Tutorato 1 (20/12/2012) - Soluzioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tutorato 1 (20/12/2012) - Soluzioni"

Transcript

1 Tutorato 1 (20/12/2012) - Soluzioni Esercizio 1 (v.c. fantasia) Si trovi il valore del parametro θ per cui la tabella seguente definisce la funzione di probabilità di una v.c. unidimensionale X. X P(x) 1/2 θ 2θ 1. Si calcolino P(0,5<X<2,5) e P(X>2,1). 2. Si calcolino il valore atteso e la varianza della v.c. 3. Si determini la funzione di ripartizione della v.c. X. La funzione p(x) rappresenta la funzione di probabilità di una v.c. X. Deve valere P(X = x) = 1 e P(X = x) 0 x. Quindi θ = 1/6. X P(x) ½ 1/6 2/6 2 x = 0 1. P(0.5<X<2.5)=P(X=1)+P(X=2)=½ P(X>2,1)=0. 2. E(X)=0+1/6+4/6=5/6 Var(X)=E(X 2 ) E(X) 2 =3/2 (5/6) 2 =29/36=0.81, essendo E(X 2 ) =0+1/6+8/6=3/2. 3. La funzione di ripartizione della v.c. X è data da: (x) = P(X x) da cui: Φ X 0 x < 0 0,5 0 x < 1 ( x) = 0,667 1 x < 2 1 x 2 Φ X

2 Esercizio 2. Un sintomo S è riconducibile a tre patologie M 1, M 2 e M 3 a due a due incompatibili. Sapendo che la probabilità che un individuo abbia la malattia M h è pari a h / 10 (h = 1, 2, 3), 1. si calcoli la probabilità di avere almeno una delle patologie, motivando la risposta; 2. dopo aver fornito la definizione di indipendenza di tre eventi, si stabilisca se i tre eventi M 1, M 2 e M 3 sono indipendenti. Sapendo, inoltre, che la probabilità che il sintomo S si manifesti in un soggetto affetto dalla malattia M h è pari a 1 / (h + 2), 3. si calcoli la probabilità di manifestazione del sintomo S, motivando la risposta; 4. si determini la probabilità che un individuo abbia la patologia M 2 dato che presenta il sintomo S, motivando la risposta; 5. data la presenza del sintomo S, qual è la malattia più probabile? (Si motivi la risposta). Un sintomo S è riconducibile a tre patologie M 1, M 2 e M 3 a due a due incompatibili. Sapendo che la probabilità che un individuo abbia la malattia M h è pari a h / 10 (h = 1, 2, 3) 1. P(M 1 M 2 M 3 ) = P(M 1 ) + P(M 2 ) + P(M 3 ) = ( ) / 10 = 3/5 = 0.6 per il terzo assioma di Kolmogorov (si veda pag.85 del libro di testo). 2. Per la definizione di indipendenza tra eventi si veda il libro di testo a pag.102. I tre eventi M 1, M 2 e M 3 non sono indipendenti, infatti basta dimostrare, per esempio, che: P (M 1 M 2 )= 0 P(M 1 ) P(M 2 ). Sapendo, inoltre, che P(S M h ) = 1 / (h+2), 3. P(S) = P(S M h ) P(M h ) = [h / (h+2)] / 10 = (1/3 + 2/4 + 3/5) / 10 = per la legge delle alternative (pag. 99 del libro di testo). 4. P(M 2 S) = P(S M 2 ) P(M 2 ) / P(S) = (1/20) / = per la formula di Bayes. 5. M 3, dato che P(M h S) = P(S M h ) P(M h ) / P(S) è massima per h = 3. Esercizio 3. Da un mazzo di 52 carte quanti modi possibili ci sono di scegliere 5 carte? Con la formula delle combinazioni otteniamo: C(52,5) =52!/(47!5!)= Esercizio 4. Si consideri un insieme di 11 studenti composto da 5 ragazzi e 6 ragazze. 1. In quanti modi diversi si possono sistemare in una fila di 11 sedie gli 11 studenti?

3 2. In quanti modi diversi si possono sistemare in una fila di 11 sedie gli 11 studenti, con la condizione che i ragazzi stiano tutti vicini tra loro così come anche le ragazze e che la prima sedia sia occupata da una ragazza? 1. Calcoliamo le permutazioni = k! = 11!= ! 5!= Esercizio 5. Da un urna contenente 44 palline, delle quali 11 sono bianche, si estraggono con reinserimento 3 palline. 1. Si calcoli la probabilità che la prima pallina estratta sia bianca. 2. Si determini la probabilità che, fra le tre palline estratte, una sia bianca e le altre due non siano bianche. 3. Si calcoli la probabilità che almeno una delle tre palline estratte sia bianca. 1. La probabilità che la prima pallina estratta sia bianca coincide con la proporzione p di palline bianche nell urna: p = 11 / 44 = ¼ = Sia A = {una pallina della terna è bianca e le altre due non lo sono} Sia B i l evento elementare {pallina bianca nell estrazione i} allora A= B B v 1B B v e quindi P(A)= P( B )+P( B v 1B )+P( B v ) essendo le terne incompatibili. Per l indipendenza delle singole estrazioni (essendo con reimmissione) si a P( B )=P( B v 1B )=P( B v )p(1 p) 2 da cui P(A) 3p(1 p) 2 = (3/4) 3 = Si ottenga il risultato precedente utilizzando la definizione classica di probabilità calcolando quindi il rapporto tra il numero delle possibili terne con una pallina bianca e il numero delle terne possibili.

4 Si ottenga il risultato anche utilizzando la distribuzione binomiale essendo il numero delle palle bianche nel campione una Bin(p=0.25,n=3) 3. Sia D l evento almeno una delle tre palline estratte è bianca e C =BBB. Allora P(D)=P( C v ) =1 P(C) e quindi P(D) =1 (1 p) 3 = 1 (3/4) 3 = Esercizio 6. Sapendo che A, B e C sono tre eventi tali che P(A) = 0.6, P(B) = 0.65, P(C) = 0.5, P(A B) = 0.55, P(A C) = 0.4, P(B C) = 0.9 e P(B A C) = 0.875, 1. si calcolino P(A B) e P(B A); 2. si stabilisca se A e B sono incompatibili, motivando la risposta; si ripeta l esercizio per gli eventi A e C 3. si stabilisca se A e B sono indipendenti, motivando la risposta; si ripeta l esercizio per gli eventi A e C 4. si calcoli P(C B); 5. si calcoli P(A B C). 1. Si ricordi che P(A B) = P(A B) / P(B) per definizione di probabilità condizionata dell evento A all evento B. Si ottiene quindi P(A B) = P(A B) / P(B) = 0.55/0.65 = Analogamente per P(B A) si ha: P(B A) = P(A B) / P(A) = 0.55/0.6 = 0.917; 2. A e B non sono incompatibili. Infatti se A e B fossero incompatibili allora A B= per definizione di eventi incompatibili. Si avrebbe dunque che P(A B) = P( ) = 0 ma P(A B) = 0.55 e quindi A B Il lettore si accerti di saper verificare che P( ) = 0 (si veda libro di testo pag. 85) 3. A e B non sono indipendenti. Infatti se A e B fossero stocasticamente indipendenti allora P(A B)=P(A)P(B) per definizione di indipendenza stocastica (paragrafo 3.5 libro di testo). Ma dai dati dell esercizio si ottiene P(A)P(B)= = = P(A B). 4. Per determinare la probabilità ricercata si consideri che

5 P(C B) P(C) 0.5 P (C B) = = P(B C) = 0.9 = P(B) P(B) 0.65 Nella prima uguaglianza è stata applicata la definizione di probabilità condizionata, mentre nella seconda il principio della probabilità composta (pag del libro di testo). La prima uguaglianza potrebbe essere rimossa applicando il teorema di Bayes (pag del libro di testo) al caso particolare di un unica causa C ottenendo direttamente P(C) 0.5 P (C B) = P(B C) = 0.9 = P(B) Per determinare P(A B C) si ponga per comodità A C = E e quindi B E = A B C per la commutatività e l associatività dell intersezione fra insiemi (si veda libro di testo paragrafo 2.2). Si ottiene dunque: P(A B C) = P(B E) = P(B E) P(E) = P(B A C) P(A C) = =0.35.

Calcolo delle Probabilità: esercitazione 2

Calcolo delle Probabilità: esercitazione 2 Argomento: eventi indipendenti ed incompatibili, probabilità dell evento unione e complementare, probabilità condizionata, principio della probabilità composta. Paragrafi 3.2, 3.3, 3.4 e 3.5 libro di testo.

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Riani [email protected] http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio

La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio Massimo Buzzi, Lucio Alberto Monti 1 Mappe Riassuntive 1.1 Calcolo combinatorio 1.2 Probabilità 1 2 Glossario

Dettagli

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica niroma1.it. Probabilità

Esercitazioni di Statistica Dott.ssa Cristina Mollica niroma1.it. Probabilità Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@u niroma1.it Probabilità Esercizio 1. Un esperimento casuale consiste nel lanciare tre volte una moneta. Si determini lo spazio campionario

Dettagli

Esercizi di Calcolo combinatorio: disposizioni

Esercizi di Calcolo combinatorio: disposizioni Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: [email protected] aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione

Dettagli

( ) ( ) Ω={1,2,3,4,5,6} B B A Siano A e B due eventi di Ω: si definisce evento condizionato B A. Consideriamo il lancio di un dado:

( ) ( ) Ω={1,2,3,4,5,6} B B A Siano A e B due eventi di Ω: si definisce evento condizionato B A. Consideriamo il lancio di un dado: Eventi condizionati Quando si ha motivo di credere che il verificarsi di uno o più eventi sia subordinato al verificarsi di altri eventi, si è soliti distinguere tra eventi dipendenti(o condizionati )

Dettagli

Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: [email protected]

Dettagli

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6 EVENTI ALEATORI E LORO RAPPRESENTAZIONE Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U... U.. La definizione classica di probabilità dice che, se gli eventi che si considerano

Dettagli

Soluzione esercizi (quarta settimana)

Soluzione esercizi (quarta settimana) Soluzione esercizi (quarta settimana) Marco Riani Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? 1 Esempio Gioco la schedina mettendo a caso i segni (1 X

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 51 Introduzione Il Calcolo delle

Dettagli

STATISTICA: esercizi svolti su ESPERIMENTI CASUALI, EVENTI e PROBABILITA

STATISTICA: esercizi svolti su ESPERIMENTI CASUALI, EVENTI e PROBABILITA STATISTICA: esercizi svolti su ESPERIMENTI CASUALI, EVENTI e PROBABILITA 1 1 ESPERIMENTI CASUALI, EVENTI E PROBABILITA 2 1 ESPERIMENTI CASUALI, EVENTI E PROBABILITA 1.1 Calcolo combinatorio. 1. Una squadra

Dettagli

Calcolo Combinatorio e Probabilità

Calcolo Combinatorio e Probabilità Calcolo Combinatorio e Probabilità Andrea Galasso 1 Calcolo Combinatorio Definizione 1 Fissati n, k N, con k n, indicheremo con D n,k := n! (n k)! le disposizioni di n oggetti in k posti e con DR n,k :=

Dettagli

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA

Dettagli

Probabilità delle cause:

Probabilità delle cause: Probabilità delle cause: Probabilità condizionata 2 Teorema delle probabilità composte A B) A) B/A) 3 Teorema delle probabilità totali B )! 4 Teorema delle probabilità delle cause n i A! B ) A / B ) B

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti ([email protected]) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti Compito in classe 4D/17 Gennaio 006 1 Oggetto: compito in Classe 4D/PNI Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 10 minuti Argomenti: Calcolo combinatorio e calcolo delle probabilità.

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

Somma logica di eventi

Somma logica di eventi Somma logica di eventi Da un urna contenente 24 palline numerate si estrae una pallina. Calcolare la probabilità dei seguenti eventi: a) esce un numero divisibile per 5 o superiore a 20, b) esce un numero

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 28 novembre Dott.ssa Paola Costantini

Università di Cassino. Esercitazione di Statistica 1 del 28 novembre Dott.ssa Paola Costantini Università di Cassino Esercitazione di Statistica del 28 novembre 2007 Dott.ssa Paola Costantini Esercizio Considerando il DATASET DIPENDENTI, si calcoli la correlazione tra i caratteri STIPENDIO PERCEPITO

Dettagli

P (F E) = P (E) P (F E) = = 25

P (F E) = P (E) P (F E) = = 25 Regola del prodotto Conoscete la definizione di probabilità condizionata. Definizione 1. Siano E e F due eventi di uno spazio campionario S. Supponiamo P (F ) > 0. La probabilità condizionata dell evento

Dettagli

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo. A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di

Dettagli

Si consideri un mazzo di carte da gioco francesi ed i seguenti eventi elementari:

Si consideri un mazzo di carte da gioco francesi ed i seguenti eventi elementari: ESERCIZIO 1.1 * Si consideri un mazzo di carte da gioco francesi ed i seguenti eventi elementari: A = {figura} B = {carta nera} C = {carta di fiori} D = {carta di cuori} Si determini la probabilità che,

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

CP110 Probabilità: Esonero 1. Testo e soluzione

CP110 Probabilità: Esonero 1. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 1 aprile, 2010 CP110 Probabilità: Esonero 1 Testo e soluzione 1. (7 pt Una scatola contiene 15 palle numerate da 1 a 15. Le palle

Dettagli

STATISTICA 1 ESERCITAZIONE 8

STATISTICA 1 ESERCITAZIONE 8 STATISTICA 1 ESERCITAZIONE 8 Dott. Giuseppe Pandolfo 18 Novembre 2013 CALCOLO DELLE PROBABILITA Elementi del calcolo delle probabilità: 1) Esperimento: fenomeno caratterizzato da incertezza 2) Evento:

Dettagli

0 z < z < 2. 0 z < z 3

0 z < z < 2. 0 z < z 3 CALCOLO DELLE PROBABILITÀ o - 7 gennaio 004. Elettronica : 4; Nettuno: 3.. Data un urna di composizione incognita con palline bianche e nere, sia K = il numero di palline bianche nell urna è il doppio

Dettagli

Evento Aleatorio. Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)

Evento Aleatorio. Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado) ELEMENTI DI CALCOLO DELLE PROBABILITA Evento Aleatorio Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado) Esempi di eventi aleatori 1. Ottenere un certo numero nel

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Capitolo 1 Calcolo delle probabilità Esercizio I. 1 Luca prende il treno per andare a scuola e cerca il suo amico Giovanni. Luca sa che è ugualmente probabile che Giovanni abbia preso il bus o il treno

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare PROBABILITA La teoria della probabilità si applica ad esperimenti aleatori o casuali: ossia, esperimenti il cui risultato non è prevedibile a priori. Ad esempio, lancio di un dado, lancio di una moneta,

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Esercizi su variabili discrete: binomiali e ipergeometriche

Esercizi su variabili discrete: binomiali e ipergeometriche CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su variabili discrete: binomiali e ipergeometriche Es1 Due squadre di rugby si sfidano giocando fra loro varie partite La squadra che vince 4 partite

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare

Dettagli

Estrazioni senza restituzione da un urna di composizione incognita. P(E i)=

Estrazioni senza restituzione da un urna di composizione incognita. P(E i)= Estrazioni senza restituzione da un urna di composizione incognita. Consideriamo n estrazioni senza restituzione da un urna contenente N palline, di cui r sono bianche, con r incognito. Introdotta la partizione

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica 69AA) A.A. 06/7 - Prima prova in itinere 07-0-03 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità

Dettagli

Teoria della probabilità

Teoria della probabilità Introduzione alla teoria della probabilità Teoria della probabilità Primi sviluppi nel XVII secolo (Pascal( Pascal, Fermat, Bernoulli); Nasce nell ambito dei giochi d azzardo; d La prima formalizzazione

Dettagli

Probabilità esempi. Aiutiamoci con una rappresentazione grafica:

Probabilità esempi. Aiutiamoci con una rappresentazione grafica: Probabilità esempi Paolo e Francesca giocano a dadi. Paolo scommette che, lanciando due dadi, si otterrà come somma 8 oppure 9. Francesca scommette che si otterrà come somma un numero minore o uguale a

Dettagli

APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15

APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15 APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15 Elementi di calcolo combinatorio. Primi elementi di probabilita: denizioni

Dettagli

Esercitazione n. 2 del 19/04/2016 Docente: Bruno Gobbi

Esercitazione n. 2 del 19/04/2016 Docente: Bruno Gobbi Esercitazione n. 2 del 19/04/2016 Docente: Bruno Gobbi ESERCIZI SULLE PROBABILITA 1) Da un mazzo di carte si estrae a caso una carta. Qual è la probabilità di estrarre una carta di fiori? P(fiori) = 13/52

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito.

I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. TEST DI AUTOVALUTAZIONE - SETTIMANA I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

ESERCIZI SUL CALCOLO COMBINATORIO

ESERCIZI SUL CALCOLO COMBINATORIO ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUPPARE E CALCOLARE LE SEGUENTI ESPRESSIONI : numero esercizio risoluzione 1) D 3, ) P 4 3) P 6 3 4) 3,3 P 6 5) D ' 3, 6) C 4, 7) C n, n 8) D + D' C 4, 3, 3 3, 9)

Dettagli

Lezione 3 Calcolo delle probabilità

Lezione 3 Calcolo delle probabilità Lezione 3 Calcolo delle probabilità Definizione di probabilità La probabilità è lo studio degli esperimenti casuali e non deterministici Se lanciamo un dado sappiamo che cadrà ma non è certo che esca il

Dettagli

NOZIONI DI CALCOLO DELLE PROBABILITÀ

NOZIONI DI CALCOLO DELLE PROBABILITÀ NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,

Dettagli

DOMANDA 1: mettere una croce sulla affermazione esatta (90 89)

DOMANDA 1: mettere una croce sulla affermazione esatta (90 89) PROVA D ESAME - 0 marzo 00 nome: cognome: SSIS-INDIRIZZO MATEMATICA E MATEMATICA APPLICATA (primo anno MATEMATICA APPLICATA B: CALCOLO DELLE PROBABILITÀ Per le domande a risposta aperta il punteggio varia

Dettagli

STATISTICA ESERCITAZIONE 9

STATISTICA ESERCITAZIONE 9 STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione

Dettagli

Calcolo delle Probabilità Esercizi

Calcolo delle Probabilità Esercizi Calcolo delle Probabilità Esercizi A.A 00-006 Costituenti. Siano dati eventi A, B, C tali che A B = Φ, A B C, determinare i costituenti. C C C C C C C [ AB C, A BC, A B C, A B C ]. Siano dati eventi A,

Dettagli

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina?

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? [4/52] 2. Estratta una Q, P che ad una seconda estrazione si presenti ancora

Dettagli

CP110 Probabilità: Esonero 1

CP110 Probabilità: Esonero 1 Dipartimento di Matematica, Roma Tre Pietro Caputo 2016-17, II semestre 11 aprile, 2017 CP110 Probabilità: Esonero 1 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante l esame

Dettagli

PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.

PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD. PROVA SCRITTA DI STATISTICA cod. 4038 CLEA-CLAPI-CLEFIN-CLELI cod. 5047 CLEA-CLAPI-CLEFIN-CLEMIT 5 Novembre 003 SOLUZIONI MOD. A In 8 facoltà di un ateneo italiano vengono rilevati i seguenti dati campionari

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica. Probabilità e Statistica Esercitazioni a.a. 2009/200 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Estrazioni I Ines Campa Probabilità e Statistica - Esercitazioni -

Dettagli

Esempio (Azzalini, pp. 6-15)

Esempio (Azzalini, pp. 6-15) Inferenza statistica procedimento per indurre le caratteristiche non note di un aggregato a partire dalle informazioni disponibili su una parte di esso. Obiettivo del corso presentare la teoria ed i metodi

Dettagli

SARA BORLENGO MARTA LUCCHINI

SARA BORLENGO MARTA LUCCHINI SARA BORLENGO MARTA LUCCHINI COINCIDENZE? In quest aula ci sono almeno due persone che compiono gli anni lo stesso giorno. COINCIDENZE? In quest aula ci sono almeno due persone che compiono gli anni lo

Dettagli

Probabilità discreta

Probabilità discreta CAPITOLO 2 Probabilità discreta Esercizio 2.1 Eventi Un opportuno spazio degli eventi è dato da: Ω{(M,M), (M,F), (F, M), (F, F)}. L evento unione di primo figlio femmina e secondo figlio maschio è dato

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

Soluzioni degli esercizi proposti

Soluzioni degli esercizi proposti Soluzioni degli esercizi proposti.9 a La cardinalità dell insieme dei numeri,..., 0 n che sono multipli di 5 è 0n 5. Dunque, poiché siamo in una condizione di equiprobabilità, la probabilità richiesta

Dettagli

ESERCIZI HLAFO ALFIE MIMUN

ESERCIZI HLAFO ALFIE MIMUN ESERCIZI HLAFO ALFIE MIMUN December, 27. Testo degli esercizi Risolvere i seguenti problemi: () Siano X, X 2, X 3 variabili aleatorie i.i.d. bernulliane di media.5 e siano Y, Y 2, Y 3, Y 4 variabili aleatorie

Dettagli

RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10

RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10 RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUARE E CALCOLARE LE SEGUENTI ESRESSIONI : numero esercizio risoluzione 1) D 3, 2 3 2 6 2) 4 3) 6 3 4! 4 3 24 6! 6 5 4 3 120 3! 3 4) 3,3 6 6! 6 5 4 3

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è Cenni di probabilità di Carlo Elce Definizioni Lo spazio campionario per un esperimento è l'insieme di tutti i suoi possibili esiti. Per esempio, se l'esperimento è il lancio di due di dadi e si rappresentano

Dettagli

Esercizi di Probabilità - Matematica Applicata a. a Doriano Benedetti

Esercizi di Probabilità - Matematica Applicata a. a Doriano Benedetti Esercizi di Probabilità - Matematica Applicata a. a. 01-014 Doriano Benedetti 6 marzo 014 1 Esercizio 1 In quanti modi diversi si può vestire una persona che possiede 10 abiti, paia di scarpe e cappelli?

Dettagli

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice. discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3

Dettagli

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di

Dettagli

Probabilità Condizionale - 1

Probabilità Condizionale - 1 Probabilità Condizionale - 1 Come varia la probabilità al variare della conoscenza, ovvero delle informazioni in possesso di chi la calcola? ESEMPIO - Calcolare la probabilità che in una estrazione della

Dettagli

PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96

PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96 QUESITI 1 PROBABILITÀ 1. (Da Medicina e Odontoiatria 2015) La probabilità con cui un paziente deve attendere meno di dieci minuti il proprio turno in un ambulatorio medico è 0,8. Qual è la probabilità

Dettagli

Probabilità I Calcolo delle probabilità

Probabilità I Calcolo delle probabilità Probabilità I Calcolo delle probabilità Nozioni di eventi. Definizioni di probabilità Calcolo di probabilità notevoli Probabilità condizionate Concetto di probabilità Cos'è una probabilità? Idea di massima:

Dettagli

La probabilità matematica

La probabilità matematica 1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi

Dettagli