Tutorato di Analisi 2 - AA 2014/15



Documenti analoghi
Integrali doppi - Esercizi svolti

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[

LE FUNZIONI A DUE VARIABILI

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli

Matematica e Statistica

Esercizi svolti e assegnati su integrali doppi e tripli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

FUNZIONI / ESERCIZI SVOLTI

Esercizi di Analisi Matematica

Esercizi svolti sui numeri complessi

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Capitolo 16 Esercizi sugli integrali doppi

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria

RETTE, PIANI, SFERE, CIRCONFERENZE

SOLUZIONI D = (-1,+ ).

Esempi di funzione. Scheda Tre

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

LA RETTA. Retta per l'origine, rette orizzontali e verticali

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prove d'esame a.a

Funzioni reali di più variabili reali

LE FUNZIONI MATEMATICHE

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Tutorato di Analisi 2 - AA 2014/15

G6. Studio di funzione

2 Argomenti introduttivi e generali

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

GEOMETRIA DELLE MASSE

Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2.

Formule trigonometriche

Teoria dei Fenomeni Aleatori 1

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

FUNZIONE REALE DI UNA VARIABILE

Elementi di topologia della retta

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

Anno 4 Grafico di funzione

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel

4. Proiezioni del piano e dello spazio

Calcolo integrale in più variabili

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

Rette e piani con le matrici e i determinanti

Forze come grandezze vettoriali

15 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

b) Il luogo degli estremanti in forma cartesiana è:

MATEMATICA p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

1 Appunti a cura di prof.ssa MINA Maria Letizia integrati e pubblicati in data 12/10/10

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO x 2, con dominio R (infatti x per ogni ( x) = x 2

Anno 5 Funzioni inverse e funzioni composte

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, Settembre 2005 p.

Liceo G.B. Vico Corsico

Le trasformazioni geometriche

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

0. Piano cartesiano 1

Consideriamo due polinomi

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

Basi di matematica per il corso di micro

Liceo linguistico Trento Classi quarte vecchio ordinamento Studio di funzioni (prima parte) Visita il sito:

FUNZIONI ELEMENTARI Esercizi risolti

UNIVERSITÀ DEGLI STUDI DI TERAMO

Trasformazioni geometriche nel piano cartesiano

( x) ( x) 0. Equazioni irrazionali

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

1 Definizione: lunghezza di una curva.

Coordinate Cartesiane nel Piano

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x x2. 2, x3 +2x +3.

Insiemi di livello e limiti in più variabili

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

Maturità Scientifica PNI, sessione ordinaria

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

Massimi e minimi vincolati di funzioni in due variabili

DOMINIO = R INTERSEZIONI CON ASSI

Lezione del Teoria dei vettori ordinari

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

Corso di ordinamento Sessione straordinaria - a.s ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Definizione DEFINIZIONE

~ Copyright Ripetizionando - All rights reserved ~ STUDIO DI FUNZIONE

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

ISTITUTO ISTRUZIONE SUPERIORE

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

Studio di funzioni ( )

Capitolo 13: L offerta dell impresa e il surplus del produttore

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

Transcript:

Tutorato di Analisi - AA /5 Emanuele Fabbiani 5 marzo 5 Integrali doppi. La soluzione più semplice... Come per gli integrali in una sola variabile, riconoscere eventuali simmetrie evita di sprecare tempo prezioso in calcoli inutili. Se la funzione integranda f è PARI rispetto alla variabile - ovvero f, f, - e il dominio di integrazione è simmetrico rispetto all'asse, allora: f, dd f, dd. Se la funzione integranda f è ISPARI rispetto alla variabile - ovvero f, f, - e il dominio di integrazione è simmetrico rispetto all'asse, allora: f, dd. Analogo discorso può essere proposto con la variabile. Se la funzione integranda f è PARI rispetto alla variabile - ovvero f, f, - e il dominio di integrazione è simmetrico rispetto all'asse, allora: f, dd f, dd. Se la funzione integranda f è ISPARI rispetto alla variabile - ovvero f, f, - e il dominio di integrazione è simmetrico rispetto all'asse, allora: f, dd.. Integrali doppi. Risolvere i seguenti integrali doppi sull'insieme.. 5 + dd,, R : } Il primo passo è riconoscere e disegnare il dominio di integrazione. La prima condizione,, indica che l'insieme è limitato alla fascia di piano compresa tra le rette orizzontali e. La seconda, invece, specica che la coordinata dei punti appartenenti all'insieme varia tra la curva, ovvero il ramo della parabola contenuto nel primo quadrante, e la retta verticale. I graci successivi riportano le curve e l'insieme da esse individuato.

5 5 - - 5 5 Figura.: ominio di integrazione. L'insieme non è simmetrico rispetto ad alcuno dei due assi: non ha senso ragionare su eventuali simmetrie della funzione. Si può procedere quindi con l'integrazione per li orizzontali - quella per li verticali richiederebbe di spezzare il dominio in due parti. Per ricavare gli estremi dell'integrale più interno occorre immaginare di intersecare l'insieme con una retta orizzontale: questa incontra dapprima e poi. Sull'asse, invece, l'insieme è limitato dalle rette e. Quindi: ˆ ˆ ˆ [ 5 + dd 5 + d d 5 + ] d.5 ˆ. [ ] + 6 5 9 d + 6 5 5 + 6 6 5 + dd,, R : + } Il primo passo è riconoscere e disegnare il dominio di integrazione. La prima condizione, +, identica i punti compresi nel cerchio ci raggio centrato nell'origine. La seconda, invece, individua la regione di piano posta al di sotto del graco della parabola. La terza obbliga a considerare unicamente il semipiano a destra dell'asse. I graci successivi riportano le curve e l'insieme da esse individuato..5.5 -.5 - -.5 - - -.5 - -.5.5.5 Figura.: ominio di integrazione. L'insieme non è simmetrico rispetto ad alcuno dei due assi: non ha senso ragionare su eventuali simmetrie della funzione.

Sia che si scelga l'integrazione per li orizzontali, sia che si opti per quella per li verticali, si rende necessario dividere il dominio di integrazione in due insiemi distinti. Si propende per i li orizzontali e di divide in e, tali che. I graci sono riportati nella gura seguente. }.6 < }.7 a } b < } Figura.: ominio di integrazione. Quindi: + dd + dd + + dd.8 Per quanto riguarda, i li orizzontali intercettano dapprima la parabola, poi la circonferenza. al momento che l'integrale più interno è nella variabile, occorre scrivere le due curve nella forma f..9 +. Il segno positivo davanti alle radici è giusticato dal fatto che è contenuto nel primo quadrante, dove le ascisse sono positive. Gli estremi dell'integrale in, invece, sono e il punto di intersezione tra la parabola e la circonferenza, che si ricava mettendo a sistema le due curve. In denitiva: + + + dd ˆ non accettabile. ˆ + d d. Per quanto riguarda, invece, la è compresa tra l'asse e la parte destra della circonferenza:. Il segno positivo davanti alle radici è giusticato dal fatto che è contenuto nel quarto quadrante, dove le ascisse sono positive. La variabile, invece, ha come estremi quelli ssati dal raggio della circonferenza:. Pertanto: + dd ˆ ˆ + d d.5

Si può ora risolvere l'intero integrale: + dd + dd + + dd.6 ˆ ˆ + ˆ ˆ d d + + d d ˆ [ ˆ ˆ [ ] + d + + + + + 5 5. + 5 + 5 5 5 + 5 + ˆ ˆ d + ˆ d + ] [ ] + d + d + + d + 5 5 ] + + 8 5 + + 5 8 5 [ + + + arctan dd,, R : + } Il dominio di integrazione è identico a quello descritto nell'esercizio precedente, senza però la condizione che impone di considerare solo i punti con ascissa positiva. I graci successivi riportano le curve e l'insieme da esse individuato..5.5 -.5 - -.5 - - -.5 - -.5.5.5 Figura.: ominio di integrazione. Si nota che l'insieme è simmetrico rispetto all'asse : si cercano quindi eventuali simmetrie della funzione integranda rispetto alla variabile : f, + + arctan arctan f,.7 La funzione è dispari. Senza ulteriori calcoli, si conclude: + + arctan dd.8

. dd,, R : } Si esamina il dominio di integrazione. La prima condizione,, equivale a e indica che l'insieme è limitato alla fascia di piano compresa tra le rette orizzontali e. La seconda, invece, specica che la coordinata dei punti appartenenti all'insieme varia tra la parabola con asse parallelo all'asse delle ascisse e la retta verticale. I graci successivi riportano le curve e l'insieme da esse individuato. - - - - Figura.5: ominio di integrazione. L'insieme è simmetrico rispetto all'asse delle ascisse : si ricercano eventuali proprietà della funzione integranda rispetto alla variabile. f, f,.9 La funzione è pari: è quindi possibile considerare soltanto metà dell'insieme. dd dd dd. L'ultima uguaglianza è giusticata dal fatto che il nuovo insieme di integrazione è completamente contenuto nel primo quadrante, dove e. Si può procedere quindi con l'integrazione per li verticali - ugualmente semplice sarebbe risultata quella per li orizzontali. Per ricavare gli estremi dell'integrale più interno occorre immaginare di intersecare l'insieme con una retta verticale: questa incontra dapprima la parabola, poi l'asse.. Sull'asse, invece, l'insieme è limitato dalle rette e. Quindi: dd ˆ ˆ d. d ˆ ˆ d d ˆ ˆ ˆ ˆ [ d d 5 d [ ] 9 6 9 7 9 6 ] d. 5

5. dd, triangolo A ;, B ;, C ; 5 Il dominio di integrazione è un triangolo contenuto nel primo quadrante, rappresentato nella gura seguente. 6 6 5 5 - - Figura.6: ominio di integrazione. L'insieme non è simmetrico rispetto ad alcun asse: è quindi inutile considerare le simmetrie della funzione. Per evitare di dividere il dominio di integrazione si decide di utilizzare li verticali. al disegno si può notare che la coordinata è compresa tra le due rette, le cui equazioni e + 6 sono ottenibili mediante la formula della retta passante per due punti. La coordinata, invece, è limitata dagli estremi numerici e. 6..5 Si può quindi risolvere l'integrale: dd ˆ ˆ 6 d d ˆ [ ] 6 d ˆ 6 d.6 ˆ 6. 6 + d ] [6 [ 9 ] 8 5 9 + + + dd,, R : + } Si esamina il dominio di integrazione. Le curve proposte dalla prima condizione + e + sono circonferenze, di raggio rispettivamente e. La disuguaglianza impone di considerare i punti compresi tra le due, quindi una corona circolare di raggio interno e raggio esterno. Un altro possibile ragionamento è interpretare la quantità + come il quadrato della distanza di un punto dall'origine: in questo caso, la disequazione individua tutti i punti la cui distanza dall'origine è compresa tra e. La seconda, invece, descrive i punti che si trovano al di sopra dell'asse delle ascisse ma al di sotto della retta. I graci successivi riportano le curve e l'insieme da esse individuato. 6

- - - - - - Figura.7: ominio di integrazione. al momento che il dominio di integrazione è un settore di una corona circolare, risulta utile il passaggio in coordinate polari: ρ cos θ.7 ρ sin θ La funzione diventa: + + ρ cos θ + ρ sin θ + ρ cos θ + sin θ + ρ +.8 Occorre ora ricavare gli estremi di integrazione nelle nuove variabili. ρ rappresenta il raggio del cerchio che viene spazzato dall'integrale e deve quindi variare tra il raggio interno e il raggio esterno della corona circolare. ρ.9 θ, invece, identica l'angolo formato dal vettore che collega un punto dell'insieme di integrazione all'origine e dal semiasse positivo delle ascisse. Nell'insieme in esame tale angolo è compreso tra e l'angolo θ ma formato dalla retta con l'asse. Rispolverando le formule di quarta liceo, si scopre che l'angolo formato da una retta con l'asse è pari ad arctan m dove m è il coeciente angolare. θ arctan. θ π. Ricordando che il cambio di dierenziali richiesto dalla coordinate polari è: Si può riscrivere l'integrale. ˆ ρ ρ + dρ + + dd ρ + ρdρdθ dθ dd ρdρdθ. ˆ [ ln ρ + ] dθ ln 5 ln dθ ln 5 7. dd,, R : + } ρ ρ + dρ dθ. dθ π 6 ln 5 7

Si disegna l'insieme di integrazione: semipiano delle ordinate positive. il semicerchio di raggio centrato nell'origine e contenuto nel.5.5 -.5 - -.5 - - -.5 - -.5.5.5 Figura.8: ominio di integrazione. Il dominio è simmetrico rispetto all'asse, si cercano quindi eventuali simmetrie della funzione rispetto all'incognita. f, f,. La funzione è pari: è quindi possibile considerare soltanto metà dell'insieme. dd dd dd.5 L'ultimo passaggio si giustica osservando che, sul nuovo dominio di integrazione, sia che sono sempre positive. al momento che il dominio di integrazione è un quarto di circonferenza, risulta utile il passaggio in coordinate polari: ρ cos θ.6 ρ sin θ La funzione diventa: ρ cos θ ρ sin θ ρ cos θ sin θ.7 Occorre ora ricavare gli estremi di integrazione nelle nuove variabili. ρ rappresenta il raggio del cerchio che viene spazzato dall'integrale e deve quindi variare tra e il raggio della circonferenza. ρ.8 θ, invece, identica l'angolo formato dal vettore che collega un punto dell'insieme di integrazione all'origine e dal semiasse positivo delle ascisse. Nell'insieme in esame tale angolo è compreso tra e l'angolo formato dagli assi cartesiani, per denizione ortogonali tra loro. θ π.9 Ricordando che il cambio di dierenziali richiesto dalla coordinate polari è: dd ρdρdθ. Si può riscrivere l'integrale. ˆ dd ρ cos θ sin θ ρdρdθ ρ cos θ sin θ dρ dθ. cos θ sin θ dθ 8 ˆ ρ dρ

al momento che cos θ sin θ non dipende dalla variabile ρ può uscire dall'integrale più interno e rimanere unicamente in quello più esterno. Similmente, ρ è una costante rispetto ala variabile θ. L'integrale in θ si risolve mediante le formule di duplicazione del seno. Quindi: sin sin cos sin cos sin. cos θ sin θ dθ ˆ ρ dρ sin θ [ cos θ] π [ ρ ] dθ ˆ ρ dρ sin θ dθ + 8. dd,, R : + } ˆ ρ dρ. Il dominio è molto simile all'esercizio precedente, ad eccezione del fatto che occorre considerare la semicirconferenza nel semipiano delle negative..5.5 -.5 - -.5 - - -.5 - -.5.5.5 Figura.9: ominio di integrazione. Il dominio è simmetrico rispetto all'asse, si cercano quindi eventuali simmetrie della funzione rispetto all'incognita. f, f,. La funzione è dispari: senza ulteriori indugi si conclude. dd.5 9. cos + e dd,, R : + π } La particolare forma della funzione integranda e del dominio di integrazione suggeriscono di utilizzare un cambio di variabili. u +.6 v In questo modo sia la funzione che l'insieme vengono notevolmente semplicati. cos + e cos u e v.7 9

, R : + π } u, v R : u π } v.8 Nelle nuove variabili il dominio di integrazione non è altro che un rettangolo di base π e altezza con centro di simmetria nell'origine. a ominio nelle coordinate e. b ominio nelle coordinate u e v. Figura.: ominio di integrazione. Rimane da considerare il cambio dei dierenziali. dd det Jac Φ, dudv.9 dove det Jac Φ, è il determinante della matrice jacobiana del cambio di variabili. u + Φ, + ;.5 v Quindi l'integrale diventa:. Jac Φ, [ + [ det Jac Φ, det ] [ ].5 ] det.5 + cos + e dd cos u e v dd π ˆ cos u du e v dv e + e e e π ˆ cos u e v dv du.5 e + + dd,, R : + + } La particolare forma della funzione integranda e del dominio di integrazione suggeriscono di utilizzare un cambio di variabili. u +.5 v + In questo modo sia la funzione che l'insieme vengono notevolmente semplicati. e + + eu v.55

, R : + + } u, v R : u v } Nelle nuove variabili il dominio di integrazione non è altro che un quadrato di lato..56 8 7 6 5 8 6 a ominio nelle coordinate e. b ominio nelle coordinate u e v. Figura.: ominio di integrazione. Rimane da considerare il cambio dei dierenziali. dd det Jac Φ, dudv.57 dove det Jac Φ, è il determinante della matrice jacobiana del cambio di variabili. u + Φ, + ; +.58 v + Jac Φ, [ + + det Jac Φ, det Quindi l'integrale diventa: e + + dd ˆ ˆ e u du [ ] ] [ ].59 det.6 + + u e v dd ˆ ˆ e u v dv du.6 v dv [ ] e u [ln v ] e ln ln e ln. Integrali di supercie.. Calcolare l'area della supercie cartesiana di equazione z + limitata al dominio, R : + 8 }. L'area di una supercie σ u, v ristretta al dominio è denita come: A n u, v dudv.6 dove n u, v è la norma del vettore normale alla supercie vedi sezione Superfici. Il primo passo è quindi il calcolo del vettore normale a σ. Nel caso di una supercie cartesiana, ovvero descritta dal graco di una funzione f,, si può utilizzare la formula: n, f, ; f, ;.6

Nel caso in esame la funzione è f, +. Pertanto: n, ; ;.6 La cui norma è: n, L'integrale da risolvere è quindi: + + + +.65 n, dd + + dd.66 Si cerca innanzitutto di capire quale sia la curva che descrive l'insieme d'integrazione. + 8.67 8 + 8 8 8.68 8 +.69 L'equazione individua un ellisse con i fuochi sull'asse e vertici di coordinate ± 8; e ; ±. Il verso della disequazione impone di considerare i punti interni alla curva. - - - - - - - - Figura.: ominio di integrazione. al momento che l'insieme è costituito dall'area racchiusa da un ellisse, è opportuno passare alle coordinate ellittiche. aρ cos θ.7 bρ sin θ dove ρ e θ sono le variabili di integrazione, mentre a e b sono i parametri dell'ellisse scritto nella forma a + b. Nel caso in esame si ha a 8 e b. 8ρ cos θ.7 ρ sin θ Applicando la sostituzione, la funzione diventa: + + 8ρ cos θ + ρ sin θ + 8ρ +.7 Occorre ora ricavare gli estremi di integrazione nelle nuove variabili. Nelle coordinate ellittiche, ρ varia sempre tra e : sono i parametri a e b a rendere conto delle dimensioni della curva. ρ.7

Come nelle coordinate polari, θ identica l'angolo formato dal vettore che collega un punto dell'insieme di integrazione all'origine e dal semiasse positivo delle ascisse. Nell'insieme in esame tale angolo deve spazzare l'intero piano. θ π.7 Ricordando che il cambio di dierenziali richiesto dalla coordinate ellittiche è: Si può riscrivere l'integrale. + + dd 8ρ + ρ 8 dρdθ dθ 6 ˆ 6ρ 8ρ + dρ 8π dd ρab dρdθ.75 ˆ ρ 8ρ + dρ dθ.76 6 [ 8ρ + ] π [ 8ρ + ] 6π. Risolvere il seguente integrale di supercie. dσ.77 σ z Sulla supercie σ di equazione z + ristretta al dominio, R : } +. Gli integrali di supercie si trasformano in integrali doppi grazie alla seguente formula: f,, z dσ f σ u, v n u, v dudv.78 σ dove σ u, v è la supercie su cui si intende eettuare l'integrazione, ristretta al dominio, n u, v è la norma del vettore normale alla supercie e la scrittura f σ u, v identica la funzione f alle cui variabili, e z vengono sostituite le componenti della supercie σ. Nel caso in esame, σ è una supercie cartesiana. Pertanto può essere scritta come: σ,, z ; ; +.79 Come nel caso precedente, il vettore normale si ricava mediante la formula: f, f, n, ; ; In questo caso, la funzione f, è f, +. Pertanto: n, + ; + ;.8.8 La cui norma è: n, + + +.8 + + L'integrale da risolvere è quindi: f σ u, v n u, v dudv dd + Si scrive il dominio d'integrazione in una forma più leggibile. + dd.8 +.8 +.85

Si riconosce ora che la disequazione rappresenta la corona circolare compresa tra le due circonferenze di raggio e centrate nell'origine..5.5 -.5 - -.5 - - -.5 - -.5.5.5 Figura.: ominio di integrazione. al momento che l'insieme è costituito da una corona circolare, è opportuno passare alle coordinate polari. ρ cos θ.86 ρ sin θ Applicando la sostituzione, la funzione diventa: + ρ cos θ + ρ sin θ ρ.87 Occorre ora ricavare gli estremi di integrazione nelle nuove variabili. ρ rappresenta il raggio del cerchio che viene spazzato dall'integrale e deve quindi variare tra il raggio dalla circonferenza interna e quello della circonferenza esterna. ρ.88 La variabile θ identica l'angolo formato dal vettore che collega un punto dell'insieme di integrazione all'origine e dal semiasse positivo delle ascisse. Nell'insieme in esame tale angolo deve spazzare l'intero piano. θ π.89 Ricordando che il cambio di dierenziali richiesto dalla coordinate polari è: Si può riscrivere l'integrale. + dd ρ ρdρdθ dθ ˆ. Risolvere il seguente integrale di supercie. dd ρ dρdθ.9 ρ dρ [ ρ π σ ] π ˆ ρ dρ dθ.9 [ ] ρ π z + dσ.9 + +

Sulla supercie σ di equazione z ristretta al dominio, R : + + }. Gli integrali di supercie si trasformano in integrali doppi grazie alla seguente formula: f,, z dσ f σ u, v n u, v dudv.9 σ dove σ u, v è la supercie su cui si intende eettuare l'integrazione, ristretta al dominio, n u, v è la norma del vettore normale alla supercie e la scrittura f σ u, v identica la funzione f alle cui variabili, e z vengono sostituite le componenti della supercie σ. Nel caso in esame, σ è una supercie cartesiana. Pertanto può essere scritta come: σ,, z ; ;.9 Come nel caso precedente, il vettore normale si ricava mediante la formula: f, f, n, ; ;.95 In questo caso, la funzione f, è f,. Pertanto: La cui norma è: n, L'integrale da risolvere è quindi: f σ u, v n u, v dudv n, ; ;.96 + + + +.97 + + + dd dd.98 + + Si esamina il dominio d'integrazione: la prima condizione identica i punti interni ad un ellisse. +.99 +. I fuochi sono sull'asse e i vertici hanno coordinate ±; e ; ±. La seconda disequazione, invece, individua i punti esterni alla circonferenza di raggio centrata nell'origine..5.5 -.5 - -.5 - - -.5 - -.5.5.5 Figura.: ominio di integrazione. L'insieme è simmetrico sia rispetto a che rispetto a. Si vericano quindi eventuali simmetrie della funzione integranda: f, f,. 5

f, f,. La funzione è pari sia rispetto alla variabile che rispetto a. Si sceglie quindi di considerare solo la parte di contenuta nel primo quadrante: dd dd dd. L'ultimo passaggio è lecito perché, nel nuovo dominio, sempre. Si procede quindi con l'integrazione per li orizzontali. Immaginando di intersecare l'insieme con una retta orizzontale, il limite inferiore al segmento che si otterrebbe sarebbe rappresentato dalla circonferenza, mentre quello superiore dall'ellisse. Si rende ora necessario esprimere le due curve nella forma f. +. +.5 Quindi:.6 Per quanto riguarda la variabile, invece, l'inseme è limitato dai valori e : Si può quindi risolvere l'integrale: dd ˆ ˆ ˆ d d + d 6.7 ˆ. Applicazioni dei doppi integrali alla sica. ˆ d 6 [ ] d ˆ ] [ 6 [ ] d.8. Si dimostri che il momento d'inerzia di un disco cavo di massa m, raggio interno r i e raggio esterno r e è I m ri + e r. La denizione di momento d'inerzia per un corpo bidimensionale è ˆ I r dm.9 S Considerando un disco cavo con centro nell'origine degli assi e densità superciale di massa σ,, si ha: ˆ ˆ I + σ, dd. disco cavo Supponendo σ, costante su tutta la supercie: ˆ ˆ ˆ ˆ I + σdd σ disco cavo Si opera ora la trasformazione in coordinate polari: ˆ ˆ I σ Con Quindi: I σ ˆ re r i disco cavo disco cavo + dd. ρ ρdρdθ. r i ρ r e. θ π. ˆ re ρ dρdθ σπ ρ dρ σπ r i 6 [ ρ ] re r i σπ r e r i.5

Si scompone ora il termine tra parentesi: I σπ re ri re + ri.6 Si riconosce inoltre che π re ri rappresenta l'area della gura. Il prodotto tra questa e la densità superciale fornisce la massa del corpo: m σπ re ri.7 In denitiva, I r m e + ri.8 7