REGOLE FACILI ITALIANO e MATEMATICA -classi 3, 4, 5 scuola primaria- A cura di www.imparaconpietro.altervista.org
INDICE SCHEDE REGOLE DI ITALIANO: Monosillabi 1 Articoli partitivi 2 Preposizioni 3 Aggettivi 4 Pronomi personali 5 Pronomi 6 Analisi logica 7 Complementi 8 REGOLE DI MATEMATICA: Doppio, triplo 9 Il migliaio 10 Moltiplicazioni a due cifre con la prova 11 Divisioni con la prova 12 Proprietà delle operazioni 13 14 Moltiplicazioni e divisioni per 10 100 1000 15 Le frazioni 16-17 Multipli e divisori 18 Criteri di divisibilità 19 La percentuale 20 Le espressioni 21 Le potenze 22 Misure 23-24 Peso lordo, peso netto e tara 25 Compravendita 26
Monosillabi Sempre con l accento Sempre senza accento CIÒ GIÀ GIÙ PIÙ PUÒ BLU DO FA FU LE LO MA ME MI NO QUA QUI RE SA SO SU TI TRE TU VA VI Monosillabi che cambiano significato Con l accento Senza accento DÀ - VERBO DARE DÌ È - GIORNO NOME - VERBO ESSERE LÀ - AVVERBIO DI LUOGO LÌ - AVVERBIO DI LUOGO NÉ - CONGIUNZIONE NEGATIVA DA - PREPOSIZIONE SEMPLICE DI - PREPOSIZIONE SEMPLICE E - CONGIUNZIONE LA - ARTICOLO PRONOME LI - PRONOME NE - PRONOME AVVERBIO SÉ - PRONOME PERSONALE SE - CONGIUNZIONE SÌ - AVVERBIO DI AFFERMAZIONE SI - PARTICELLA PRONOMINALE TÈ - BEVANDA NOME TE - PRONOME PERSONALE www.imparaconpietro.altervista.org 1
Articoli partitivi INDICANO UNA QUANTITÀ IMPRECISATA Esempio: (prendi delle fragole!) MASCHILE FEMMINILE SINGOLARE PLURALE SINGOLARE PLURALE del dei dello degli della delle www.imparaconpietro.altervista.org 2
Preposizioni SEMPLICI ARTICOLATE DI A DA IN CON SU PER + IL LO LA I GLI LE DI PREP. SEMPLICE + ART. DETERMINATIVO del dello della dei degli delle A al allo alla ai agli alle DA IN dal dallo dalla dai dagli dalle nel nello nella nei negli nelle SU sul sullo sulla sui sugli sulle TRA FRA www.imparaconpietro.altervista.org 3
Aggettivi Accompagnano il nome e specificano delle informazioni. QUALIFICATIVI DETERMINATIVI Indicano la qualità del nome Si distinguono dagli altri aggettivi perché hanno i gradi GRADO POSITIVO COMPARATIVO DI MAGGIORANZA COMPARATIVO DI MINORANZA COMPARATIVO DI UGUAGLIANZA SUPERLATIVO ASSOLUTO SUPERLATIVO RELATIVO (bello) (più bello di) (meno bello di) (bello come) (bellissimo, molto bello) (il più bello) POSSESSIVI mio, tuo... proprio, altrui... DIMOSTRATIVI questo, codesto, quello, stesso, medesimo INDEFINITI Qualche, ogni, nessuno, poco, tanto, alcuni, qualsiasi, altro... NUMERALI ORDINALI CARDINALI RICORDA! primo, secondo... 1, 2, 3... L AGGETTIVO accompagna il nome, il PRONOME, invece, lo sostituisce. Gli AGGETTIVI DETERMINATIVI possono essere anche pronomi! www.imparaconpietro.altervista.org 4
Pronomi personali I PRONOMI SOSTITUISCONO I NOMI! Soggetto Specificano la persona del verbo. Complemento 1ª PERS. SING. IO 2ª PERS. SING. 3ª PERS. SING. TU EGLI/ELLA LUI/LEI ESSO/ESSA 1ª PERS. PLURALE 2ª PERS. PLURALE 3ª PERS. PLURALE NOI VOI ESSI/ESSE/LORO ME, MI TE, TI LUI, LEI, SÉ, SI, LO, LA, NE, GLI, LE NOI, CE, CI VOI, VE, VI ESSI, ESSE, SÉ, LORO, LI, LE, NE, SI www.imparaconpietro.altervista.org 5
questo, codesto, quello, stesso, medesimo, coloro, colui, ciò. DIMOSTRATIVI che, quale, quanto, chi. ESCLAMATIVI E INTERROGATIVI Pronomi ORDINALI NUMERALI CARDINALI POSSESSIVI mio, tuo... proprio, altrui... primo, secondo... 1, 2, 3... INDEFINITI Alcuno, nessuno, poco, ognuno, nulla... RICORDA! I PRONOMI stanno al posto del nome (il nome a cui si riferiscono non c è) Gli AGGETTIVI, invece, accompagnano il nome (il nome a cui si riferiscono è vicino a loro) www.imparaconpietro.altervista.org 6
Analisi logica DIVIDE LA FRASE IN SINTAGMI Soggetto Espansione Di chi si parla? Diretta Compie / subisce l azione Complemento oggetto Chi? Che cosa? Indiretta Tutti gli altri complementi Predicato (verbo) Verbale Che cosa fa? Nominale Cosa è? Com è? www.imparaconpietro.altervista.org 7
Complementi Diretto Chi? Che cosa? COMPLEMENTO OGGETTO Esempio: Maria mangia (che cosa?) una mela Indiretti Di chi? Di che cosa? Dove? Da dove? Verso dove? Per dove? Quando? Da/per/tra quanto tempo? A chi? A che cosa? Da chi? Da che cosa? DI SPECIFICAZIONE DI LUOGO DI TEMPO DI TERMINE D AGENTE (persona) DI CAUSA EFFICIENTE (cosa) Come? In che modo? DI MODO Con che cosa? Con chi? Con che cosa? A causa di chi? A causa di che cosa? Per quale fine? A quale scopo? Per chi? Per che cosa? DI MEZZO DI COMPAGNIA (PERSONA) DI UNIONE (COSE) DI CAUSA DI FINE O SCOPO www.imparaconpietro.altervista.org 8
Doppio/metà, triplo... Doppio = x 2 Metà = : 2 Triplo = x 3 Terza parte = : 3 Quadruplo = x 4 Quarta parte = : 4 www.imparaconpietro.altervista.org 9
Il migliaio 1UK = 1 000 U Cioè 1 gruppo di mille cose 1 uk = 10 h = 100 da = 1 000 u www.imparaconpietro.altervista.org 10
Moltiplicazioni e divisioni in colonna con la prova MOLTIPLICAZIONE A DUE CIFRE Esempio: 1. Si moltiplica le u per le u 2. Si moltiplica le u per le da 23 x 12 = 276 Si ottiene il 1 prodotto parziale, e si scrive + 3. Si scrive uno 0 sotto le u 4. Si moltiplica le da per le u 5. Si moltiplica le da per le da Si ottiene il 2 prodotto parziale 6. Si fa la somma dei prodotti parziali h da u 2 3 x 1 2 = 4 6 + 2 3 0 = 2 7 6 Si ottiene il risultato PROVA Si applica la PROPRIETÀ COMMUTATIVA. OPERAZIONE PROVA h da u 2 3 x 1 2 = 4 6 + 2 3 0 = 2 7 6 h da u 1 2 x 2 3 = 3 6 + 2 4 0 = 2 7 6 FARE ATTENZIONE AI RIPORTI QUANDO CI SONO! www.imparaconpietro.altervista.org 11
DIVISIONE dividendo divisore 127 : 3 = 42 r. 1 quoziente resto 1. Metto il cappellino al numero che posso dividere ( 12 ): quante volte il divisore ( 3 ) sta in quel numero? (Controllo pensando alla tabellina) 127 3 0 4 Il 3 nel 12 sta 4 volte (3x4=12) col resto di 0 che va scritto sotto all ultima cifra del numero col cappellino. 2. Abbasso la cifra dopo il cappellino ( 7 ) e calcolo quante volte sta il divisore ( 3 ) in quel numero. 127 3 07 42 1 Il 3 nel 7 sta 2 volte col resto di 1 ( 3x2=6 ), per arrivare a 7 manca 1 e va scritto sotto al 7. 127 : 3 = 42 r. 1 PROVA Si moltiplica il risultato (QUOZIENTE) per il DIVISORE. Il prodotto sarà uguale al DIVIDENDO se la divisione è corretta. 127 3 07 42 1 h da u 4 2 x 3 = 1 2 6 + 1 = 1 2 7 RICORDA di aggiungere il resto, quando c è. www.imparaconpietro.altervista.org 12
Proprietà delle operazioni ADDIZIONE COMMUTATIVA ASSOCIATIVA 17 + 20 = 37 20 + 17 = 37 10 + 21 + 9 = 40 10 + 30 = 40 Cambiando l ordine degli addendi, il totale non cambia Sostituendo più addendi con la loro somma, il totale non cambia SOTTRAZIONE INVARIANTIVA 37-25 = 12 +3 +3 40-28 = 12 37-25 = 12-7 -7 30-18 = 12 Sommando o sottraendo ad entrambi i termini lo stesso numero, la differenza non cambia www.imparaconpietro.altervista.org 13
MOLTIPLICAZIONE COMMUTATIVA ASSOCIATIVA 3 x 5 = 15 5 x 3 = 15 Cambiando l ordine dei fattori, il prodotto non cambia DISTRIBUTIVA 14 x 6 = 7 x 2 x 6 = 84 Il prodotto della moltiplicazione non cambia se a un fattore si sostituiscono più numeri il cui prodotto è uguale al fattore sostituito 3 x 5 x 2 = 3 x 10 = 30 Sostituendo alcuni fattori con il loro prodotto il prodotto finale non cambia DISSOCIATIVA 3 x (10 + 2 ) = (3 x 10) + (3 x 2) = 30 + 6 = 36 Permette di moltiplicare un numero per ciascun termine di una addizione (o sottrazione) e sommare (o sottrarre) i risultati ottenuti DIVISIONE INVARIANTIVA 16 : 4 = 4 x2 x2 32 : 8 = 4 16 : 4 = 4 :2 :2 8 : 2 = 4 Moltiplicando o dividendo entrambi i termini della divisione per lo stesso numero il quoziente non cambia www.imparaconpietro.altervista.org 14
MOLTIPLICARE x 10 / 100 / 1 000 x 10 13 x 10 = 130 Si aggiunge uno zero x 100 x 1 000 13 x 100 = 1 300 13 x 1 000 = 13 000 Si aggiungono due zeri Si aggiungono tre zeri Se c è la virgola, la si sposta verso DESTRA di uno, due, tre posti e si riempie con lo zero eventuali posti vuoti. 0,2 x 10 = 2 0,2 x 100 = 20 0,2 x 1 000 = 200 DIVIDERE : 10 / 100 / 1 000 : 10 230 : 10 = 23 Si toglie uno zero : 100 3 500 x 100 = 35 Si tolgono due zeri : 1 000 78 000 : 1 000 = 78 Si tolgono tre zeri Se c è la virgola, la si sposta verso SINISTRA di uno, due, tre posti e si riempie con lo zero eventuali posti vuoti. 20,3 : 10 = 2,03 20,3 : 100 = 0,203 20,3 : 1 000 = 0,0203 www.imparaconpietro.altervista.org 15
Le frazioni Frazionare = dividere in parti uguali 1 3 l intero è diviso in 3 parti uguali e ne è stata colorata 1 1 3 NUMERATORE (quante parti vengono considerate) LINEA DI FRAZIONE DENOMINATORE (numero delle parti uguali in cui è stato diviso l intero) Calcolare la frazione di un numero x 3 di 20 20 : 5 = 4 5 : 4 x 3 = 12 www.imparaconpietro.altervista.org 16
Calcolare l intero 21 = 3 di 4 : x 21 = 3 24 : 3 = 7 4 7 x 4 = 24 Confrontare le frazioni CON DENOMINATORE UGUALE È maggiore quella con il numeratore maggiore 7 9 4 9 CON NUMERATORE UGUALE È maggiore quella con il denominatore minore 3 5 3 7 www.imparaconpietro.altervista.org 17
Multipli e Divisori Numeri che si ottengono moltiplicando per 1, 2... Numeri che dividono esattamente un numero Esempio: 32 è multiplo di 8 ed anche di 4 8 x 4 = 32 4 x 8 = 32 Esempio: 4 è divisore di 16... 28... 40... Ricorda! CONOSCI LE TABELLINE, I NUMERI CHE LE COMPONGONO SONO MULTIPLI DEL NUMERO «PROPRIETARIO» DELLA TABELLINA IN CUI SI TROVANO Ricorda! CONOSCI LE TABELLINE, IL NUMERO «PROPRIETARIO» DELLA TABELLINA È DIVISORE DI TUTTI I NUMERI CHE STANNO NELLA SUA TABELLINA Esempio: tabellina del 7 Esempio: tabellina del 7 14, 21, 28, 35... 70 Sono multipli del numero 7 «proprietario» 7 è il «proprietario», ed è divisore di 7, 14, 21, 28... www.imparaconpietro.altervista.org 18
Criteri di divisibilità Ricorda! Un numero è divisibile per 2 se è pari Un numero è divisibile per 3 se la somma delle sue cifre è nella tabellina del 3 Un numero è divisibile per 4 se le ultime due cifre sono 00 oppure formano un numero multiplo di 4 Un numero è divisibile per 5 se la cifra delle unità è 0 oppure 5 www.imparaconpietro.altervista.org 19
La percentuale È una frazione che ha 100 per denominatore! 8% = 8 100 CALCOLARE IL VALORE DELLA PERCENTUALE CALCOLARE L INTERO l 8% di 2 400 x 8 100 di 2 400 =? : 300 è il 60% di? : 60 x 300 = di 100 2 400 : 100 = 24 300 : 60 = 5 24 x 8 = 192 5 x 100 = 500 www.imparaconpietro.altervista.org 20
Le espressioni SENZA PARENTESI CON LE PARENTESI Solo solo + e - oppure x e : I calcoli vanno fatti seguendo l ordine preciso in cui si trovano Esempio: 7 + 5-3 + 1 = 12-3 + 1 = 9 + 1 = 5 x 2 x 3 : 10 = 10 + - x : 1. Prima si fanno le x e le : seguendo l ordine in cui si trovano, 2. Poi si fanno le + e le - seguendo l ordine in cui si trovano Esempio: 30 : 5 + 4 x 3-1 = 6 + 12-1 = 18-1 = 17 10 x 3 : 10 = 30 : 10 = 3 3. Prima si fanno le operazioni nelle parentesi TONDE (... ) e tutto il resto si copia com è 4. Poi si fanno le operazioni nelle parentesi QUADRE [... ] e tutto il resto si copia com è 5. Infine si fanno le operazioni nelle parentesi GRAFFE {... } e tutto il resto si copia com è 6. Si continua con le regole «SENZA PARENTESI» www.imparaconpietro.altervista.org 21
Potenze MOLTIPLICAZIONI IN CUI SI RIPETE TANTE VOLTE LO STESSO FATTORE 3 x 3 x 3 x 3 x 3 = 3 5 (tre alla quinta) ESPONENTE (= quante volte la base va moltiplicata per se stessa) 3 5 BASE (= fattore da moltiplicare per se stesso) Esempio: 2 3 = 2 x 2 x 2 = 8 OK 2 3 = 2 x 3 = 6 NO!!! RICORDA! Con esponente 1, la potenza (cioè il risultato) è il numero stesso. 2 1 = 2 Con esponente 0, la potenza (cioè il risultato) è sempre 1. 2 0 = 1 Nella potenza con base 10, l esponente ci dice quanti zeri scrivere al risultato dopo la cifra 1. 10 2 = 100 10 3 = 1 000 10 5 = 100 000 www.imparaconpietro.altervista.org 22
Misure Ricorda! Ogni salto vale 10. Spostandosi a destra si moltiplica (ogni salto x 10) Spostandosi a sinistra si divide (ogni salto : 10)... di LUNGHEZZA MULTIPLI UNITÀ DI MISURA SOTTOMULTIPLI Km hm dam m metro dm cm mm... di CAPACITÀ MULTIPLI UNITÀ DI MISURA SOTTOMULTIPLI hl dal l litro dl cl ml... di PESO MULTIPLI UNITÀ DI MISURA SOTTOMULTIPLI SOTTOMULTIPLI DEL GRAMMO Mg (t) 100Kg 10Kg Kg chilogrammo hg dag g grammo dg cg mg www.imparaconpietro.altervista.org 23
Misure...... di SUPEFICIE MULTIPLI UNITÀ DI MISURA SOTTOMULTIPLI Km² hm² dam² m² metro quadrato dm² cm² mm² Ricorda! Ogni salto vale 100. Spostandosi a destra si moltiplica (ogni salto x 100) Spostandosi a sinistra si divide (ogni salto : 100)... di VOLUME MULTIPLI UNITÀ DI MISURA SOTTOMULTIPLI Km³ hm³ dam³ m³ metro cubo dm³ cm³ mm³ Ricorda! Ogni salto vale 1 000. Spostandosi a destra si moltiplica (ogni salto x 1000) Spostandosi a sinistra si divide (ogni salto : 1000) www.imparaconpietro.altervista.org 24
Peso lordo - Peso netto - Tara Peso lordo Peso netto Tara P. netto + tara P. lordo - tara P. lordo - P. netto www.imparaconpietro.altervista.org 25
La Compravendita Ricavo Spesa Guadagno Perdita Spesa + Guadagno Ricavo - Guadagno Ricavo - Spesa Spesa - Ricavo www.imparaconpietro.altervista.org 26