GEOMETRIA PROIETTIVA

Documenti analoghi
NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

Spazi affini e combinazioni affini.

Geometria e Topologia I 18 maggio

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria analitica: rette e piani

GE210 Geometria e algebra lineare 2 A.A. 2018/2019

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni

Spazi Vettoriali ed Applicazioni Lineari

Esercitazioni di Geometria A: spazi proiettivi

Elementi di Algebra Lineare Spazi Vettoriali

19 Spazi proiettivi. Geometria I 169. Figura 10: Piero Della Francesca ( ), Pala di Brera / Pala Montefeltro. Cfr: Sernesi, Vol I, cap 3 [1].

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

GEOMETRIA 1 terza parte

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1].

Spazi Proiettivi. 5.1 Considerazioni preliminari

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

Quadriche Maurizio Cornalba 7/6/2016

GEOMETRIA 1 seconda parte

22 Coniche proiettive

Rango di una matrice e teorema di Rouché-Capelli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Geometria analitica: rette e piani

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

Il piano proiettivo appunti del corso di Geometria 1, prof. Cristina Turrini. anno acc. 2008/2009

SPAZI DUALI. NOTE DI ALGEBRA LINEARE

ESERCIZI DI RIPASSO, A.A

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

1 Rette e piani in R 3

APPLICAZIONI LINEARI

Le bigezioni tra due rette proiettive definite come quella precedente tra r e r si dicono prospettività.

10. Il gruppo Speciale Lineare SL(V )

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi

21. (cenni di) Geometria analitica del piano.

LEZIONE 12. v = α 1 v α n v n =

GAAL: Capitolo di Geometria Affine e Coniche

0. Introduzione al linguaggio matematico

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo).

Coordinate cartesiane e coordinate omogenee

REGISTRO DELLE LEZIONI

Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Geometria Algebrica Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Mauro Saita Gennaio Equazioni cartesiane di rette e equazioni parametriche di piani Esempi...

Esame di geometria e algebra

Esercizi per Geometria II Geometria euclidea e proiettiva

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA

Prodotto scalare e ortogonalità

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n,

5 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi

MATRICI E SISTEMI LINEARI

SUPERFICI DI RIEMANN (settima parte) anno acc. 2008/2009

Esame di geometria e algebra

1 Coordinate proiettive omogenee

8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

Spazi vettoriali euclidei.

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.

Complessi di Catene e Gruppi di Omologia. 28 febbraio 2007

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

Corso di Laurea in Matematica - A.A. 2003/2004 Geometria Analitica I Esonero - 21 novembre 2003 (Proff. Marco Manetti e Riccardo Salvati Manni)

Forme bilineari simmetriche

Esercizi di Geometria 1 - Foglio 1

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

Geometria BAER Canale I Esercizi 9

Appunti di Geometria - 3

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016)

Anno Accademico 2016/2017

1 Rette nel piano ordinario. Rette e piani nello spazio ordinario

Sistemi lineari e spazi vettoriali 1 / 14

Sullo svolgimento di una delle quattro versioni della prova scritta di Geometria analitica e algebra lineare del giorno 11 febbraio 2013.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

Parte 10. Geometria dello spazio I

Facsimile di prova d esame Esempio di svolgimento

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

Geo-training. Esercizi di riepilogo sulla geometria proiettiva. 6 giugno Lo spazio proiettivo. mann)

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

APPUNTI DI ALGEBRA LINEARE

Rette e piani in R 3

Capitolo 1 Vettori applicati e geometria dello spazio

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

Vettori e geometria analitica in R 3 1 / 25

Esercizi per il corso di Algebra e Geometria L.

Esercizi per Geometria II Geometria euclidea e proiettiva

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango

MINITOPOLOGIA M.M. Sommario. Un minicorso base di topologia generale orientato allo studio delle varietà differenziabili.

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

Transcript:

GEOMETRIA PROIETTIVA 1. Sottospazi affini e punti all infinito Sia V uno spazio vettoriale. Una combinazione lineare a 0 v 0 + + a n v n di vettori v i V si dice una combinazione baricentrica se a i = 1. Un sottoinsieme di V si dice un sottospazio affine se è chiuso per combinazioni baricentriche. Ogni sottospazio vettoriale è anche un sottospazio affine. Si noti che combinazione baricentrica di combinazioni baricentriche è ancora baricentrica; in particolare l insieme di tutte le combinazioni baricentriche di un numero finito di vettori è un sottospazio affine. Intersezione di sottospazi affini è ancora un sottospazio affine. Lemma 1.1. Sia K un sottospazio affine non vuoto di uno spazio vettoriale V. Allora: (1) Per ogni v V il sottoinsieme v + K = {v + x x K} è ancora un sottospazio affine detto il traslato di K tramite v. (2) Il sottoinsieme W = {u v u, v K} V è un sottospazio vettoriale e vale K = v + W per ogni v K. In particolare K è un sottospazio vettoriale se e solo se 0 K. Dimostrazione. Lasciata per esercizio. Segue dal Lemma 1.1 che per ogni sottospazio affine non vuoto K V esiste un unico sottospazio vettoriale W tale che K = v + W per ogni v K. Si definisce la dimensione di K come la dimensione di W. Se K = allora si pone per convenzione dim K = 1. Per spazio affine su di un campo K intenderemo provvisoriamente uno spazio vettoriale i cui vettori sono chiamati punti. Dunque i punti sono tutti e soli i sottospazi affini di dimensione 0: sottospazi affini di dimensione 1 e 2 sono detti rispettivamente rette e piani affini. Definizione 1.2. Due sottospazi affini della stessa dimensione si dicono paralleli se uno è il traslato dell altro. Un applicazione f : V W tra spazi vettoriali si dice affine se commuta con le combinazioni baricentriche, cioè se per ogni v 0,..., v n V e per ogni a 0,..., a n K tali che a i = 1 vale f( a i v i ) = a i f(v i ). Le traslazioni in uno spazio vettoriale sono applicazioni affini e composizione di applicazioni affini è ancora affine. Poiché le applicazioni lineari sono esattamente le applicazioni affini f tali che f(0) = 0 si ha che ogni applicazione affine è la composizione di una applicazione lineare e di una traslazione. Esercizio 1. Sia E un sottoinsieme di uno spazio vettoriale su di un campo diverso da Z/2. Provare che E è un sottospazio affine se e solo se per ogni u, v E e per ogni a K vale au + (1 a)v E. Esercizio 2. Sia V uno spazio vettoriale su di un campo F. Provare che se F possiede almeno n + 1 elementi, allora V non può essere unione di n sottospazi affini propri. In particolare uno spazio vettoriale su di un campo infinito non può essere unione finita di sottospazi affini propri. (Sugg.: induzione su n; sia per assurdo V = n i=1 V i, allora a Università di Roma 1: a.a. 2007-08, corso di Geometria Analitica, E.A., M.M. e A.F. 1

2 GEOMETRIA PROIETTIVA meno di traslazioni possiamo supporre 0 V n. Se V n V i per qualche i < n abbiamo finito, altrimenti scegliamo v V n i=1 n 1 (V n V i ), h V V n e consideriamo la retta affine L = {tv + (1 t)h t F }. Esiste allora un indice i tale che L interseca V i in almeno due punti.) Esercizio 3. Sia f : V W una applicazione affine. Dimostrare che: (1) Se E V è un sottospazio affine, allora f(e) è un sottospazio affine. (2) Se H, K V sono sottospazi affini della stessa dimensione e paralleli, allora f(h), f(k) sono paralleli. Esercizio 4. Sia f : K n K m un applicazione affine e siano f(0) = (b 1,..., b m ), f(δ i ) f(0) = (a 1i,..., a mi ), dove δ 1,..., δ n indica la base canonica di K n. Provare che f manda il punto (x 1,..., x n ) nel punto (y 1,..., y m ) che soddisfa la relazione y 1 a 11... a 1n b 1. y m 1 =...... a m1... a mn b m 0... 0 1 Caratterizzare inoltre le matrici (n + 1) (n + 1) corrispondenti alle traslazioni in K n. Esercizio 5. Sia H K n un sottospazio affine non contenente 0 e f : H K m un applicazione affine. Dimostrare che f è la restrizione ad H di un applicazione lineare g : K n K m. Esercizio 6. Siano P 1 = (1, 2), P 2 = (3, 1), P 3 = (3, 3), Q 1 = (1, 8), Q 2 = (0, 7) e Q 3 = (7, 3). Si determini l affinità di R 2 in sé che trasforma P i in Q i per i = 1, 2, 3. Sia V uno spazio affine, denotiamo con L l insieme di tutte le rette affini in V e con la relazione di parallelismo in L, ossia L 1 L 2 se e solo se esiste v V tale che L 2 = v + L 1. Notiamo che, fissato un punto p V, le rette affini passanti per p formano un insieme di rappresentanti per la relazione di equivalenza, e cioè per ogni retta affine in L V esiste un unica retta L passante per p e parallela a L. Chiameremo il quoziente L/ iperpiano all infinito e l unione ˆV = V (L/ ) completamento proiettivo di V. Sia t 1,..., t n un sistema di coordinate su V. Possiamo allora considerare l applicazione affine iniettiva h: V K n+1, f(t 1,..., t n ) = (1, t 1,..., t n ). L applicazione h preserva la relazione di parallelismo e la sua immagine è il sottospazio affine {x 0 = 1}. Possiamo quindi identificare il completamento proiettivo di V con il completamento proiettivo di {x 0 = 1}. Ogni retta affine in {x 0 = 1} è parallela ad un unico sottospazio vettoriale di dimensione 1 di {x 0 = 0}. Ogni punto di {x 0 = 1} è contenuto in un unico sottospazio vettoriale di dimensione 1 di K n+1. Esiste dunque una bigezione tra il completamento proiettivo di {x 0 = 1} e l insieme di tutte le rette per l origine in K n+1. x 1. x n 1. 2. Spazi proiettivi Sia K un campo e V uno spazio vettoriale su K ; definiamo il proiettivizzato di V P(V ) = (V {0})/ come il quoziente di V {0} per la relazione di equivalenza v w se e solo se v = λw per qualche λ K {0}.

GEOMETRIA PROIETTIVA 3 L insieme P(V ) è in bigezione naturale con l insieme dei sottospazi vettoriali di dimensione 1 (rette per l origine) di V. Dato un vettore v V {0} si è soliti denotare con [v] P(V ) la classe di equivalenza corrispondente. Chiameremo P n (K ) = P(K n+1 ) spazio proiettivo di dimensione n sul campo K. In assenza di ambiguità sul campo K scriveremo più semplicemente P n in luogo di P n K. Diremo che un sottoinsieme M V è un cono se 0 M e se v M implica che λv M per ogni λ K. Se M V è un cono e S P(V ) è un sottoinsieme, si definisce P(M) = {[v] v M {0} } P(V ) e C(S) = {v V {0} [v] S} {0}. Il sottoinsieme C(S) V viene detto cono affine di S; è immediato osservare che le applicazioni {coni in V } {sottoinsiemi P di P(V )} {coni C in V } sono bigettive ed una l inversa dell altra. Se W V è un sottospazio lineare, chiameremo P(W ) sottospazio proiettivo di P(V ). Si noti che ogni punto di uno spazio proiettivo è un sottospazio. Se W V è un iperpiano diremo che P(W ) è un iperpiano di P(V ). Poiché P( i M i ) = i P(M i ) per ogni famiglia di coni {M i }, si ha in particolare che intersezione di sottospazi proiettivi è ancora un sottospazio proiettivo. Definizione 2.1 (Join di sottospazi proiettivi). Se W 1, W 2,..., W s V sono sottospazi vettoriali scriveremo P(W 1 ), P(W 2 ),..., P(W n ) = P(W 1 + W 2 + + W n ). In altri termini, se H 1,..., H s P(V ) sono sottospazi proiettivi, allora H 1,..., H s, è il più piccolo sottospazio proiettivo di P(V ) che li contiene. Dati due sottospazi proiettivi L, M P(V ) scriveremo anche LM per indicare L, M. Se vale p 1 = [v 1 ], p 2 = [v 2 ],..., p n = [v n ], con v 1,..., v n V {0}, allora p 1, p 2,..., p n = P(L(v 1,..., v n )), dove L(v 1,..., v n ) è il sottospazio vettoriale generato dai vettori v i. Esercizio 7. Se H, K sono sottospazi non vuoti di uno spazio proiettivo allora HK = pq. p H,q K Se lo spazio vettoriale V ha dimensione finita, definiamo la dimensione di P(V ) mediante la formula dim P(V ) = dim V 1 (in particolare dim = 1). Spazi proiettivi di dimensione 1 e 2 si dicono rispettivamente rette e piani proiettivi. Punti contenuti in una medesima retta vengono detti allineati, punti (o rette) contenuti in un medesimo piano si dicono complanari, rette passanti per un medesimo punto si dicono concorrenti. Due sottospazi proiettivi H, K P(V ) si dicono incidenti se H K, altrimenti si dicono sghembi; poiché C(HK) = C(H) + C(K) e dim H = dim C(H) 1 vale la formula di Grassmann dim(h K) + dim(hk) = dim H + dim K e quindi H e K sono sghembi se e solo se dim(hk) = dim H + dim K + 1. Esercizio 8. Sia V uno spazio vettoriale di dimensione n + 1. Provare che ogni sottospazio proiettivo di P(V ) di dimensione k è intersezione di n k iperpiani proiettivi.

4 GEOMETRIA PROIETTIVA q 1 p 1 o p 2 q 2 p 3 q 3 r 1 r 2 r 3 Figura 1. La configurazione di Desargues: 10 rette e 10 punti. 3. Dualitá e teorema di Desargues Teorema 3.1 (Desargues). Siano dati 7 punti o, p 1, p 2, p 3, q 1, q 2, q 3 P 2 tali che ciascuna delle tre terne (o, p 1, q 1 ), (o, p 2, q 2 ) e (o, p 3, q 3 ) sia formata da tre punti allineati. Allora i tre punti sono allineati. r 1 = p 2 p 3 q 2 q 3, r 2 = p 1 p 3 q 1 q 3, r 3 = p 1 p 2 q 1 q 2, Dimostrazione. Se p 1 = q 1, allora r 2 = r 3 ed il teorema è banale. Possiamo quindi supporre p i q i per ogni i = 1, 2, 3. Sia P 2 = P(V ), con V spazio vettoriale di dimensione 3 e scegliamo u, v 1, v 2, v 3, w 1, w 2, w 3 V tali che o = [u], p i = [v i ], q i = [w i ]. Per ipotesi o appartiene alla retta p 1 q 1. Questo equivale a dire che u è una combinazione lineare di v 1 e w 1 : diciamo u = a 1 v 1 + b 1 w 1. Similmente si ha Da tali uguaglianze deduciamo che u = a 1 v 1 + b 1 w 1 = a 2 v 2 + b 2 w 2 = a 3 v 3 + b 3 w 3. a 1 v 1 a 2 v 2 = b 2 w 2 b 1 w 1, a 2 v 2 a 3 v 3 = b 3 w 3 b 2 w 2, a 1 v 1 a 3 v 3 = b 3 w 3 b 1 w 1. da cui segue r 3 = [a 1 v 1 a 2 v 2 ], r 1 = [a 2 v 2 a 3 v 3 ], r 2 = [a 1 v 1 a 3 v 3 ]. I tre punti r 1, r 2 ed r 3 sono allineanti poiché (a 1 v 1 a 2 v 2 ) + (a 2 v 2 a 3 v 3 ) + (a 1 v 1 a 3 v 3 ) = 0. Definiamo lo spazio proiettivo duale P(V ) come l insieme di tutti gli iperpiani di P(V ). Per definizione gli iperpiani di P(V ) sono in corrispondenza biunivoca con gli iperpiani di V, che a loro volta sono in bigezione con le classi di omotetia di funzionali lineari non nulli V K. Esiste quindi una bigezione naturale P(V ) = P(V ). I sottospazi proiettivi di P(V ) sono anche detti sistemi lineari di iperpiani. Un sistema lineare di dimensione 1 è detto anche fascio (più raramente pennello o schiera) di iperpiani; un sistema lineare di dimensione 2 è detto rete. Se H P(V ) è un sottospazio proiettivo, denotiamo con H P(V ) l insieme degli iperpiani di P(V ) che contengono H. L insieme H è il proiettivizzato dell annullatore di C(H) ed è quindi un sistema lineare di iperpiani. Se V ha dimensione finita, allora si hanno degli isomorfismo naturali P(V ) = P(V ) = P(V ) = P(V ) tramite i quali si ha H = H per ogni sottospazio proiettivo H.

GEOMETRIA PROIETTIVA 5 Esercizio 9. Siano H, K sottospazi di uno spazio proiettivo di dimensione n. Definiamo il difetto incidente di H e K tramite la formula { dim(h K) + 1 se dim H + dim K n 1, DI(H, K) = n dim(hk) se dim H + dim K n 1. Provare che il difetto incidente è ben definito e che DI(H, K) = DI(H, K ). Esercizio 10. Siano H, K sottospazi di uno spazio proiettivo di dimensione n. Definiamo il difetto secante di H e K come DS(H, K) = dim H + dim K + 1 dim(hk) Provare che, se dim H + dim K n 1, allora il difetto secante è uguale al difetto incidente. 4. Sistemi di riferimento e coordinate omogenee Definizione 4.1. Diremo che s + 1 punti p 0,..., p s P(V ) sono proiettivamente indipendenti se il sottospazio p 0,..., p s da essi generato ha dimensione esattamente s. Ad esempio, due punti in P 1 sono proiettivamente indipendenti se e solo se sono distinti; tre punti in P 2 sono proiettivamente indipendenti se e solo se non sono allineati. È fondamentale osservare che, se v 0,..., v s V {0}, allora i punti [v 0 ],..., [v s ] sono proiettivamente indipendenti se e solo se i vettori v 0,..., v s sono linearmente indipendenti. Definizione 4.2. Diremo che n + 2 punti p 0,..., p n+1 P(V ) sono un sistema di riferimento se dim V = n + 1 e se per ogni indice i fissato, i punti p j, per j i, sono proiettivamente indipendenti. Sono esempi di sistemi di riferimento: Tre punti distinti di P 1. Quattro punti di P 2, tre dei quali non siano allineati. Cinque punti di P 3, quattro dei quali non siano complanari. Lemma 4.3. Sia V uno spazio vettoriale di dimensione n + 1. Allora n + 2 punti p 0,..., p n+1 P(V ) sono un sistema di riferimento se e solo se esiste una base e 0,..., e n V tale che p i = [e i ] per i = 0,..., n e p n+1 = [e 0 + e 1 + + e n ]. Dimostrazione. Se e 0,..., e n V è una base, allora è facile osservare che i punti p i = [e i ] per i = 0,..., n e p n+1 = [e 0 + e 1 + + e n ] sono un sistema di riferimento. Siano viceversa p 0,..., p n+1 un sistema di riferimento e scegliamo vettori v 0,..., v n V tali che p i = [v i ] per ogni i = 0,..., n. Siccome p 0,..., p n sono indipendenti, ne segue che v 0,..., v n è una base di V e quindi esistono a 0,..., a n K tali che p n+1 = [e n+1 ], dove e n+1 = a 0 v 0 + + a n v n. Se fosse a i = 0 per qualche indice i, allora i vettori e n+1 e v j, per j i, sarebbero linearmente dipendenti e quindi p 0,..., p n+1 non potrebbe essere un sistema di riferimento. Quindi a i 0 per ogni i ed è sufficiente considerare la base e i = a i v i. Esercizio 11. Dato un sottoinsieme W P(V ), denotiamo con W il sottospazio generato da W, con Sec(W ) = {pq p, q W } e definiamo induttivamente Sec n (W ) = Sec(Sec n 1 (W )). Provare che W = n>0 Sec n (W ) e che, se W ha dimensione minore od uguale a n, allora W = Sec n (W ). Chiameremo sistema di coordinate omogenee su P(V ) un qualsiasi sistema di coordinate lineari su V. Se P(V ) ha dimensione finita n, la scelta di un sistema di coordinate

6 GEOMETRIA PROIETTIVA omogenee definisce un isomorfismo proiettivo P(V ) = P n e quindi permette di rappresentare ogni punto p P(V ) nella forma p = [a 0,..., a n ], con i numeri a i K non tutti nulli. Tale rappresentazione non è unica: infatti vale [a 0,..., a n ] = [b 0,..., b n ] se e solo se esiste λ K {0} tale che b i = λa i per ogni i. Definizione 4.4. Un applicazione φ: P(V ) P(W ) si dice una proiettività se è indotta per passaggio al quoziente da una applicazione lineare iniettiva f : V W mediante la regola φ([v]) = [f(v)], v V {0}, e scriveremo in tal caso φ = [f]. Un isomorfismo proiettivo è una proiettività bigettiva. Nella definizione di proiettività, l iniettività di f è necessaria affinché f(v) sia 0 per ogni v 0. È un facile esercizio di algebra lineare osservare che, date due applicazioni f, g : V W lineari iniettive, vale [f] = [g] se e solo se esiste a K {0} tale che f = ag. Se V ha dimensione finita, allora ogni applicazione lineare iniettiva f : V V è un isomorfismo e quindi ogni proiettività P(V ) P(V ) è invertibile. Si denota PGL(V ) il gruppo delle proiettività di P(V ) in sé. Per definizione esiste un omomorfismo surgettivo di gruppi GL(V ) PGL(V ) che ha come nucleo i multipli dell identità. Si indica anche PGL(n, K ) = PGL(K n ). Proposizione 4.5. Dati due sistemi di riferimento p 0,..., p n+1 e q 0,..., q n+1 di P n, esiste un unica proiettività ϕ PGL(n + 1, K ) tale che ϕ(p i ) = q i per ogni i. Dimostrazione. L esistenza segue immediatamente dal Lemma 4.3, mentre per dimostrare l unicità non è restrittivo supporre p i = q i per ogni i. Sia e 0,..., e n una base di K n+1 tale che p i = [e i ] con e n+1 = e i e f GL(n + 1) tale che [f]p i = p i per ogni i. Allora esistono costanti a 0,..., a n+1 K tali che f(e i ) = a i e i per ogni i. Poiché e 0,..., e n sono una base segue necessariamente che a i = a n+1 per ogni i = 0,..., n e quindi f è un multiplo dell identità. Si consideri adesso una decomposizione in somma diretta di sottospazi V = K W e sia π : V W la proiezione sul secondo fattore. Per passaggio al quoziente otteniamo una mappa [π]: P(V ) P(K) P(W ) detta proiezione su P(W ) di centro P(K). Da un punto di vista più geometrico, se p P(V ) P(K), allora [π](p) è il punto di intersezione di P(W ) P(V ) e di P(K), p. Lo spazio proiettivo P(V/K) può essere pensato come l insieme dei sottospazi proiettivi di P(V ) di dimensione uguale alla dimensione di K che contengono P(K); in tale interpretazione l isomorfismo naturale P(W ) P(V/K) associa al punto p P(W ) il sottospazio P(K), p. Per n = 1 possiamo scrivere P 1 = K { }, dove K = {[t, 1] t K } e = [1, 0] (intuitivamente [1, 0] è il limite per t di [1, 1/t] = [t, 1]). Ogni proiettività φ di P 1 in sé è rappresentata da una matrice invertibile ( ) a b, dove ad bc 0, c d e quindi φ([x 0, x 1 ]) = [ax 0 + bx 1, cx 0 + dx 1 ] che, nella coordinata affine t diventa φ(t) = at + b, con ad bc 0. ct + d Esercizio 12. Determinare le proiettività di P 1 (C) = C { } in sé che preservano i seguenti sottoinsiemi di C: R = {x + iy y = 0}, H = {x + iy y > 0}, H = {x + iy y 0}, = {x + iy x 2 + y 2 < 1} e = {x + iy x 2 + y 2 1}. Provare inoltre che la proiettività φ(t) = t i trasforma il semipiano H nel disco. t + i

GEOMETRIA PROIETTIVA 7 Esercizio 13. Se φ: P 2 {o} H è una proiezione e L P 2 è una retta che non contiene il centro o, allora la restrizione φ: L H è una proiettività tale che φ(p) = p per ogni p L H. Viceversa, si dimostri che ogni proiettività ψ : L H tale che ψ(p) = p per ogni p L H è ottenuta come restrizione di una opportuna proiezione (di centro non necessariamente o). Esercizio 14. Siano L, H P 2 rette distinte, p = L H e φ: L H una proiettività tale che φ(p) p. Provare che φ è composizione di due proiezioni. (Sugg.: considerare la retta φ(p) + φ 1 (p).) Esercizio 15. (Prospettive) Sia V spazio vettoriale di dimensione finita n e f : V V un applicazione lineare invertibile. La proiettività indotta [f]: P(V ) P(V ) si dice una prospettiva se esiste λ K tale che rank(f λi) 1. Provare che le seguenti condizioni sono equivalenti: (1) [f] è una prospettiva. (2) [f t ]: P(V ) P(V ) è una prospettiva. (3) Esiste un iperpiano H P(V ) tale che [f]q = q per ogni q H. (4) Esiste p P(V ) tale che [f]q pq per ogni q P(V ) {p}. (5) Esiste un sistema di riferimento p 0,..., p n P(V ) tale che [f]p 0 = p 0 e [f]p i p 0 p i per ogni i = 1,..., n. Esercizio 16. (Centro di prospettiva) Sia [f]: P(V ) P(V ) una prospettiva diversa dall identità. Provare che esiste un unico punto p P(V ) tale che [f]q pq per ogni q P(V ) {p}. Un tale punto p viene chiamato centro di prospettiva. Anticamente una prospettiva veniva chiamata omologia se p H; elazione od omologia speciale se p H. Esercizio 17. Provare che, per una proiettività φ: P n P n, le seguenti condizioni sono equivalenti: (1) Esiste un sottospazio H P n di codimensione r tale che φ(p) = p per ogni p H. (2) Esiste un sottospazio L di dimensione r 1 tale che φ(q) q, L per ogni q P n. (3) φ è composizione di r prospettive. Esercizio 18. Utilizzare l Esercizio 15 (nel caso n = 3) per una dimostrazione alternativa del teorema di Desargues (1648), vedi Figura 1. Esercizio 19. Siano date n rette proiettive L 1,..., L n P n, nessuna delle quali contenuta nell iperpiano H 0 = {x 0 = 0}. Scriviamo P n = K n H 0, per ogni i = 1,..., n esiste una rappresentazione parametrica della retta affine L i K n che possiamo scrivere nella forma L i = { [1, a i1 t + b i1,..., a in t + b in ] t K }. Provare che gli n punti di intersezione delle rette L 1,..., L n con l iperpiano H 0 sono proiettivamente indipendenti se e solo se det(a ij ) 0. Esercizio 20 ( ). Siano date quattro rette L 1,..., L 4 P 3 (C). Provare che esiste almeno una retta in P 3 che le interseca tutte e quattro. (Sugg.: se esiste un punto o appartenente all intersezione di due rette distinte L i, L j considerare la proiezione di centro o. Altrimenti si prendano coordinate omogenee tali che L 4 = {x 0 = x 1 = 0}, L 1 = {x 2 = x 3 = 0} e si consideri l intersezione delle rette con i piani del fascio F t = {x 1 = tx 0 }, per t K. Ad un certo punto servirà il risultato dell Esercizio 20.)