NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i



Documenti analoghi
Esercizi svolti sui numeri complessi

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Analisi Complessa. Prova intermedia del 7 novembre Soluzioni. (z 11 1) 11 1 = 0.

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

RETTE, PIANI, SFERE, CIRCONFERENZE

Consideriamo due polinomi

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento

Ripasso delle matematiche elementari: esercizi svolti

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

Analisi Matematica di circuiti elettrici

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

STUDIO DEL SEGNO DI UNA FUNZIONE

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

Numeri complessi. x 2 = 1.

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

LE FUNZIONI A DUE VARIABILI

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano

A.1 Definizione e rappresentazione di un numero complesso

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

METODI MATEMATICI PER LA FISICA

NUMERI COMPLESSI. Test di autovalutazione

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

DA GIOCHI D AUTUNNO 2006 SOLUZIONI E COMMENTI

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

FUNZIONI ELEMENTARI Esercizi risolti

UNIVERSITÀ DEGLI STUDI DI TERAMO

3 GRAFICI DI FUNZIONI

Equazioni alle differenze finite (cenni).

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria Superiore.

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

Soluzione di equazioni quadratiche

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

Siano f e g due funzioni, allora x D f D g, cioè appartenente all intersezione dei loro domini, possiamo definire

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

Dimensione di uno Spazio vettoriale

FUNZIONI / ESERCIZI SVOLTI

Formule trigonometriche

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando

Funzioni. Parte prima. Daniele Serra

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

MATEMATICA p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

GEOMETRIA DELLE MASSE

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

B9. Equazioni di grado superiore al secondo

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

FUNZIONE REALE DI UNA VARIABILE

Algebra Lineare e Geometria

Capitolo 1 ANALISI COMPLESSA

Anno 4 Grafico di funzione

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. novembre 2009

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x x2. 2, x3 +2x +3.

SOMMARIO I radicali pag I radicali aritmetici pag Moltiplicazione e divisione fra radicali aritmetici pag.

LE FUNZIONI E LE LORO PROPRIETÀ

Elementi di topologia della retta

Anno 5 4 Funzioni reali. elementari

INdAM QUESITI A RISPOSTA MULTIPLA

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

0. Piano cartesiano 1

CORSO DI LAUREA IN INGEGNERIA.

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

Derivate Limiti e funzioni continue

Esempi di funzione. Scheda Tre

Proiezioni Grafica 3d

Percorsi di matematica per il ripasso e il recupero

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37

Funzione reale di variabile reale

Matematica generale CTF

Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del x 1.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

I appello - 24 Marzo 2006

SIMULAZIONE TEST ESAME - 1

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

Esercitazione del Analisi I

( x) ( x) 0. Equazioni irrazionali

Esercizi su lineare indipendenza e generatori

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A Analisi Matematica - Le funzioni elementari - p.

Liceo G.B. Vico Corsico

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

Transcript:

NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i, c) 5 (1 i)( i)( i), d) z + i. Verificare che z 1 ± i soddisfa l equazione z z + 0. 4. Calcolare il modulo dei seguenti numeri complessi : a) 1 + i i 1 i, b) (1 + i)(1 i)(1 + i), c) ( 1 + i 1 i 1 ) 5. Mettere in forma trigonometrica e in forma esponenziale i seguenti numeri complessi: a) z i, b) z 1 + i, c) z 1 + i d) z 4i + i, e) z (1 + i)( i) 6. Siano: a) z i + 1 i, b) z 1 + i i Scrivere in forma algebrica, in forma trigonometrica e in forma esponenziale i numeri complessi z, z 6, z. 7. Trovare le radici dei seguenti numeri complessi e disegnarle sul piano di Gauss. 4 a), b) 1 i, c) 1 i + i. Sia z e i π 6 + e i π. a) Esprimere z sia in forma algebrica sia in forma trigonometrica. b) Esprimere le radici cubiche di z in forma esponenziale.,

9. Risolvere e rappresentare sul piano di Gauss le soluzioni delle seguenti equazioni: a) z + iz + 4 0, b) z 4 + z + 4 0, c) z z z + i 0, d) zz z + i 4 0, e) z z 10. Risolvere e rappresentare sul piano di Gauss le soluzioni dei seguenti sistemi: (a) Re [z(z + i)] Im z 0 (b) z 6 + 7z 0 Re(z) 1 11. E data la funzione f : C C così definita f(z) 1 + iz iz + i. a) Trovare tutti gli z C per cui f(z) z. b) Trovare le controimmagini di + i. 1. Sapendo che 1 + i è radice del polinomio p(z) z 4 5z + 10z 10z + 4, trovare le altre radici. Decomporre p(z) in fattori irriducibili su IR e su C. 1. Verificare che il polinomio : p(z) z + (1 + i)z + [( + )i ]z i si annulla per z 0 1 e trovare le altre radici. Decomporre p(z) in fattori irriducibili. 14. Trovare un polinomio p(z) IR[z] di grado 5, avente a come radice semplice, b i come radice di molteplicità, e tale che p(0) 1.

1. (a) i 1 (per definizione) (b) i i i ( 1)i i SOLUZIONI degli esercizi sui NUMERI COMPLESSI (c) i 4 i i ( 1)( 1) 1 (d) 1 i i i i 1 i (e) i 4 i i (i 4 ) i 1 ( 1) 1 (f) i 7 (i 7 ) 1 (i 4 i ) 1 ( i) 1 1 i i i i. (a) ( i) i(1 i) i i + i i i ( 1 (b) ( + i)( i) 5 + 1 ) 10 i (9 i ) + i + i (9 + 1) 10 10 + i 5 (c) (1 i)( i)( i) 5 ( i i + i )( i) 5 (1 i)( i) 5 i 9i + i 5 10i 1 i (d) z + i z + i z + i z i. Calcoliamo z z + per z 1 + i : (1 + i) (1 + i) + i i + 0 Dunque z 1 + i soddisfa l equazione z z + 0. Facciamo lo stesso con z 1 i : (1 i) (1 i) + i + i + 0 Pertanto anche z 1 i soddisfa l equazione z z + 0. 4. (a) 1 + i i 1 i i(1 + i) 1 + i 1 4i 1 + i i 5 5 + 5i i + 5 1 5 7 + 4i 1 5 1 49 + 16 65 5 (b) (1 + i)(1 i)(1 + i) (1 i ) 1 + i 1 + 4 ( ) 1 + i (c) 1 i 1 1 + i 1 i 1 i i 1 i 1 i 4 ( ) i(1 + i) i 1 + i 1 ( )

5. (a) z i Il modulo di z è z 1. Posto θ Arg (z), si ha: cos θ 0 θ π sin θ 1 Pertanto in forma trigonometrica e in forma esponenziale: ( z 1 cos π + i sin π ) cos π + i sin π, z 1 eiπ/ e iπ/ (b) z 1 + i ; z 1 + 1. Se θ Arg (z) : cos θ 1 sin θ 1 θ π 4 In forma trigonometrica e in forma esponenziale : z ( cos π 4 + i sin π ), z e iπ/4 4 (c) z 1 + i 1 1 1 + i 1 1 i (1 i)(1 + i) 1 1 i 1 i 1 (1 i) 6 z 1 6. Se θ Arg (z) : cos θ 1 sin θ 1 θ π 4 In forma trigonometrica e in forma esponenziale: ( ( z cos π ) ( + i sin π )), z 6 4 4 6 e iπ/4 (d) z 4i 4i( i) + i ( + i)( i) 4( i i ) i 1 + i z 1 +. Se θ Arg (z) cos θ 1 θ π sin θ In forma trigonometrica e in forma esponenziale ( z cos π + i sin π ), z e iπ/ (e) z (1 + i)( i) (1 + i)(1 i) (1 i ) 4 z 4. Se θ Arg (z) cos θ 1 θ 0 sin θ 0 In forma trigonometrica ed esponenziale z 4(cos 0 + i sin 0), z 4 e i0

6. (a) z + 1 i i ( + i) i + i + i i i 1 i z 1 + 1 1. Se θ Arg (z) cos θ sin θ 1 θ π 6 Calcoliamo adesso i numeri z, z 6, z. z 1 1, Arg (z ) Arg (z) π In forma trigonometrica, in forma esponenziale ed in forma algebrica: ( z cos π ) ( + i sin π ), z e i π, z 1 i. z 6 1, Arg (z 6 ) 6 Arg (z) π π π. In forma trigonometrica, in forma esponenziale ed in forma algebrica: z 6 cos π + i sin π, z 6 e iπ, z 6 1 z 1, Arg (z ) Arg (z) 11 π π 4π In forma trigonometrica, in forma esponenziale ed in forma algebrica: z cos π + i sin π, z e i π, z 1 + i. (b) z 1 + i i 1 1 + i 1 i 1 (1 + i) 1 i 1 4 (i) 1 i z 1, Arg z π Calcoliamo adesso z, z 6, z ( ) 1 z 1 4 Arg (z ) Arg (z) π In forma trigonometrica, in forma esponenziale ed in forma algebrica: z 1 4 (cos π + i sin π), z 1 4 eiπ, z 1 4 ( ) 1 6 z 6 1 64, Arg (z6 ) 6 Arg (z) π π + π In forma trigonometrica, in forma esponenziale ed in forma algebrica: z 6 1 64 (cos π + i sin π), z6 1 64 eiπ, z 6 1 64. z 1, Arg (z ) Arg (z) 11π π + 10π In forma trigonometrica, in forma esponenziale ed in forma algebrica: z 1 (cos π + i sin π), z 1 eiπ, z 1.

7. (a) z 4 ( 1/) 1/4 1/ 1 Calcoliamo le otto radici ottave del numero complesso 1. Poiché 1 ha modulo 1 e argomento 0 le otto radici ottave di 1 avranno sempre modulo 1 e argomenti: θ i 0 + kπ (k 0, 1,..., 7) Pertanto le otto radici ottave di sono z 1 e i 0 z e i π 4 (1 + i) 1 (1 + i) z e i π i z 4 e i π 4 ( 1 + i) 1 ( 1 + i) z 5 e iπ z 6 e i 5π 4 ( 1 i) 1 ( 1 i) z 7 e i π i z e i 7π 4 (1 i) 1 (1 i) Nel piano di Gauss, si trovano ai vertici di un ottagono regolare inscritto in una circonferenza di centro O (0, 0) e raggio, di cui un vertice è nel punto U (, 0). (b) Il numero complesso z 1 i ha modulo e argomento θ tale che: cos θ 1 θ π sin θ Pertanto le due radici quadrate α 1, α Arg ( z) π + kπ (k 0, 1). Quindi: α 1 ( e i π 6 (cos π ) ( + i sin π )) 6 6 6 i α e 5π 6 6 + i. di z hanno modulo z e argomenti Si osservi che α 1 α. ( come sempre succede per le due radici quadrate di un qualunque numero complesso ). Nel piano di Gauss α 1 e α sono i due punti sulla circonferenza di centro O (0, 0) e raggio ( ) ( ) 6 6, di coordinate A,, B,, simmetrici rispetto all origine.

(c) Dobbiamo calcolare z 1 i + i. Calcoliamo prima i i Il numero complesso i ha modulo 1 e argomento π ; dunque le sue due radici quadrate avranno π modulo 1 e argomenti + kπ (k 0, 1), cioè π 4 e 5π 4. Dunque: ( i) 1 ( 1 + i 1 ) 1 + i ( i) ( 1 i 1 ) 1 i Dobbiamo adesso calcolare i numeri complessi w 1 i + 1 + i 1 t 1 i 1 i i i Calcoliamo 1. Poiché 1 1 e Arg (1) 0, le tre radici cubiche di 1 avranno sempre modulo 1 e argomenti Arg ( 1) 0 + kπ (k 0, 1, ). Dunque: ( 1) 1 1, ( 1) e i π 1 + i, ( 1) e i 4π 1 i Pertanto le tre radici cubiche di sono: w 1, w + i, w i Calcoliamo le i Poiché i ha modulo 1 e argomento π Arg ( π i) + kπ π + kπ Pertanto le radici cubiche di i avranno modulo 1 e argomenti (k 0, 1, ). ( i) 1 e i π i, ( i) e i 7π 6 i 1, ( i) e i π 6 Dunque le tre radici cubiche di i sono: t 1 ( i) 1 i, t ( i) i, t ( i) i 1 i Concludendo, le radici cubiche cercate 1 i + i sono i 6 numeri w 1, w, w, t 1, t, t. Sul piano di Gauss appartengono ad una circonferenza di raggio, ma non sono più ai vertici di un esagono regolare (mentre w 1, w, w sono vertici di un triangolo equilatero, come pure t 1, t, t.)

(. (a) z e i π 6 + e i π cos π ) ( + i sin π ) ( + cos π ) ( + i sin π ) 6 6 i In forma algebrica dunque: z (1 i) Per scrivere z in forma trigonometrica, calcoliamo il modulo di z e θ Arg (z): z 1 +. cos θ 1 Arg (z) π sin θ Dunque in forma trigonometrica: z ( ( cos π ) ( + i sin π )) (b) Le radici cubiche di z hanno modulo z 6 e argomenti Arg ( z) π + kπ Dunque in forma esponenziale π 9 + kπ z 6 e i( π 9 + kπ ) (k 0, 1, ) (k 0, 1, ). 9. (a) z + iz + 4 0 Applicando la formula risolutiva delle equazioni di secondo grado otteniamo: z i ± 9i 16 da cui z 1 4i, z i. i ± 5 i ± 5 1 i ± 5i Sul piano di Gauss, sono i due punti situati sull asse delle y di coordinate (0, 4) e (0, 1). (b) z 4 + z + 4 0 Posto z t, risolviamo l equazione di secondo grado t + t + 4 0 : t 1 ± 1 4 1 ± 1 ± i Dobbiamo ora trovare z t, cioè i due numeri complessi 1 + i. Iniziamo con 1 i 1 i e i due numeri Poiché 1 i ha modulo e argomento 4π le sue due radici quadrate hanno modulo π e argomenti rispettivamente e π + π, cioè 1 i ± ( e i π ± 1 ) + i ± ( 1 + i )

Proseguiamo calcolando 1 + i Il numero complesso 1 + i ha modulo e argomento π. Pertanto le sue due radici quadrate hanno modulo e argomenti 1 + i ± ( ) e i π 1 ± + i ± (1 + i ) π e π + π ; dunque: Dunque le soluzioni dell equazione di partenza sono i quattro numeri complessi z 1 (1 + i ), z ( 1 + i ) z ( 1 i ), z 4 (1 i ) Nel piano di Gauss, appartengono ad una circonferenza di raggio ( ) ( ) ( ) (, ai vertici ) di un rettangolo, di coordinate, 6,, 6,, 6,, 6. (c) z z z + i 0 Posto z x + iy, l equazione diventa: (x + iy) x + y x iy + i 0 [ ] x x + y + i [1 y + y ] x + y 0 Pertanto parte reale e parte immaginaria devono essere nulli. Si ottiene dunque il sistema: [ ] x x + y 0 1 y + y x + y 0 Le soluzioni di questo sistema sono l unione delle soluzioni dei due sistemi: x x 0 + y 0 1 y + y y 0 1 y + y x + y 0 Il secondo sistema non ha soluzione, in quanto la seconda equazione diventa 1 y + y 0, che è impossibile. Il primo sistema a sua volta si divide in due sottosistemi x 0 x 0 y > 0 y < 0 y y + 1 0 y y + 1 0 x 0 y > 0 (y 1) 0 x 0 y 1 x 0 y < 0 y + y 1 0 x 0 y 1 Dunque le soluzioni dell equazione sono i due numeri complessi z i e z ( 1 )i. Sul piano di Gauss, sono i due punti sull asse delle y di coordinate (0, 1) e (0, 1 ).

(d) Posto z x + iy, ricordando che zz z, l equazione diventa: x + y x iy + i 4 0 Dobbiamo annullare la parte reale e la parte immaginaria; otteniamo pertanto il sistema: x + y x 0 1 4 y 0 x x + 1 16 0 y 1 4 La prima equazione ha soluzioni: x 1 ± 4. Pertanto le soluzioni dell equazione iniziale sono: ( ) 1 z 1 + + i 1 ( ) 1 4 4, z + i 1 4 4 ( + Sul piano di Gauss, sono i due punti di coordinate, 1 ) 4 4 (e) Dobbiamo risolvere l equazione z z. Posto ρ z e θ Arg (z), il numero complesso z ha modulo ρ il numero z ha modulo ρ e argomento 0. ( e, 1 ). 4 4 e argomento θ, mentre Poiché il numero complesso z deve coincidere con il numero z i loro moduli devono coincidere e i loro argomenti devono essere uguali a meno di multipli di π. Si deve pertanto avere: ρ ρ ρ 0 ρ 1 θ 0 + kπ θ kπ Le soluzioni sono pertanto i quattro numeri complessi z 1 0, z 1 z e i π 1 + i, z 4 e i 4π 1 i Nel piano di Gauss, si trovano quattro punti : l origine e i vertici del triangolo equilatero inscritto nella circonferenza di centro O e raggio 1 (di cui il punto (1, 0) è uno dei vertici). 10. (a) Posto z x + iy, iniziamo a trasformare la prima equazione del sistema: z(z + i) (x iy)(x + iy + i) x + y + y + ix Pertanto il sistema risulta: x + y + y y 0 x + y + y 0 y 0 Nel piano di ( Gauss ) i punti che soddisfano al sistema sono i punti interni alla semicirconferenza di centro C 0, 1 e raggio R 1 4 +, situati nel semipiano al di sopra dell asse x (compresi i punti di frontiera).

(b) Per risolvere l equazione z 6 +7z 0, poniamo t z e troviamo l equazione t +7t 0, che ha soluzioni t e t 1. Pertanto z oppure z 1 Se z, allora z 1 1 1 Le tre radici cubiche di 1 sono 1, ± i Dunque le prime tre soluzioni dell equazione z 6 + 7z 0 sono z 1, z 1 + i, z 1 i. Se z 1, si ha z 1 e i kπ (k 0, 1, ), cioè z 4 1, z 5 1 + i, z 6 1 i. Le soluzioni del sistema proposto sono le soluzioni dell equazione z 6 + 7z 0 che hanno parte reale 1, e dunque : z 1 + i, z 1 i, z 4 1. Nel piano di Gauss, sono i tre punti sulla retta di equazione x 1 di coordinate (1, ), (1, 0), (1, ). 11. (a) f(z) z 1 + iz iz + i z 1 + iz iz + iz 1 iz z i z i Le due radici quadrate di i sono i ± e i π 4 ± 1 ( 1 + i) Dunque le soluzioni dell equazione f(z) z sono: z ± 1 (1 i) (b) Le controimmagini di + i sono gli z C tali che f(z) + i. Dunque: 1 + iz iz + i + i 1 + iz iz + i z 1 z i 1 i z i 5 Pertanto c è una sola controimmagine di + i, il numero complesso z 5 1 5 i 1. Poiché p(z) z 4 5z + 10z 10z + 4 IR[z] è un polinomio a coefficienti reali, se ha la radice 1 + i dividere per il polinomio prodotto : ha anche la radice 1 i ; dunque p(z) si può a(z) [z (1 + i)][z (1 i)] z z + Per trovare gli altri fattori di p(z), eseguiamo la divisione di p(z) per a(z) e troviamo il quoziente q(z) z z +. Pertanto p(z) (z z + )(z z + ). Le radici di z z + sono e 1. Pertanto le radici di p(z) sono: z 1 1 + i, z 1 i, z 1, z 4. La decomposizione di p(z) in fattori irriducibili su IR è : p(z) (z 1)(z )(z z + ). Su C, p(z) si decompone in fattori di primo grado: p(z) (z 1)(z )(z 1 i)(z 1 + i).

[ 1. p( 1) ( 1) + (1 + i)( 1) + ( ] + )i ( 1) i 1 + 1 + i + ( )i + i i + i i i 0 Pertanto z 0 1 è radice di p(z). Per trovare le altre radici, dividiamo p(z) per (z + 1) ad esempio utilizzando il metodo di Ruffini: 1 1 + i ( + )i i 1 1 i i + Dunque 1 i i // p(z) (z + 1)(z + iz i) Le radici del polinomio di secondo grado z + iz i sono: z i ± 1 + + i i ± 1 + i Poiché 1 + i ha modulo e argomento π le sue radici quadrate sono: 1 + i ± ( ) e i π 6 ± + i1 ± 1 ( + i). Dunque le tre radici di p(z) sono: z 0 1, z 1 ( ) 1 + i 1 (, z + i 1 ) 1. La decomposizione di p(z) in fattori irriducibili è pertanto: ( ( p(z) (z + 1) z i 1 1) ) ( ( ) ) z + + i 1 + 1 14. Poiché p(z) IR[z] (cioè è a coefficienti reali), se ammette la radice b i (con molteplicità ) deve ammettere anche la radice b + i (ancora con molteplicità ). Dunque p(z) è divisibile per ( [z ( i)] [z ( + i)]) (z 4z + 1). Inoltre deve essere divisibile per z (avendo a come radice semplice). Poiché deve essere di grado 5, sarà p(z) k(z )(z 4z + 1), k C. Poiché p(0) 1, si deve avere: 1 k( ) 169, da cui k 1 507. Pertanto il polinomio cercato è: p(z) 1 507 (z )(z 4z + 1).