Tutorato 1 (20/12/2012) - Soluzioni
|
|
|
- Gaetana Benedetti
- 8 anni fa
- Visualizzazioni
Transcript
1 Tutorato 1 (20/12/2012) - Soluzioni Esercizio 1 (v.c. fantasia) Si trovi il valore del parametro θ per cui la tabella seguente definisce la funzione di probabilità di una v.c. unidimensionale X. X P(x) 1/2 θ 2θ 1. Si calcolino P(0,5<X<2,5) e P(X>2,1). 2. Si calcolino il valore atteso e la varianza della v.c. 3. Si determini la funzione di ripartizione della v.c. X. La funzione p(x) rappresenta la funzione di probabilità di una v.c. X. Deve valere P(X = x) = 1 e P(X = x) 0 x. Quindi θ = 1/6. X P(x) ½ 1/6 2/6 2 x = 0 1. P(0.5<X<2.5)=P(X=1)+P(X=2)=½ P(X>2,1)=0. 2. E(X)=0+1/6+4/6=5/6 Var(X)=E(X 2 ) E(X) 2 =3/2 (5/6) 2 =29/36=0.81, essendo E(X 2 ) =0+1/6+8/6=3/2. 3. La funzione di ripartizione della v.c. X è data da: (x) = P(X x) da cui: Φ X 0 x < 0 0,5 0 x < 1 ( x) = 0,667 1 x < 2 1 x 2 Φ X
2 Esercizio 2. Un sintomo S è riconducibile a tre patologie M 1, M 2 e M 3 a due a due incompatibili. Sapendo che la probabilità che un individuo abbia la malattia M h è pari a h / 10 (h = 1, 2, 3), 1. si calcoli la probabilità di avere almeno una delle patologie, motivando la risposta; 2. dopo aver fornito la definizione di indipendenza di tre eventi, si stabilisca se i tre eventi M 1, M 2 e M 3 sono indipendenti. Sapendo, inoltre, che la probabilità che il sintomo S si manifesti in un soggetto affetto dalla malattia M h è pari a 1 / (h + 2), 3. si calcoli la probabilità di manifestazione del sintomo S, motivando la risposta; 4. si determini la probabilità che un individuo abbia la patologia M 2 dato che presenta il sintomo S, motivando la risposta; 5. data la presenza del sintomo S, qual è la malattia più probabile? (Si motivi la risposta). Un sintomo S è riconducibile a tre patologie M 1, M 2 e M 3 a due a due incompatibili. Sapendo che la probabilità che un individuo abbia la malattia M h è pari a h / 10 (h = 1, 2, 3) 1. P(M 1 M 2 M 3 ) = P(M 1 ) + P(M 2 ) + P(M 3 ) = ( ) / 10 = 3/5 = 0.6 per il terzo assioma di Kolmogorov (si veda pag.85 del libro di testo). 2. Per la definizione di indipendenza tra eventi si veda il libro di testo a pag.102. I tre eventi M 1, M 2 e M 3 non sono indipendenti, infatti basta dimostrare, per esempio, che: P (M 1 M 2 )= 0 P(M 1 ) P(M 2 ). Sapendo, inoltre, che P(S M h ) = 1 / (h+2), 3. P(S) = P(S M h ) P(M h ) = [h / (h+2)] / 10 = (1/3 + 2/4 + 3/5) / 10 = per la legge delle alternative (pag. 99 del libro di testo). 4. P(M 2 S) = P(S M 2 ) P(M 2 ) / P(S) = (1/20) / = per la formula di Bayes. 5. M 3, dato che P(M h S) = P(S M h ) P(M h ) / P(S) è massima per h = 3. Esercizio 3. Da un mazzo di 52 carte quanti modi possibili ci sono di scegliere 5 carte? Con la formula delle combinazioni otteniamo: C(52,5) =52!/(47!5!)= Esercizio 4. Si consideri un insieme di 11 studenti composto da 5 ragazzi e 6 ragazze. 1. In quanti modi diversi si possono sistemare in una fila di 11 sedie gli 11 studenti?
3 2. In quanti modi diversi si possono sistemare in una fila di 11 sedie gli 11 studenti, con la condizione che i ragazzi stiano tutti vicini tra loro così come anche le ragazze e che la prima sedia sia occupata da una ragazza? 1. Calcoliamo le permutazioni = k! = 11!= ! 5!= Esercizio 5. Da un urna contenente 44 palline, delle quali 11 sono bianche, si estraggono con reinserimento 3 palline. 1. Si calcoli la probabilità che la prima pallina estratta sia bianca. 2. Si determini la probabilità che, fra le tre palline estratte, una sia bianca e le altre due non siano bianche. 3. Si calcoli la probabilità che almeno una delle tre palline estratte sia bianca. 1. La probabilità che la prima pallina estratta sia bianca coincide con la proporzione p di palline bianche nell urna: p = 11 / 44 = ¼ = Sia A = {una pallina della terna è bianca e le altre due non lo sono} Sia B i l evento elementare {pallina bianca nell estrazione i} allora A= B B v 1B B v e quindi P(A)= P( B )+P( B v 1B )+P( B v ) essendo le terne incompatibili. Per l indipendenza delle singole estrazioni (essendo con reimmissione) si a P( B )=P( B v 1B )=P( B v )p(1 p) 2 da cui P(A) 3p(1 p) 2 = (3/4) 3 = Si ottenga il risultato precedente utilizzando la definizione classica di probabilità calcolando quindi il rapporto tra il numero delle possibili terne con una pallina bianca e il numero delle terne possibili.
4 Si ottenga il risultato anche utilizzando la distribuzione binomiale essendo il numero delle palle bianche nel campione una Bin(p=0.25,n=3) 3. Sia D l evento almeno una delle tre palline estratte è bianca e C =BBB. Allora P(D)=P( C v ) =1 P(C) e quindi P(D) =1 (1 p) 3 = 1 (3/4) 3 = Esercizio 6. Sapendo che A, B e C sono tre eventi tali che P(A) = 0.6, P(B) = 0.65, P(C) = 0.5, P(A B) = 0.55, P(A C) = 0.4, P(B C) = 0.9 e P(B A C) = 0.875, 1. si calcolino P(A B) e P(B A); 2. si stabilisca se A e B sono incompatibili, motivando la risposta; si ripeta l esercizio per gli eventi A e C 3. si stabilisca se A e B sono indipendenti, motivando la risposta; si ripeta l esercizio per gli eventi A e C 4. si calcoli P(C B); 5. si calcoli P(A B C). 1. Si ricordi che P(A B) = P(A B) / P(B) per definizione di probabilità condizionata dell evento A all evento B. Si ottiene quindi P(A B) = P(A B) / P(B) = 0.55/0.65 = Analogamente per P(B A) si ha: P(B A) = P(A B) / P(A) = 0.55/0.6 = 0.917; 2. A e B non sono incompatibili. Infatti se A e B fossero incompatibili allora A B= per definizione di eventi incompatibili. Si avrebbe dunque che P(A B) = P( ) = 0 ma P(A B) = 0.55 e quindi A B Il lettore si accerti di saper verificare che P( ) = 0 (si veda libro di testo pag. 85) 3. A e B non sono indipendenti. Infatti se A e B fossero stocasticamente indipendenti allora P(A B)=P(A)P(B) per definizione di indipendenza stocastica (paragrafo 3.5 libro di testo). Ma dai dati dell esercizio si ottiene P(A)P(B)= = = P(A B). 4. Per determinare la probabilità ricercata si consideri che
5 P(C B) P(C) 0.5 P (C B) = = P(B C) = 0.9 = P(B) P(B) 0.65 Nella prima uguaglianza è stata applicata la definizione di probabilità condizionata, mentre nella seconda il principio della probabilità composta (pag del libro di testo). La prima uguaglianza potrebbe essere rimossa applicando il teorema di Bayes (pag del libro di testo) al caso particolare di un unica causa C ottenendo direttamente P(C) 0.5 P (C B) = P(B C) = 0.9 = P(B) Per determinare P(A B C) si ponga per comodità A C = E e quindi B E = A B C per la commutatività e l associatività dell intersezione fra insiemi (si veda libro di testo paragrafo 2.2). Si ottiene dunque: P(A B C) = P(B E) = P(B E) P(E) = P(B A C) P(A C) = =0.35.
Calcolo delle Probabilità: esercitazione 2
Argomento: eventi indipendenti ed incompatibili, probabilità dell evento unione e complementare, probabilità condizionata, principio della probabilità composta. Paragrafi 3.2, 3.3, 3.4 e 3.5 libro di testo.
STATISTICA A K (63 ore) Marco Riani
STATISTICA A K (63 ore) Marco Riani [email protected] http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo
STATISTICA: esercizi svolti sulle VARIABILI CASUALI
STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri
La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio
La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio Massimo Buzzi, Lucio Alberto Monti 1 Mappe Riassuntive 1.1 Calcolo combinatorio 1.2 Probabilità 1 2 Glossario
1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.
Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di
Esercitazioni di Statistica Dott.ssa Cristina Mollica niroma1.it. Probabilità
Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@u niroma1.it Probabilità Esercizio 1. Un esperimento casuale consiste nel lanciare tre volte una moneta. Si determini lo spazio campionario
Esercizi di Calcolo combinatorio: disposizioni
Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli
SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA
SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione
( ) ( ) Ω={1,2,3,4,5,6} B B A Siano A e B due eventi di Ω: si definisce evento condizionato B A. Consideriamo il lancio di un dado:
Eventi condizionati Quando si ha motivo di credere che il verificarsi di uno o più eventi sia subordinato al verificarsi di altri eventi, si è soliti distinguere tra eventi dipendenti(o condizionati )
Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo
Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: [email protected]
Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6
EVENTI ALEATORI E LORO RAPPRESENTAZIONE Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U... U.. La definizione classica di probabilità dice che, se gli eventi che si considerano
Soluzione esercizi (quarta settimana)
Soluzione esercizi (quarta settimana) Marco Riani Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? 1 Esempio Gioco la schedina mettendo a caso i segni (1 X
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 51 Introduzione Il Calcolo delle
STATISTICA: esercizi svolti su ESPERIMENTI CASUALI, EVENTI e PROBABILITA
STATISTICA: esercizi svolti su ESPERIMENTI CASUALI, EVENTI e PROBABILITA 1 1 ESPERIMENTI CASUALI, EVENTI E PROBABILITA 2 1 ESPERIMENTI CASUALI, EVENTI E PROBABILITA 1.1 Calcolo combinatorio. 1. Una squadra
Calcolo Combinatorio e Probabilità
Calcolo Combinatorio e Probabilità Andrea Galasso 1 Calcolo Combinatorio Definizione 1 Fissati n, k N, con k n, indicheremo con D n,k := n! (n k)! le disposizioni di n oggetti in k posti e con DR n,k :=
Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE
Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA
Probabilità delle cause:
Probabilità delle cause: Probabilità condizionata 2 Teorema delle probabilità composte A B) A) B/A) 3 Teorema delle probabilità totali B )! 4 Teorema delle probabilità delle cause n i A! B ) A / B ) B
Esercizi svolti di statistica. Gianpaolo Gabutti
Esercizi svolti di statistica Gianpaolo Gabutti ([email protected]) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione
Statistica ARGOMENTI. Calcolo combinatorio
Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità
Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti
Compito in classe 4D/17 Gennaio 006 1 Oggetto: compito in Classe 4D/PNI Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 10 minuti Argomenti: Calcolo combinatorio e calcolo delle probabilità.
Calcolo della probabilità
Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.
Somma logica di eventi
Somma logica di eventi Da un urna contenente 24 palline numerate si estrae una pallina. Calcolare la probabilità dei seguenti eventi: a) esce un numero divisibile per 5 o superiore a 20, b) esce un numero
Università di Cassino. Esercitazione di Statistica 1 del 28 novembre Dott.ssa Paola Costantini
Università di Cassino Esercitazione di Statistica del 28 novembre 2007 Dott.ssa Paola Costantini Esercizio Considerando il DATASET DIPENDENTI, si calcoli la correlazione tra i caratteri STIPENDIO PERCEPITO
P (F E) = P (E) P (F E) = = 25
Regola del prodotto Conoscete la definizione di probabilità condizionata. Definizione 1. Siano E e F due eventi di uno spazio campionario S. Supponiamo P (F ) > 0. La probabilità condizionata dell evento
È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.
A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di
Si consideri un mazzo di carte da gioco francesi ed i seguenti eventi elementari:
ESERCIZIO 1.1 * Si consideri un mazzo di carte da gioco francesi ed i seguenti eventi elementari: A = {figura} B = {carta nera} C = {carta di fiori} D = {carta di cuori} Si determini la probabilità che,
p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4
CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,
CP110 Probabilità: Esonero 1. Testo e soluzione
Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 1 aprile, 2010 CP110 Probabilità: Esonero 1 Testo e soluzione 1. (7 pt Una scatola contiene 15 palle numerate da 1 a 15. Le palle
STATISTICA 1 ESERCITAZIONE 8
STATISTICA 1 ESERCITAZIONE 8 Dott. Giuseppe Pandolfo 18 Novembre 2013 CALCOLO DELLE PROBABILITA Elementi del calcolo delle probabilità: 1) Esperimento: fenomeno caratterizzato da incertezza 2) Evento:
0 z < z < 2. 0 z < z 3
CALCOLO DELLE PROBABILITÀ o - 7 gennaio 004. Elettronica : 4; Nettuno: 3.. Data un urna di composizione incognita con palline bianche e nere, sia K = il numero di palline bianche nell urna è il doppio
Evento Aleatorio. Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)
ELEMENTI DI CALCOLO DELLE PROBABILITA Evento Aleatorio Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado) Esempi di eventi aleatori 1. Ottenere un certo numero nel
Calcolo delle probabilità
Capitolo 1 Calcolo delle probabilità Esercizio I. 1 Luca prende il treno per andare a scuola e cerca il suo amico Giovanni. Luca sa che è ugualmente probabile che Giovanni abbia preso il bus o il treno
Esame di AM2 & EAP (270/04) a.a. 2009/10
Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della
Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)
Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le
PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare
PROBABILITA La teoria della probabilità si applica ad esperimenti aleatori o casuali: ossia, esperimenti il cui risultato non è prevedibile a priori. Ad esempio, lancio di un dado, lancio di una moneta,
Probabilità e Statistica per l Informatica Esercitazione 4
Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,
Esercizi su variabili discrete: binomiali e ipergeometriche
CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su variabili discrete: binomiali e ipergeometriche Es1 Due squadre di rugby si sfidano giocando fra loro varie partite La squadra che vince 4 partite
Esercizi su variabili aleatorie discrete
Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare
Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità
Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare
Estrazioni senza restituzione da un urna di composizione incognita. P(E i)=
Estrazioni senza restituzione da un urna di composizione incognita. Consideriamo n estrazioni senza restituzione da un urna contenente N palline, di cui r sono bianche, con r incognito. Introdotta la partizione
Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere
Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica 69AA) A.A. 06/7 - Prima prova in itinere 07-0-03 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità
Teoria della probabilità
Introduzione alla teoria della probabilità Teoria della probabilità Primi sviluppi nel XVII secolo (Pascal( Pascal, Fermat, Bernoulli); Nasce nell ambito dei giochi d azzardo; d La prima formalizzazione
Probabilità esempi. Aiutiamoci con una rappresentazione grafica:
Probabilità esempi Paolo e Francesca giocano a dadi. Paolo scommette che, lanciando due dadi, si otterrà come somma 8 oppure 9. Francesca scommette che si otterrà come somma un numero minore o uguale a
APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15
APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15 Elementi di calcolo combinatorio. Primi elementi di probabilita: denizioni
Esercitazione n. 2 del 19/04/2016 Docente: Bruno Gobbi
Esercitazione n. 2 del 19/04/2016 Docente: Bruno Gobbi ESERCIZI SULLE PROBABILITA 1) Da un mazzo di carte si estrae a caso una carta. Qual è la probabilità di estrarre una carta di fiori? P(fiori) = 13/52
II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17
II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile
I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito.
TEST DI AUTOVALUTAZIONE - SETTIMANA I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli
ESERCIZI SUL CALCOLO COMBINATORIO
ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUPPARE E CALCOLARE LE SEGUENTI ESPRESSIONI : numero esercizio risoluzione 1) D 3, ) P 4 3) P 6 3 4) 3,3 P 6 5) D ' 3, 6) C 4, 7) C n, n 8) D + D' C 4, 3, 3 3, 9)
Lezione 3 Calcolo delle probabilità
Lezione 3 Calcolo delle probabilità Definizione di probabilità La probabilità è lo studio degli esperimenti casuali e non deterministici Se lanciamo un dado sappiamo che cadrà ma non è certo che esca il
NOZIONI DI CALCOLO DELLE PROBABILITÀ
NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni
IL CALCOLO DELLE PROBABILITA
IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,
DOMANDA 1: mettere una croce sulla affermazione esatta (90 89)
PROVA D ESAME - 0 marzo 00 nome: cognome: SSIS-INDIRIZZO MATEMATICA E MATEMATICA APPLICATA (primo anno MATEMATICA APPLICATA B: CALCOLO DELLE PROBABILITÀ Per le domande a risposta aperta il punteggio varia
STATISTICA ESERCITAZIONE 9
STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione
Calcolo delle Probabilità Esercizi
Calcolo delle Probabilità Esercizi A.A 00-006 Costituenti. Siano dati eventi A, B, C tali che A B = Φ, A B C, determinare i costituenti. C C C C C C C [ AB C, A BC, A B C, A B C ]. Siano dati eventi A,
ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina?
ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? [4/52] 2. Estratta una Q, P che ad una seconda estrazione si presenti ancora
CP110 Probabilità: Esonero 1
Dipartimento di Matematica, Roma Tre Pietro Caputo 2016-17, II semestre 11 aprile, 2017 CP110 Probabilità: Esonero 1 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante l esame
PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.
PROVA SCRITTA DI STATISTICA cod. 4038 CLEA-CLAPI-CLEFIN-CLELI cod. 5047 CLEA-CLAPI-CLEFIN-CLEMIT 5 Novembre 003 SOLUZIONI MOD. A In 8 facoltà di un ateneo italiano vengono rilevati i seguenti dati campionari
Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3
1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2
Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.
Probabilità e Statistica Esercitazioni a.a. 2009/200 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Estrazioni I Ines Campa Probabilità e Statistica - Esercitazioni -
Esempio (Azzalini, pp. 6-15)
Inferenza statistica procedimento per indurre le caratteristiche non note di un aggregato a partire dalle informazioni disponibili su una parte di esso. Obiettivo del corso presentare la teoria ed i metodi
SARA BORLENGO MARTA LUCCHINI
SARA BORLENGO MARTA LUCCHINI COINCIDENZE? In quest aula ci sono almeno due persone che compiono gli anni lo stesso giorno. COINCIDENZE? In quest aula ci sono almeno due persone che compiono gli anni lo
Probabilità discreta
CAPITOLO 2 Probabilità discreta Esercizio 2.1 Eventi Un opportuno spazio degli eventi è dato da: Ω{(M,M), (M,F), (F, M), (F, F)}. L evento unione di primo figlio femmina e secondo figlio maschio è dato
Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali
Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si
Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1
Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni
Soluzioni degli esercizi proposti
Soluzioni degli esercizi proposti.9 a La cardinalità dell insieme dei numeri,..., 0 n che sono multipli di 5 è 0n 5. Dunque, poiché siamo in una condizione di equiprobabilità, la probabilità richiesta
ESERCIZI HLAFO ALFIE MIMUN
ESERCIZI HLAFO ALFIE MIMUN December, 27. Testo degli esercizi Risolvere i seguenti problemi: () Siano X, X 2, X 3 variabili aleatorie i.i.d. bernulliane di media.5 e siano Y, Y 2, Y 3, Y 4 variabili aleatorie
RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10
RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUARE E CALCOLARE LE SEGUENTI ESRESSIONI : numero esercizio risoluzione 1) D 3, 2 3 2 6 2) 4 3) 6 3 4! 4 3 24 6! 6 5 4 3 120 3! 3 4) 3,3 6 6! 6 5 4 3
3.1 La probabilità: eventi e variabili casuali
Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza
Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è
Cenni di probabilità di Carlo Elce Definizioni Lo spazio campionario per un esperimento è l'insieme di tutti i suoi possibili esiti. Per esempio, se l'esperimento è il lancio di due di dadi e si rappresentano
Esercizi di Probabilità - Matematica Applicata a. a Doriano Benedetti
Esercizi di Probabilità - Matematica Applicata a. a. 01-014 Doriano Benedetti 6 marzo 014 1 Esercizio 1 In quanti modi diversi si può vestire una persona che possiede 10 abiti, paia di scarpe e cappelli?
Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.
discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3
Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio
Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di
Probabilità Condizionale - 1
Probabilità Condizionale - 1 Come varia la probabilità al variare della conoscenza, ovvero delle informazioni in possesso di chi la calcola? ESEMPIO - Calcolare la probabilità che in una estrazione della
PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96
QUESITI 1 PROBABILITÀ 1. (Da Medicina e Odontoiatria 2015) La probabilità con cui un paziente deve attendere meno di dieci minuti il proprio turno in un ambulatorio medico è 0,8. Qual è la probabilità
Probabilità I Calcolo delle probabilità
Probabilità I Calcolo delle probabilità Nozioni di eventi. Definizioni di probabilità Calcolo di probabilità notevoli Probabilità condizionate Concetto di probabilità Cos'è una probabilità? Idea di massima:
La probabilità matematica
1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi
