Riproduzione e ciclo cellulare



Documenti analoghi
Le cellule eucariotiche svolgono durante la loro vita una serie ordinata di eventi che costituiscono il Ciclo Cellulare

Il ciclo cellulare La divisione cellulare

CICLO CELLULARE EUCARIOTICO

Trasmissione della informazione: livello cellulare

DIFFERENZIAMENTO E COMUNICAZIONE TRA CELLULE - LE CELLULE STAMINALI.

La divisione cellulare e la riproduzione degli organismi Parte I: Mitosi

Riproduzione e ciclo cellulare

Proliferazione e morte cellulare sono eventi fisiologici

Crescita e divisione cellulare

Il flusso dell informazione genetica. DNA -->RNA-->Proteine

- Assenza di mitogeni - Presenza di segnali conflittuali ( se durano troppo va incontro ad apoptosi) - Segnali differenziativi

La cellula. Copyright (c) by W. H. Freeman and Company

ORIGINE DI UN NUOVO ORGANISMO FECONDAZIONE SEGMENTAZIONE GASTRULAZIONE ORGANOGENESI

Recettori di superficie

Normale controllo della crescita cellulare

TEST BIOLOGIA 1 ANNO ABEI Da inviare a connesso@alice.it entro e non oltre il 6 novembre 2015

LEUCEMIE tessuto ematopoieitico MIELOMI. più precisamente!

PROGRAMMA di BIOLOGIA/MICROBIOLOGIA per la classe IIIB Tecnologico

GENOMA. c varia da pochi kb nei virus a milioni di kb in piante e animali

Il metabolismo dell RNA. Prof. Savino; dispense di Biologia Molecolare, Corso di Laurea in Biotecnologie

Mediatore chimico. Recettore. Trasduzione del segnale. Risposta della cellula

Il ciclo cellulare e la sua regolazione

SUPERAVVOLGIMENTO DEL DNA (ORGANIZZAZIONE TERZIARIA DEL DNA)

La riproduzione cellulare

Diversità tra i viventi

REGOLAZIONE DEL CICLO CELLULARE

La pompa Na + /Glucosio: simporto

1. Capacità di autorinnovamento illimitato

Struttura e funzioni della cellula. Corso di Biofisica, Università di Cagliari 1

Regolazione dell espressione genica EUCARIOTI

Biologia Cellulare e DNA «Bigino»

Lo sviluppo del cancro è un processo complesso che coinvolge parecchi cambiamenti nella stessa cellula staminale. Poiché tutte le cellule staminali

Indice dell'opera. Prefazione. Capitolo 1 Introduzione alla genetica Genetica classica e moderna Genetisti e ricerca genetica Sommario

Dal DNA all RNA. La trascrizione nei procarioti e negli eucarioti

CONTROLLO ORMONALE DEL METABOLISMO GLUCIDICO DA PARTE DI GLUCAGONE, ADRENALINA E INSULINA

Le cellule eucariotiche svolgono durante la loro vita una serie ordinata di eventi che costituiscono il Ciclo Cellulare

RNA polimerasi operone. L operatore è il tratto

Riproduzione molecolare. Riproduzione cellulare. Riproduzione degli organismi. Gametogenesi (femminile e maschile) Fecondazione

La regolazione genica nei eucarioti

Scuola Media Piancavallo 2

Considerando la definizione di introni indicare il rapporto corretto in ogni gene tra il numero degli esoni e degli introni: a) Esoni= introni +1 b)

Dal DNA alle proteine: La trascrizione e la traduzione

Le cellule eucariotiche svolgono durante la loro vita una serie ordinata. Ciclo Cellulare

LA GENETICA: DNA e RNA LA GENETICA. DNA e RNA. Prof. Daniele Verri

Differenziamento cellulare

Programmazione individuale per competenze CLASSE 3^A CMB. Materia: Biologia, microbiologia e biotecnologie

Breve presentazione dei momenti più interessanti e significativi che hanno caratterizzato questa esperienza.

Meccanismi di controllo della proliferazione cellulare

CELLULE EUCARIOTICHE

De Leo - Fasano - Ginelli Biologia e Genetica, II Ed. Capitolo 7. Replicazione del DNA Preparazione alla divisione Citodieresi

Negli eucarioti, per la maggior parte dei geni, entrambe le copie sono espresse dalla cellula, ma una piccola classe di geni è espressa

Regolazione della trascrizione. Operoni catabolici nei procarioti (controllo negativo)

Nuovi ruoli dei telomeri e della telomerasi

scaricato da

L ORIGINE DEI TESSUTI

Il SAC, sistema di controllo nella divisione cellulare

Espressione di geni specifici per un determinato tumore

Determinazione del sesso Cromosomi sessuali

Biosintesi non ribosomiale di metaboliti peptidici bioattivi

eucarioti Cellula umana contiene circa geni

SEQUENZIAMENTO DEL DNA

Tutte le cellule, anche quelle più differenziate, esprimono molti geni comuni, detti housekeeping, che codificano per proteine strutturali, del

EPITHELIAL TO MESENCHYMAL TRANSITION (EMT) IN DEVELOPMENT AND DISEASES. Cristina Valacca 18 Maggio 2012

La riproduzione cellulare - Ciclo cellulare, mitosi e meiosi

L adattamento dei batteri. Strategie di adattamento

Protocollo dei saperi imprescindibili

Diapositiva 3: CASPASI IAP inibitor of apoptosis

Apoptosi. Copyright (c) by W. H. Freeman and Company

Embryology. Early development from a phenomenological point of view. Bolk s Companions for the study of medicine

Genoma umano: illusioni, realtà, prospettive

Omnis cellula e cellula

Progetto scuola-lavoro Consiglio Nazionale delle Ricerche. Chiara Cuccodoro L.s.s. Francesco d Assisi Classe VE A.s. 2014/2015

Struttura e funzione dei geni. Paolo Edomi - Genetica

MITOSI. Fasi della mitosi

Attivazione dei linfociti T

La biostimolazione, alcuni passaggi obbligati. Durante l invecchiamento

Geni che regolano la divisione cellulare

Come funzionano gli oligo Antisenso? RNA WORLD. mrna. Regolare l espressione genica tramite molecole di RNA. Come funzionano gli oligo antisenso?

La divisione cellulare

Applicazioni biotecnologiche in systems biology

L endocitosi dell EGFR

Il genoma dinamico: gli elementi trasponibili

Ciclo Cellulare 18/01/2015

DIFFERENZIAMENTO DELLE CELLULE MUSCOLARI

Vettori di espressione

KIR EVOLUZIONE RAPIDA E DIVERSIFICATA DEI RECETTORI DELL IMMUNITA INNATA E ADATTATIVA

REGOLAZIONE DELL'ESPRESSIONE GENICA

DNA - RNA. Nucleotide = Gruppo Fosforico + Zucchero Pentoso + Base Azotata. Le unità fondamentali costituenti il DNA e l RNA sono i Nucleotidi.

logo.jpg 18F-FDG Vari lavori hanno dimostrato che l accumulo di FDG correla con il Ki-67 MARKER DI PROLIFERAZIONE

CORSO DI AGGIORNAMENTO PER GLI INSEGNANTI DELLE SCUOLE MEDIE SUPERIORI INGEGNERIA GENETICA E SUE APPLICAZIONI

La regolazione genica nei virus

Biomarkers per la diagnosi precoce di tumori

Le PROTEINE sono i biopolimeri maggiormente presenti all interno delle cellule, dal momento che costituiscono dal 40 al 70% del peso a secco.

La trascrizione negli eucarioti. Prof. Savino; dispense di Biologia Molecolare, Corso di Laurea in Biotecnologie

immagine Biologia applicata alla ricerca bio-medica Materiale Didattico Docente: Di Bernardo

LA DIVISIONE CELLULARE

Page 1. Evoluzione. Intelligenza Artificiale. Algoritmi Genetici. Evoluzione. Evoluzione: nomenclatura. Corrispondenze natura-calcolo

Maurizio Pianezza. La mia terapia anticancro. Maurizio Pianezza. Aspetti di

Transcript:

Riproduzione e ciclo cellulare

La capacità di riprodursi è carattere fondamentale dei viventi. Gli organismi unicellulari più semplici (es batteri ma anche eucarioti unicellulari) si riproducono per divisione cellulare. Negli eucarioti ci sono 2 tipi divisione cellulare: mitosi e meiosi. la mitosi si verifica in tutti I tipi cellulari, la meiosi invece avviene solo nelle cellule progenitrici dei gameti Negli organismi pluricellulari molte divisioni cellulari successive (mitosi) sono necessarie per: Sviluppo di organismo complesso a partire da un unica cell uovo accrescimento Omeostasi dei tessuti (rigenerazione, sostituzione cellule morte, riparazione lesioni e danni tissutali)

Il ciclo cellulare procariotico è relativamente semplice e rapido Nei procarioti la divisione cellulare puo essere molto rapida (anche 20-30 min); durante questo arco di tempo duplicazione del cromosoma circolare adeso a membrana, estensione cellulare distacco delle due copie del cromosoma e divisione della cellula Cromosomi batterici Colorizzata TEM 32 500

Un tipico ciclo di divisione cellulare prevede fasi di: vaccrescimento cellulare (aumento di volume e duplicazione di organelli) vduplicazione del DNA vseparazione e distribuzione del materiale genetico vdivisione cellulare

Il ciclo cellulare eucariotico è una serie ordinata di eventi che si ripete allo stesso modo (conservato durante l evoluzione) e scandisce la vita cellulare terminando in genere con la divisione. Il ciclo è un alternanza tra mitosi (divisione ) ed interfase. Interfase: cellula cresce di volume, svolge attività, interagisce con ambiente est. e si prepara a divisione (circa 95% del ciclo) Divisione: evento cruciale, il più radicale ed evidente del ciclo

La mitosi è l unico evento chiaramente riconoscibile al microscopio ottico cambiamenti drastici: si sfalda nucleo, si condensano i cromosomi, si forma struttura citoscheletrica complessa (fuso mitotico)

L interfase è suddivisa in periodi in cui si svolgono specifiche attività cellulari G1: cellula metabolicamente attiva e in accrescimento, integra segnali interni ed esterni per decidere se proliferare e quindi procedere in fase S oppure entrare in quiescenza (G0) (max parte dei tessuti in q fase) S: duplicazione del materiale genetico G2: continua accrescimento e prepaparazione a divisione M: mitosi (divisione nucleare)+ citochinesi (divisione citoplasma)

Durata delle varie fasi Fasi S ed M hanno durata abbastanza costante per un certo organismo Es nell uomo S : 8-10 ore; M: 1 ora Fasi G1 e G2 variabili secondo tipo cellulare Per un fibroblasto in coltura in vitro durata tot ciclo circa 24 ore

Nelle prime fasi di sviluppo embrionale spesso cicli rapidi con G1 e G2 quasi assenti: solo veloce alternanaza tra replicazione DNA e mitosi (oganelli, macromolecole e strutture cellulari già presenti perchè precedentemente accumulate in cell uovo) In alcuni casi numerose endoreplicazioni del DNA (senza successiva divisione) cromosomi giganti

Negli adulti ci sono tessuti stabili e tessuti sottoposti a continuo ricambio Neuroni e cell muscolo : cell. molto specializzate in G0, hanno perso capacità di dividersi Fibroblasti e epatociti in G0 ma possono rientrare in ciclo (riparazione/rigenerazione in risposta a determinati stimoli) Tessuti dinamici: continuo ricambio per attività proliferante di cell staminali e morte delle cell differenziate

La divisione della cell. staminale è asimmetrica Il destino delle cell figlie influenzato da ambiente esterno: contatto con lamina basale Le cellule che iniziano percorso diffrenziativo perdono quasi del tutto capacità di dividersi e sono destinate a morte programmata

Metodi per lo studio del ciclo cellulare Citofluorimetria e analisi del contenuto di DNA/cellula (per cellule diploidi varia da 2n a 4n) Colorante fluorescente per DNA Popolazione cellulare analizzata al citofluorimetro (sensore misura fluoresecenza delle singole cellule, una ad una) Frazione di cellule con DNA 2n (G1) Frazione di cellule con DNA 4n (G2) e frazione con quantità intermedia (S) L altezza del picco indicativa della durata della fase

Un profilo a 2 picchi indica cellule proliferanti (non sincronizzate) Un singolo picco (DNA 2n) indica cellule non proliferanti (es ferme in G0 o colte tutte in G1 perchè sincrone)

MIcroscopia e traccianti del DNA A) Uso di traccianti radioattivi: es timidina tritiata (precursore del DNA) incorporata in fase S; radioattività passa da strato basale ad apicale epitelio intestinale B) Marcatura di cellule in fase S con BrdU (precursore del DNA al posto della timidina) e anticorpi per BrdU microscopia a fluorescenza

Uso di strategie/farmaci bloccanti per sincronizzare il ciclo di cellule in coltura blocco reversibile in modo da ottenere popolazioni sincronizzate Es nocodazolo: impedisce formazione microtubuli e quindi fuso mitotico blocco in M Rimozione fattori di crescita arresto in G0 Aggiunta di inbitori sintesi nucleotidi arresto in fase S

Modelli sperimentali per lo studio del ciclo cellulare Lievito: analisi dei geni coinvolti nel controllo del ciclo; uova di anfibio, di molluschi o di riccio di mare studi biochimici (Nurse, Hartwell e Hunt- Nobel Medicina, 2001 per studi sul ciclo cellulare)

La progressione del ciclo è sottoposta a rigido/raffinato sistema di controllo: transizione da fase a successiva solo dopo verifica segnali boichimici indicativi di condizioni sia intracellulari che esterne (controlli intrinseci ed estrinseci) In organismi unicellulari conta soprattutto condiz ambientale (nutrienti) in multicellulari anche segnali chimici da altre cellule (fattori solubili quali mitogeni, fattori di crescita, di sopravvivenza, ) 3 principali checkpoint il non superamento del checkpoint G1 S determina uscita dal ciclo ed ingresso in G0

Le transizioni avvengono solo se sono soddisfatte alcune condizioni Monitoraggio fattori nutrienti e di crescita, Controllo sullo stato del DNA (danno/riparazione, completamento replicazione) Dimensione/volume cellulare Allineamento cromosomi/aggancio sul fuso Se condizioni non soddisfatte blocco del ciclo

Il macchinario molecolare che regola il ciclo cell. eucariotico si basa sull interazione di 2 processi: 1) Orologio molecolare indipendente che segue le varie fasi del ciclo e si basa sul ritmico alternarsi di sintesi e degradazione delle cicline. Le cicline associandosi ad enzimi CdK (complessi ciclina-cdk) formano complessi che, grazie a loro attività enzimatica, permettono superamento dei checkpoint 2) Processo regola l orologio in base a segnali intra- ed extra-cellulari avvalendosi di proteine/enzimi che + o direttamente modulano attività di cicline e CdK NB: Il macchinario molecolare che regola il ciclo cell. eucariotico è molto conservato.

Diversi approcci sperimentali hanno contribuito a definire il complesso di interruttori molecolari coinvolto nel controllo del ciclo Anni 70: esperimenti di fusione cellulare tra cell di mammifero in diverse fasi del ciclo Esistenza di fattori in grado di: - indurre ingresso in mitosi - e replicazione del DNA (solo su cellule G1)

Effetto della fusione cellulare. La fusione di cellule in mitosi con cell in G1 e G2 induce la condensazione cromatinica; con cell in S, cromosomi sensibili si spezzano e si polverizzano (Rao e Johnson)

Risultati poi confermati da studi biochimici su oociti di anfibio Microiniezione di estratti proteici ottenuti da oociti in divisione (meiosi) induce meiosi Nel citoplasma di una cellula mitotica esiste un MPF (meiosis/maturation promoting factor) di natura proteica e diffusibile in grado di indurre la maturazione di oociti

Studi genetici su lievito: mutanti cdc (cell division cycle) temperatura sensibili A temperatura non permissiva i mutanti si bloccano in una particolare fase del ciclo Es: mut cdc28 (S. cerevisiae) si blocca in G1 cdc2 (S. pombe) si blocca in G1 e G2

I genicdc 28 e cdc2 codificano per enzimi-chinasi simili tra loro ortologhi trovati anche nell uomo Saggi di complementazione: gene umano introdotto in lievito mutante ripristina normale ciclo forte conservazione evolutiva del sistema di controllo del ciclo

Analisi proteica di estratti da uova di riccio di mare scoperta delle cicline Proteine con concentrazione citosolica oscillante /fluttuante legata ai vari stadi del ciclo

I diversi approcci hanno permesso identificazione biochimica di MPF (isolato da uova di anfibio) MPF è un enzima proteina-chinasi dimerico: - subunità catalitica (ortologo a cdc28 e cdc2 di lievito) CDK1 - e subunità regolatrice (ciclina B, mitotica) necessaria per sua attività ciclina

C è corrispondenza tra variazione di 1) fase nel ciclo cellulare 2) Attività di MPF 2) Concentrazione di ciclina

Infatti la chinasi (CDK1) dipende per la sua attività dalla ciclina (ecco perchè si chiama Cdk: cyclin dependent kinase) L attività kinasi quindi riflette andamento ciclico della ciclina B ma non perfettamente: infatti la cdk si attiva repentinamente solo dopo che ciclina ha iniziato ad accumularsi da un bel po!... Come mai??

In effetti l attività di CDK dipende: -da un lato dai livelli di ciclina -dall altro da un complesso pattern di fosforilazionedefosforilazione sulla CDK stessa (altri enzimi kinasi e fosfatasi sono coinvolti in q. sistema di regolazione). L attivazione completa è favorita con meccanismo a feedback positivo innescato dalla formazione stessa del complesso cdk-ciclina aumento esplosivo/rapido dell attività chinasica di cdk.

La kinasi Wee1 inibisce il complesso CDK-ciclina mentre la fosfatasi cdc25 stimola il complesso Infatti in lievito mutazione di wee1 cellule piccole (mitosi prematura) Mutazione di cdc25 cellule lunghe (mitosi ritardata)

L attività di CDK1 è spenta dalla degradazione ubiquitina-proteasoma-dipendente della ciclina La ubiquitinazione della ciclina è indotta dal complesso APC (anaphase promoting complex) a sua volta indotto dalla stessa CDK funzionalità di CDK quindi è limitata ad una precisa finestra temporale e CDK contribuisce al proprio spegnimento (feedback negativo)

Una volta attivata la CDK1 (MPF) fosforila proteine target cruciali per ingresso e progressione in fase M (CDK è una serina-treonina chinasi) Esempio - fosforila lamìne nucleari disgreagazione dell involucro nucleare - Fosforilazione delle MAP (microtubule associated protein) Riorganizzazione dei microtubuli e formazione del fuso - Fosforilazione di enzimi condensine (?) compattamento della cromatina

- In lievito la stessa chinasi (gene cdc28) associandosi a diverse cicline riconosce diversi substrati e quindi regola transizione tra varie fasi del ciclo - Negli organismi multicellulari invece esistono diverse cdk e diversi complessi cdk-ciclina che regolano diverse fasi del ciclo cellulare I complessi attivi cdk-ciclina fosforilano proteine che + o direttamente presiedono ad attività/strutture necessarie per passaggio a nuova fase del ciclo

Le diverse cicline dei mammiferi operano in fasi diverse del ciclo

I vari complessi cdk-ciclina subiscono stesso schema di regolazione Oltre che dalle cicline e dalla fosforilazion/defosforilazione le CDK sono controllate anche dal legame con inibitori CKI (cdk inhibitors) Il livello dei CKI risente di segnali interni (lesioni al DNA) ed extracellulari (ormoni, fattori di crescita, contatto fisico con altre celule) anche i CKI sono degradati dal sistema ubiquitina-proteasoma

I CKI impediscono assemblaggio e/o attività dei complessi CDK-ciclina 2 gruppi principali di inibitori Gruppo I: inibitori che agiscono a livello di transizione G1 S e G2 M Gruppo II: inibitori che agiscono solo a livello di transizione G1 S Aumento densità di popolazione induce p27 fenomeno inibizione da contatto Fattore TGF-β induce differenziamento e ingresso in G0 inducendo p15

Effetto della mutazione su p27 (un CKI)

Nel complesso esistono ben 4 livelli di regolazione sulle CDK!!

La degradazione delle proteine regolative (cicline ed inibitori CKI) garantisce irreversibilità e unidirezionalità del passaggio da fase ad altra del ciclo

La degradazione è ubiquitina-proteasoma dipendente

Controllo transizione G1 S La cellula di lievito che non supera precise condizioni (danno al DNA, nutrienti, dimensioni) si arresta al punto start Analogamente la cellula di mammifero (danno DNA, contatto con cellule, fattori crescita, dimensioni, bilancio energetico) si arresta al punto di restrizione

Controllo transizione G1 S nei mammiferi In assenza di opportuni segnali esterni (es fattori di crescita) prb si lega a fattore trascrizionale E2F e gli impedisce di attivare trascrizione di geni necessari a transizione G1 S (es geni per duplicazione DNA, ciclina E e E2F stesso) L inattivazione trascrizionale è assicurata dal compattamento della cromatina (induce deacetilazione) Presenza di fattori di crescita trasduzione del segnale complessi CDK-ciclineD (E ed A) fosforilano prb distacco da E2F attivazione di geni utili a passaggio di fase prb è gene oncosoppressore, cioè frena la crescita cellulare Se prb muta e/o non funziona neoplasia (retinoblastoma)

Presenza di fatttori di crescita I ondata di espressione genica: risposta immediata precoce (vari fattori trascrizionali es proto-oncogeni c-myc, c-fos; proteine citoscheletro, ) II ondata di espressione genica:cilcine D formazione dei complessi cdkciclina e progressione ciclo Assenza fattori arresto in G0

Importanza dei segnali interni: integrità del DNA Sensori di danno al DNA innescano cascate di protein-chinasi che bloccano la cellula nella fase in cui si trova impedendole di proseguire e facendo in modo che concentri energie sulla riparazione del danno. Indirettamente inducono blocco della transizione G2-M (inattivando l attivatore di CDK1) Attivano p53 e quindi bloccano fase S o transizione G1-S

Il danno al DNA induce il blocco della transizione G2-M perchè inattiva cdc25 (la chinasi che a sua volta attiva CDK1)

P53 è un gene oncosoppressore molto studiato (mutazioni a suo carico nel 50% dei tumori umani) È un fattore trascrizionale normalmente presente nella cellula a bassissimi livelli (continua degradazione ubiquitina dipendente)

Danno al DNA aumenta livello di p53: Alternativa 1: induzione di geni che riparano DNA e bloccano ciclo Alternativa 2 induzione di geni che portano a morte cellulare (apoptosi)

Blocco del ciclo mediato da p53 P53 induce la trascrizione del gene p21 codificante per inibitore CKI di vari complessi CDK-ciclina

Sistema di controllo fa si che DNA sia replicato una sola volta a partire da specifiche origini replicative CDK di fase S fosforila proteine complessi pre-replicazione: in questo stato richiamano enzimi replicazione (inizio sintesi) ma non possono legarsi ad altre origini replicative. Restano fosforilate per tutta fase G2 e M impossibile nuova replicazione In G1 si defosforilano riassemblaggio sulle origini replicative

La conoscenza dei meccanismi di controllo del ciclo svela le basi molecolari del tumore In cellule normali: mitogeni (fattori crescita) transizione G1 S In cellule tumorali il punto di restrizione perde funzionalità: cellule cancerose non hanno bisogno di segnali mitogenici esterni per transitare da G1 ad S In cellule tumorali livelli elevati ed abnormi di cicline D (epressione non più controllata da fattori esterni come di norma) In cellule tumorali mutazioni su geni tumore-soppressori che normalmente frenano il ciclo (Es. P53, prb e CKI )