CALCOLO COMBIN I A N T A O T RIO
|
|
|
- Gerardo Natale
- 10 anni fa
- Visualizzazioni
Transcript
1 CALCOLO COMBINATORIO
2 Disposizioni Si dicono disposizioni di N elementi di classe k tutti quei gruppi che si possono formare prendendo ogni volta k degli N elementi e cambiando ogni volta un elemento o l ordine degli elementi stessi. Le disposizioni possono essere: senza ripetizione o con ripetizione
3 Disposizioni con ripetizione quando ogni elemento può comparire più volte in ciascun gruppo e risultano pari a: D N, k N ad esempio avendo le prime quattro lettere dell alfabeto a, b, c, d, prendendole a due a due è possibile ottenere i seguenti gruppi: aa, ab, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd il numero dei gruppi risulta k r D 4 2 4,2 16
4 Disposizioni con ripetizione D N, k N k Esempi: Quante colonne del totocalcio posso compilare? Quante password posso creare con 5 lettere? Esercizio: Quante Q auto posso immatricolare i considerando d l attuale l numerazione delle dll targhe ( AB 123 XY )? Considerando le 26 lettere dell alfabeto e le 10 cifre, ottengo: Dal primo gruppo di lettere: D 26,2 = 26 2 = 676 modi per disporre le lettere; Dal gruppo di cifre:d 10,3 = 10 3 = 1000 modi per disporre le cifre; Dall ultimo gruppo: D 26,2 = 26 2 = 676 modi per disporre le lettere; Poiché a ciascun modo del primo gruppo posso abbinare 1000 modi del secondo, e a ciascuno di questi abbinamenti posso abbinare uno dei 676 modi dell ultimo gruppo, in definitiva posso immatricolare: 676 * 1000 * 676 = automobili
5 Disposizioni senza ripetizione quando ogni elemento deve comparire una sola volta in ciascun gruppo e risultano pari a (il numero dei termini del prodotto è pari a k): D N, k N 1 N 2 N 3... N k N 1 N! N k! avendo le prime quattro lettere dell alfabeto lf a, b, c, d, prendendole d a due a due è possibile ottenere i seguenti gruppi: il numero dei gruppi risulta ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc 4! ! D,
6 Disposizioni senza ripetizione (semplici) D N, k N! N k! Esempi: In quanti modi dispongo 7 palline di diverso colore in gruppi da quattro? Esercizio: In quanti modi 5 persone si siedono su 8 posti? E come se dovessi calcolare quanti gruppi posso realizzare con 8 sedie prese in gruppi di 5. D 8,5 8! 8 5! 8! = 8*7*6*5*4 = !
7 Combinazioni Si dicono combinazioni di N elementi di classe k tutti quei gruppi che si possono formare prendendo ogni volta k degli N elementi e cambiando ogni volta un elemento e non l ordine degli elementi stessi. Sono in pratica disposizioni dalle quali vengono escluse le combinazioni sovrapponibili (ovvero che contengono i medesimi ioggetti anche se disposti i in diverso ordine). Le combinazioni possono essere: senzaripetizione o con ripetizione
8 Combinazioni senza ripetizione (semplice) quando ogni elemento deve comparire una sola volta in ciascun gruppo e risultano pari a: N N 1 N 2 N 3... N k N! N 1 C N, k k! k! ( N k )! k ad esempio avendo le prime cinque lettere dell alfabeto lf a, b, c, d, e, prendendole d a due a due è possibile ottenere i seguenti gruppi: il numero dei gruppi risulta ab, ac, ad, ae, bc, bd, be, cd, ce, de; ! 2! 5 2! C 4, 2 10
9 Combinazioni senza ripetizione (semplice) N! N, k!( N k )! C k N kk Esempi: In quanti modi scelgo tre interrogati tra 20 alunni? In quanti modi estraggo quattro carte da un mazzo di quaranta? Esercizio: In quanti modi è possibile dividere 20 alunni 4 gruppi, due da 6 e due da 4? 20! I primi 6 ragazzi possono essere scelti tra 20 in C 20, 6 modi 6! (20 6 )! 14! I successivi 6 ragazzi scelti tra 14 in C modi 14, 6 6! (14 6 )! 8! I successivi 4 ragazzi: C 8, 4 4! (8 4 )! I restanti 4 possono essere scelti in un modo solo.
10 Combinazioni con ripetizione quando ogni elemento può comparire più volte in ciascun gruppo e risultano pari a : r C N, k N k 1 k ad esempio avendo le prime cinque lettere dell alfabeto lf a, b, c, d, e, prendendole d a due a due è possibile ottenere i seguenti gruppi: aa, ab, ac, ad, ae, bb, bc, bd, be, cc, cd, ce, dd, de, ee; il numero dei gruppi risulta N k 1! k! ( N 1)! 1! 5 2! 2! 5 1 r C 5, 2 15
11 Combinazioni con ripetizione r C N, k N k 1! k! ( N 1 )! N k 1 k Esempi: In quanti modi distribuisco 6 oggetti in 4 scatole? In quanti modi distribuisco 8 libri a 5 studenti?
12 Permutazioni Si dicono permutazioni di N elementi tutti quei gruppi che si possono formare con gli N elementi cambiando l ordine degli elementi stessi. Ad esempio avendo le prime tre lettere dell alfabeto a, b, c, è possibile ottenere i seguenti gruppi: abc, acb, bac, bca, cab, cba. Ilnumero dei gruppi che si possono formare risulta pari a P N N 1 N 2 N N! N 1
13 Permutazioni P N N! Esempi: In I quanti modi metto 10 libri i (tutti) tti) sullo scaffale? Esercizio: In quanti modi si possono sistemare in una fila di sedie 5 ragazzi e 6 ragazze, con la condizione che i ragazzi stiano tutti vicini tra taoocos loro così come le ragazze? Si tratta di un prodotto tra due permutazioni, una riferita ai 5 ragazzi e l altra alle 6 ragazze, per cui abbiamo: 5! * 6! = 120 * 720 = 86400
14 Calcolo combinatorio Distribuzione binomiale (teorema delle prove ripetute) La distribuzione binomiale consente di valutare la probabilità che una modalità di un evento con probabilità p si verifichi un determinato numero di volte i entro un numero totale n di eventi. La formula è: i n i q p n p n i P ),, ( q p i p n i ),, (
15 Distribuzione binomiale (teorema delle prove ripetute) P n i i ni ( i, n, p ) p q Esempi: Su 10 figli 7 siano maschi (n=10; i=7; p=0,5) Su 8 lanci di dado il due esca tre volte (n=8; i=3; p=1/6)
Appunti ed esercizi di combinatoria. Alberto Carraro
Appunti ed esercizi di combinatoria Alberto Carraro December 2, 2009 01 Le formule principali per contare Disposizioni Sia A un insieme di n 1 elementi distinti Le sequenze di 1 k n elementi scelti senza
Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche
Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)
Cenni sul calcolo combinatorio
Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un
Esempio II.1.2. Esempio II.1.3. Esercizi
Calcolo combinatorio Il calcolo combinatorio consiste nello sviluppo di nozioni e tecniche per contare i possibili ordinamenti di un insieme e le possibili scelte di sottoinsiemi di un insieme Ha numerosi
Cenni di calcolo combinatorio
Cenni di calcolo combinatorio 1 Introduzione Calcolare quanti sono i diversi modi di ordinare un insieme di oggetti è un problema interessante. Quante sigle diverse si possono fare con le tre lettere RST?
Esercizi di calcolo combinatorio
CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta
LEZIONE 5: CALCOLO COMBINATORIO
LEZIONE 5: CALCOLO COMBINATORIO e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 31 Ottobre 2012 Cos è il calcolo combinatorio?
ESERCIZI DI CALCOLO COMBINATORIO
ESERCIZI DI CALCOLO COMBINATORIO 1. Calcolare il numero degli anagrammi che possono essere formati con le lettere della parola Amore. [120] 2. Quante partite di poker diverse possono essere giocate da
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca
Esercizi sul calcolo delle probabilità
Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità
Calcolo combinatorio
Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica
Esercizi di Probabilità e Statistica
Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare
IL CALCOLO COMBINATORIO
IL CALCOLO COMBINATORIO Giochiamo a dadi Nel XVII secolo il cavaliere De Meré, forte giocatore, come spesso accadeva fra la nobiltà di quel tempo, si pose questo quesito: Che cosa è più conveniente, scommettere
IL CALCOLO COMBINATORIO
IL CALCOLO COMBINATORIO A cosa serve???? Wiki says: Il calcolo combinatorio studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un insieme finito di oggetti. In altre parole.
Esercizi di Calcolo delle Probabilità (calcolo combinatorio)
Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte
CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate
CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability
Esercitazioni di Statistica
Esercitazioni di Statistica Calcolo delle probabilità Prof. Livia De Giovanni [email protected] Esercizio 1 Si vuole studiare la distribuzione del sesso dei figli nelle famiglie aventi due figli
Esericizi di calcolo combinatorio
Esericizi di calcolo combinatorio Alessandro De Gregorio Sapienza Università di Roma alessandrodegregorio@uniroma1it Problema (riepilogativo) La segretaria di un ufficio deve depositare 3 lettere in 5
3. Formare tutte le parole (anche prive di senso) che si possono ottenere utilizzando tre lettere della parola AROMI. Quante sono? [R.
1. Scrivere tutti gli anagrammi della parola ARTO. [R. 24] 2. Scrivere tutti gli anagrammi della parola ORE. [R. 6] 3. Formare tutte le parole (anche prive di senso) che si possono ottenere utilizzando
Risolvi le seguenti equazioni e disequazioni fra [ 0 ; 2 π ]
IV A GAT PRIMA VERIFICA DI MATEMATICA 3 ottobre 0 Risolvi le seguenti equazioni e disequazioni fra [ 0 ; π ].. 3... 6. 7. 8. Risultati:. = π/6 e = 7π/6. =π/ ; =π/6 ; =π/6 3. =π/3 ; =π/3. =π/3 ; =π/3. π/
Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( )
Perché il calcolo combinatorio Basato sulle idee primitive di distinzione e di classificazione, stabilisce in quanti modi diversi si possono combinare degli oggetti E molto utile nell enumerazione dei
CALCOLO COMBINATORIO
CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,
Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.
Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono
Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu
Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu 1. Gli interi da 1 a 9 sono scritti nelle 9 caselle di una scacchiera 3x3, ogni intero in ogni casella diversa, in modo
metodi matematici per l ingegneria prove scritte d esame 1 Indice
metodi matematici per l ingegneria prove scritte d esame Indice. Novembre 4 - Prova in itinere. Luglio 5.. Febbraio 6 4 4. Giugno 6. 5 5. Luglio 6 6 . Novembre 4 - Prova in itinere Esercizio. Una scatola
Test sul calcolo della probabilità
Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è
CALCOLO COMBINATORIO
CALCOLO COMBINATORIO CHE COS E? Il calcolo combinatorio è un particolare ramo della matematica applicata avente come scopo la misurazione del numero di raggruppamenti diversi che si possono comporre prendendo
Probabilità discreta
Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che
8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?
www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0
Dagli insiemi al calcolo combinatorio
Dagli insiemi al calcolo combinatorio Il calcolo combinatorio è una parte della matematica che si occupa di contare gli elementi di un insieme finito, ottenuto a partire da altri insiemi, dei quali si
Pre Test 2008... Matematica
Pre Test 2008... Matematica INSIEMI NUMERICI Gli insiemi numerici (di numeri) sono: numeri naturali N: insieme dei numeri interi e positivi {1; 2; 3; 4;...} numeri interi relativi Z: insieme dei numeri
matematica probabilmente
IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: [email protected] - www.immaginarioscientifico.it indice Altezze e
Somma logica di eventi
Somma logica di eventi Da un urna contenente 24 palline numerate si estrae una pallina. Calcolare la probabilità dei seguenti eventi: a) esce un numero divisibile per 5 o superiore a 20, b) esce un numero
1 Calcolo combinatorio
1 Calcolo combinatorio In questo capitolo andremo ad introdurre le basi del calcolo combinatorio e le analizzeremo partendo dal caso pratico della risoluzione di un esercizio per poi dare la formulazione
Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita
Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi
LABORATORIO DI ALGEBRA. Elementi di calcolo combinatorio
UNIVERSITA DEGLI STUDI DI PALERMO SCUOLA INTERUNIVERSITARIA SICILIANA DI SPECIALIZZAZIONE PER L INSEGNAMENTO SECONDARIO LABORATORIO DI ALGEBRA Elementi di calcolo combinatorio Specializzandi : Dott.ssa
LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ
LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e
Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni
Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre
Matematica Applicata. Probabilità e statistica
Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato
Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio
Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Alessandro Sicco [email protected] Lezione 1. Calcolo combinatorio, formula delle probabilitá totali, formula di Bayes Esercizio 1.1. 7 bambini
11. Esercizi su: calcolo combinatorio.
M. Barlotti Esercizi di Algebra v.!". Capitolo "" Pag. 1 11. Esercizi su: calcolo combinatorio. Esercizio 11.1 In quanti modi diversi si possono distribuire $& caramelle alla menta (tutte uguali fra loro)
15. Antico gioco russo
15. Antico gioco russo In un antico gioco russo, attraverso i risultati casuali ottenuti dall allacciamento di cordicelle, i giovani cercavano una previsione sul tipo di legame che si sarebbe instaurata
RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :
RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una
I Giochi di Archimede - Soluzioni Biennio 22 novembre 2012
PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio novembre 0 Griglia delle risposte corrette Problema Risposta
(concetto classico di probabilità)
Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi
k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)
b) (vedi grafo di lato) 7 0 9 0 0 0 ( E ) + + 0, ) Calcolare, riguardo al gioco del totocalcio, la probabilità dei seguenti eventi utilizzando il calcolo combinatorio a) E : fare b) E : fare 0 c) E : fare
Calcolo delle probabilità
Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità
Interesse, sconto, ratei e risconti
TXT HTM PDF pdf P1 P2 P3 P4 293 Interesse, sconto, ratei e risconti Capitolo 129 129.1 Interesse semplice....................................................... 293 129.1.1 Esercizio per il calcolo dell
Differenza in punti percentuali 25,0 20,0 15,0 10,0 5,0 0,0 -5,0 -10,0 -15,0 -20,0. B3_a. A5_f. B3_d. B3_b. A5_i. A5_a. A5_e. A5_h. A5_d. A5_b.
A1 A2 A3 A4 A5_a A5_b A5_c A5_d A5_e A5_f A5_g A5_h A5_i B1 B2 B3_a B3_b B3_c B3_d B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 C1 C2 C3 C4 C5 C6 Differenza in punti percentuali Media punteggi classe per ambito
Il formato BITMAP. Introduzione. Il formato BITMAP
Il formato BITMAP Introduzione Il Bitmap è il formato di visualizzazione delle immagini dei sistema operativo Windows e, anche se è uno dei formati più vecchi, è ancora molto utilizzato e soprattutto è
1. Elementi di Calcolo Combinatorio.
. Elementi di Calolo Combinatorio. Prinipio Base del Conteggio Supponiamo he si devono ompiere due esperimenti. Se l esperimento uno può assumere n risultati possibili, e per ognuno di questi i sono n
PROBABILITA' E VARIABILI CASUALI
PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di
Esercizio 1. Svolgimento
Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento
Un gioco con tre dadi
Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.
Probabilità e Statistica Esercitazioni. a.a. 2006/2007
Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile
Kangourou Italia Gara del 22 marzo 2011 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria
Testi_11Mat.qxp 19-05-2011 21:20 Pagina 5 Kangourou Italia Gara del 22 marzo 2011 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1.
Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.
Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel
Il presente supporto consente la gestione delle gare Giovanili. Premere il pulsante Immissione Dati Gara
Il presente supporto consente la gestione delle gare Giovanili. Premere il pulsante Immissione Dati Gara Su questa pagina si devono inserire i dati caratteristici della gara Premere il pulsante Inserimento
Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN [email protected]
Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN [email protected] Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte
24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2
Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6
COEFFICIENTI BINOMIALI
COEFFICIENTI BINOMIALI Michele Impedovo micheleimpedovo@uni-bocconiit Una definizione insiemistica Se n è un numero naturale e è un numero naturale compreso tra e n, si indica con il simbolo il coefficiente
Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.
Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo
Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k
Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica
Regolamento di attribuzione del codice ISBN e di erogazione dei servizi dell Agenzia ISBN
Regolamento di attribuzione del codice ISBN e di erogazione dei servizi dell Agenzia ISBN Compilando l apposito form web di adesione il richiedente formula all Agenzia ISBN una proposta per l attribuzione
RETTE, PIANI, SFERE, CIRCONFERENZE
RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,
STRUTTURE ALGEBRICHE
STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione
Operatori logici e porte logiche
Operatori logici e porte logiche Operatori unari.......................................... 730 Connettivo AND........................................ 730 Connettivo OR..........................................
Lezione 9: Cambio di base
Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire
A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.
ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore
Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.
Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni
TEOREMI SULLA PROBABILITÀ
TEOREMI SULLA PROBABILITÀ o Probabilità totale oprobabilità contraria oprobabilità condizionata odipendenza stocastica oprobabilità composta oformula di Bayes oproblemi di riepilogo Probabilità di eventi
Interesse, sconto, ratei e risconti
129 Interesse, sconto, ratei e risconti Capitolo 129 129.1 Interesse semplice....................................................... 129 129.1.1 Esercizio per il calcolo dell interesse semplice........................
Probabilità e statistica
Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità
Algumas considerações a respeito do regime jurídico dos contratos bancários no ordenamento jurídico pátrio
ISSN 1127-8579 Pubblicato dal 27/10/2011 All'indirizzo http://www.diritto.it/docs/32508-algumas-considera-es-a-respeito-do-regimejur-dico-dos-contratos-banc-rios-no-ordenamento-jur-dico-p-trio Autore:
Trasformazioni Geometriche 1 Roberto Petroni, 2011
1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni
Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali
1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata
Circolare N. 155 del 26 Novembre 2014
Circolare N. 155 del 26 Novembre 2014 Operatori dell e-commerce - partite dal 1 ottobre le registrazioni al mini sportello unico Gentile cliente, con la presente desideriamo informarla che con il Provvedimento
Anteprima Finale Categoria Corsi di Statistica
1 di 8 08/04/2011 9.01 SiS-Scuola-28-SEZIONE STATISTICA fad TC128STAT Quiz Finale Categoria Corsi di Statistica Tentativo 1 Sei collegato come piero zulli. (Esci) Info Risultati Anteprima Modifica Anteprima
Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014
Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 LIVELLO STUDENT K,M N CD BC A S1. (5 punti ) In figura si vede una circonferenza della quale i segmenti AB, BC e CD
progetti guidati EXCEL Dalla tabella statistica al relativo grafico
EXCEL progetti guidati Dalla tabella statistica al relativo grafico L interpretazione di dati relativi all andamento di un particolare fenomeno risulta più agevole se tali dati sono rappresentati in forma
STATISTICA Lezioni ed esercizi
Università di Torino QUADERNI DIDATTICI del Dipartimento di Matematica MARIA GARETTO STATISTICA Lezioni ed esercizi Corso di Laurea in Biotecnologie A.A. 00/00 Quaderno # Novembre 00 M. Garetto - Statistica
1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.
Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso
Generale: Documento PKCS#7: Status documento: Nome file p7m: Impronta SHA1 (hex): Impronta SHA256 (hex): Contenuto: Tipo documento: Dimensioni: Impronta SHA1 (hex): Impronta SHA256 (hex): Firmato digitalmente
Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni
Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6
Tutorato di Probabilità e Statistica
Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore.
Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico
Esercizi di Matematica Discreta e Geometria. Parte II
Esercizi di Matematica Discreta e Geometria Parte II 14 gennaio 2010 AVVISO: Sia i testi che gli svolgimenti proposti possono contenere errori e/o ripetizioni Essi sono infatti opera di vari collage e,
Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore
Kangourou Italia Gara del 1 marzo 001 Categoria Student Per studenti di quarta e quinta superiore Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta
