETTO STRANIERI SMS Maffucci-Pavoni -

Dettagli

Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1

Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1 www.matefilia.it Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1 Si vuole che delle due radici dell equazione x 2 + 2(h + 1)x + m 2 h 2 = 0 una risulti doppia dell altra. Quale

Dettagli

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11 Sin dai tempi di Pitagora, sono state esplorate le interessanti proprietà di un certo numero di sassolini messi in forme geometriche, cercando di ricavarne leggi universali. Ad esempio il numero 10, la

Dettagli

SOLIDI DI ROTAZIONE. Superficie cilindrica indefinita se la generatrice è una retta parallela all asse di rotazione

SOLIDI DI ROTAZIONE. Superficie cilindrica indefinita se la generatrice è una retta parallela all asse di rotazione SOLIDI DI ROTAZIONE Dato un semipiano α limitato dalla retta a, sia g una linea qualunque appartenente al semipiano α; ruotando il semipiano α di un angolo giro attorno alla retta a, la linea g genera

Dettagli

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11 Sin dai tempi di Pitagora, sono state esplorate le interessanti proprietà di un certo numero di sassolini messi in forme geometriche, cercando di ricavarne leggi universali. Ad esempio il numero 10, la

Dettagli

Esercizi sul cubo. Prisma e cilindro

Esercizi sul cubo. Prisma e cilindro Esercizi sul cubo 1. Dimostra la formula della diagonale del cubo. 2. Ein würfelförmiger Kasten hat eine Kantenlänge von 16cm. Er wird mit Würfeln von 4cm Kantenlänge ganz gefüllt. Wie viele Würfel kann

Dettagli

Progetto SIGMA (dare SIGnificato al fare MAtematica) Attività a.s. 2015/2016

Progetto SIGMA (dare SIGnificato al fare MAtematica) Attività a.s. 2015/2016 Progetto SIGMA (dare SIGnificato al fare MAtematica) Attività a.s. 2015/2016 MOSTRA DI GEOMETRIA dalla SCUOLA DELL INFANZIA alla SECONDARIA SUPERIORE A.S. 2015/16 R.I.S.V.A Rete Istituti Scolastici Valdarno

Dettagli

SCHEDA 1. Con un pennarello segnate due punti sulla sfera, appoggiata sulla sua base.

SCHEDA 1. Con un pennarello segnate due punti sulla sfera, appoggiata sulla sua base. SCHEDA 1 GRUPPO........ Con un pennarello segnate due punti sulla sfera, appoggiata sulla sua base. 1) Disegnate la linea di minima distanza che unisce i due punti sulla superficie sferica. Provate con

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13

METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13 METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA LEZIONE n 13 Parte terza TRASFORMAZIONI GEOMETRICHE Dalle indicazioni nazionali: Descrivere, denominare e classificare figure geometriche, identificando

Dettagli

Scopri come utilizzare i nostri servizi:

Scopri come utilizzare i nostri servizi: Geometria CONCORSO AGENTI POLIZIA PENITENZIARIA 2015 Link utili Link utili Esercitati con il Simulatore Quiz Gratuito di Concorsando.it: http://www.concorsando.it/fb.php Scopri come utilizzare i nostri

Dettagli

TAVOLE PER IL DISEGNO

TAVOLE PER IL DISEGNO TAVOLE PER IL DISEGNO Disegni geometrici tavv. Disegni a mano libera 1-2 Riproduzione di disegni in scala 3 Uso delle squadre 4 Inviluppi di linee 5-6 Uso del compasso 7 Costruzioni geometriche 8-11 Strutture

Dettagli

Poliedri (omaggio a Ugo Adriano Graziotti)

Poliedri (omaggio a Ugo Adriano Graziotti) Poliedri (omaggio a Ugo Adriano Graziotti) I poliedri e il loro studio riempiono, potremmo dire, tutta la nostra storia. La letteratura, e non solo matematica, su di essi è sconfinata. Richiamo brevemente

Dettagli

Quesito 1 Si calcoli. 3 2 2 4 3 3 = 3 2 4 3 = 2 ln3 = 8 81 2,3. 1 = 2 3 2 3 = 2 3 1+1 2 1 = = =ln81. Soluzione 1

Quesito 1 Si calcoli. 3 2 2 4 3 3 = 3 2 4 3 = 2 ln3 = 8 81 2,3. 1 = 2 3 2 3 = 2 3 1+1 2 1 = = =ln81. Soluzione 1 ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 0 PIANO NAZIONALE INFORMATICA Questionario Quesito Si calcoli 3 3 è 0 0 Applicando De L Hospital si ha: -,3 3 3 4 3 3 = infatti: 0 = 3 4 3 3 = 3 4

Dettagli