Alcune indicazioni sul dimensionamento degli elementi in acciaio

Documenti analoghi
CALCOLO AGLI S.L.U. DI SOLAIO CON TRAVI IN ACCIAIO (ai sensi del D.M. 17/01/2018)

CALCOLO AGLI S.L.U. DI BALCONE IN ACCIAIO IPE (ai sensi del D.M. 17/01/2018)

Allegato di calcolo - Verifica di travi in acciaio (DM ) Pagina 1 di 5

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 11/11/2010 ore 15:00 aula ALFA.

Lezione. Tecnica delle Costruzioni

Commessa N. OSM 466 Foglio 1 di 8 Rev B. Titolo commessa. Redatto da SMH Data Agosto Verificato da NRB Data Dicembre 2001

LE NOVITA DELLE NORME TECNICHE PER L ACCIAIO

Calcolo profili in acciaio - N.T.C. 2018

CALCOLO AGLI S.L.U. DI SOLAIO CON TRAVI IN ACCIAIO (ai sensi del D.M. 17/01/2018)

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 27/01/2011 ore 15:00 aula alfa.

Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Università degli Studi di Catania

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 13/01/2011 ore 15:00 aula CD.

SOMMARIO. 1. VERIFICA DEL PARAPETTO (parodos occidentale) - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 25/11/2010 ore 15:00 aula alfa.

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 17/01/2018) P (KN/m) P E N FE N DE N BE N BF N BD

LEZIONE N 13 LA VERIFICA ALLO SLU DELLE TRAVI DI ACCIAIO

II Esercitazione. Giulia Camponi Benaglia

Regione Campania - Genio Civile

METROPOLITANA AUTOMATICA DI TORINO STAZIONE PORTA SUSA

ACCIAIO Calcolo Strutturale

SOMMARIO SCALE LATERALI DELLA CAVEA - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI 1 ANALISI DEI CARICHI

CALCOLO AGLI S.L.U. DI SOLAIO CON TRAVI IN LEGNO (ai sensi del D.M. 14/01/2008)

RELAZIONE DI CALCOLO STRUTTURALE

Lezione. Progetto di Strutture

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 5 del 4/12/2015 PARTE 1: CALCOLO DELLE SOLLECITAZIONI SULLA TRAVE RETICOLARE

1 La struttura. Esempio di calcolo

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008)

Si vuole dimensionare trave, pilastro e mensola maggiormente sollecitati di tre diverse tecnologie di solai : calcestruzzo, acciaio e legno.

modulo D I ponti I ponti in acciaio Calcolo degli assoni

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 5 del 6/12/2017 PARTE 1: CALCOLO DELLE SOLLECITAZIONI SULLA TRAVE RETICOLARE

Edifici in muratura. L edificio soggetto a carichi verticali. Catania, 21 aprile 2004 Bruno Calderoni. DAPS, Università di Napoli Federico II

Nei seguenti schemi, determina il valore di calcolo dei carichi da usare per ottenere il massimo momento flettente negativo all incastro.

Classificazione sezioni di acciaio e metodi di analisi

IMBOZZAMENTO. ν = modulo di Poisson = 0.3 per l acciaio

Lezione. Tecnica delle Costruzioni

4. Il materiale. 4.1 Forme e tipi

Lezione PONTI E GRANDI STRUTTURE. Ing. Eugenio Ferrara Università degli Studi di Catania

CALCOLO AGLI S.L.U. DI SOLAIO CON TRAVI IN LEGNO (ai sensi del D.M. 17/01/2018)

ACCIAIO. Si disegna la pianta di carpenteria e si ipotizzano quattro piani. Carico strutturale qs Lamiera grecata: tipo A55/P600

ESERCITAZIONE 2: DIMENSIONAMENTO DI UN TELAIO

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 16/12/2010 ore 15:00 aula ALFA.

Acciaio. Passo al dimensionamento di trave, pilastro e mensola per la tecnologia dell acciaio.

Verifica Trave SLU D.M CAP.7

ESERCITAZIONE 2.1_Predimensionamento travi, pilastri e mensole

Lezione. Progetto di Strutture

Resistenza al fuoco delle strutture in C.A: norma UNI 9502 ed eurocodici

Pressoflessione. Introduzione

Sommario. 1. Descrizione della struttura. 2. Normativa di riferimento. 3. Materiali. 4. Azioni sulla struttura

3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA

ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI MANTOVA NUOVE NORME TECNICHE PER LE COSTRUZIONI D.M. 14/01/2008 E CIRCOLARE APPLICATIVA DEL 02/02/2009

PASSERELLA PEDONALE SU SPALLE ESISTENTI DI C.A. MILANO (RHO) Relazione di calcolo

Progetto e verifica di una trave allo Stato Limite Ultimo (SLU) Le armature a Taglio

Lezione. Tecnica delle Costruzioni

VERIFICA SECONDO UNI EN 13374

-Per prima cosa calcolo l area di influenza del pilastro da dimensionare (campito in rosso).

MANUTENZIONE STRAORDINARIA E MESSA A NORMA DI PALAZZO CIVICO

E data la sezione inflessa di c.a. di dimensioni B=30 cm, H=60 cm, con semplice armatura (As=25 cm 2 ).

CALCOLO AGLI S.L.U. DI CAPRIATA ASIMMETRICA IN LEGNO (ai sensi del D.M. 14/01/2008)

Teoria e progetto delle costruzioni in acciaio

3 per i profili formati a caldo, dipendono dall evoluzione delle temperature nel raffreddamento

Dalle tensioni ammissibili agli stati limite

Progettazione di strutture in c.a. Solaio in latero - cemento. Maurizio Orlando Dipartimento di Ingegneria Civile e Ambientale, Firenze

Indice I vettori Geometria delle masse

Costruzioni di acciaio: materiale e verifiche di resistenza e stabilità

RELAZIONE DI CALCOLO

Allegato di calcolo - Verifica di solaio in acciaio e legno (DM ) Pagina 1 di 7

STRUTTURE IN CEMENTO ARMATO - IIII

Allegato di calcolo - Verifica di travi in legno con soletta collaborante in CA Pagina 1 di 6

STUDIO TECNICO DOTT. ING. ROBERTO BISSANI - Via del Picchio Bologna

3. PREDIMENSIONAMENTO DEGLI ELEMENTI STRUTTURALI

Progettazione di strutture in c.a. SLU per taglio nelle travi

La progettazione dei ferri di ripresa post- installati secondo EC2/TR023. Esempio di calcolo

INDICE 1. INTRODUZIONE NORMATIVA MATERIALI DEFINIZIONE DEI CARICHI... 5

COMUNE DI BARLETTA PROV. DI BARLETTA ANDRIA TRANI

Efesto Production srl

RELAZIONE DI CALCOLO

Il progetto e la verifica degli elementi strutturali in Acciaio con il metodo degli Stati Limite

DIMENSIONAMENTO DI UNA TRAVE

ε c2d ε cu ε su ε yd

DUTTILITÀ DEGLI ELEMENTI

DIMENSIONAMENTO TRAVE IN CLS ARMATO A SEZIONE RETTANGOLARE_ solaio in latero cemento

1.4 Modelli di calcolo

2 Classificazione delle sezioni trasversali

Indice INDICE GENERALE DELL OPERA VOL. 1: CALCOLO STRUTTURALE - I TELAI VOL. 2: CEMENTO ARMATO - CALCOLO AGLI STATI LIMITE INDICE DEL VOLUME 2

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

MATERIA COMPITO IN CLASSE 04 DATA CLASSE ALLIEVO N PROGETTAZIONE, COSTRUZIONI E IMPIANTI STRUTTURE IN ACCIAIO Vª

CALCOLI ESECUTIVI DELLE STRUTTURE E DEGLI IMPIANTI

LEGNO. Ipotizzo un solaio in legno composto da: -Pavimento (gres porcellanato), 2cm di spessore, 0.4 KN/m 2 ;

ESERCITAZIONE 2 DIMENSIONAMENTO DI UN TELAIO IN CALCESTRUZZO, LEGNO E ACCIAIO


FACOLTÀ DI STUDI INGEGNERIA E ARCHITETTURA A. A Corso di Laurea Magistrale in Architettura

Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Università degli Studi di Catania

Allegato di calcolo - Verifica di travi in legno (DM ) Pagina 1 di 6

Esercitazione 2 : progetto di un telaio in acciaio, legno e calcestruzzo

2. PROPRIETA STRUTTURALI DEL LEGNO

Corso di Tecnica delle Costruzioni (Canale A) Esercizio 11 Novembre 2015

Transcript:

Alcune indicazioni sul dimensionamento degli elementi in acciaio riferimento norma italiana: Norme Tecniche per le Costruzioni cap 4.2 per le basi di dimensionamento cap 11.3.2 per le proprietà del materiale

il coefficiente di sicurezza del materiale tiene conto anche delle incertezze del modello di calcolo adottato nelle verifiche (per esempio l'effetto dei fori nelle piastre)

la simbologia prevede altre indicazioni di maggior dettaglio S = acciaio per impiego strutturale numero = tensione di snervamento per elementi con s 16mm M ed N = condizioni di fornitura L, Q, QL, QL1 = tenacità alle basse temperature W = elevata resistenza alla corrosione H = profili a sezione cava (holllow)

Le indicazioni delle Norme Tecniche sono in linea con l'eurocodice 3 (EN 1993 parte 1-1) e con la vecchia normativa italiana (DM 9 gennaio 1996 e CNR 10011)

EN 1993 - part 1-1 (2005) +53% +56% +44% +25% è raccomandato che la tensione di rottura superi di almeno il 10% quella di snervamento CNR 10011 (1988) prospetto 4-I f y / σ adm = 1.47-1.45-1.48

invece di 1.05

EN 1993 - sezione 6.2.3 Trazione azione di progetto < resistenza a trazione forza di trazione N Ed di progetto N t,rd la resistenza a trazione N t,rd è il valore minore tra resistenza plastica di progetto della sezione lorda resistenza ultima di progetto della sezione netta (depurata dai fori per il collegamento) N u,rd = N pl,rd se A net / A = 90.7 / 88.8 / 96.7 / 111% per S235 / 275 / 355 / 450 se N u,rd = N pl,rd la membratura tesa può snervarsi prima del collasso della sezione forata gli acciai ad alta resistenza hanno un incrudimento inferiore e tendono a localizzare la rottura

nel caso di fori sfalsati = area da detrarre in proporzione la diagonale 1 è indebolita meno della sezione retta 2 sfalsare i fori riduce l'indebolimento n = 2

Classificazione delle sezioni trasversali degli elementi inflessi Le sezioni in acciaio delle serie pesanti sono in grado di raggiungere elevate curvature con formazione di una cerniera plastica, mentre le sezioni sottili possono subire fenomeni di imbozzamento già nel campo elastico. Da questo punto di vista, le sezioni degli elementi strutturali di acciaio sono suddivise in classi di resistenza (da 1 a 4) in funzione della capacità di rotazione plastica: classe 1: sezioni per le quali può aversi la completa formazione di una cerniera plastica; classe 2: sezioni per le quali è prevista la completa formazione di una cerniera plastica, ma con limitata capacità di deformazione; classe 3: sezioni per le quali, a causa di fenomeni d instabilità locale, non è possibile la ridistribuzione plastica delle tensioni nella sezione e il momento ultimo coincide con quello al limite elastico convenzionale; classe 4: sezioni per le quali, a causa di importanti fenomeni d instabilità locale, il momento ultimo è minore di quello al limite elastico convenzionale. La classificazione di una sezione trasversale dipende dai rapporti dimensionali di ciascuno dei suoi elementi compressi. Questi includono ogni elemento della sezione che sia totalmente o parzialmente compresso, a causa di una forza assiale o di un momento flettente, per la combinazione di carico considerata. Criteri per la classificazione di sezioni trasversali di profili di acciaio alle alte temperature sono disponibili nella UNI EN 1993-1-2.

esempio di tabella per la definizione della classe di un profilato

la classe di un profilato dipende dalla geometria del profilo, attraverso la snellezza (rapporto lato/spessore) delle piastre che lo compongono e che si trovano in zona compressa dal tipo di sollecitazione ed in particolare dall'estensione della parte di sezione sollecitata in compressione (dipende dalla condizione di carico) dalle proprietà del materiale a parità di modulo elastico, un aumento di resistenza rende più probabili fenomeni di instabilità prima di raggiungere lo snervamento (lo stesso dimininuendo il modulo a parità di resistenza) il parametro che governa la classificazione è a temperatura ambiente E = cost e quindi si definisce in caso di incendio il modulo elastico non è più costante ke, θ E εθ = Eθ fy, θ = 0. 85 ε k f y, θ y (ke, / ky, ) 1/2 1.2 1.0 0.8 0.6 0.4 0.2 0.0 E f y ε = 235 f y 0 400 800 1200 temperatura ( C)

per profili di classe 4 si trascurano alcune porzioni dell'area resistente per determinare i valori "efficaci" delle proprietà geometriche della sezione (area efficace, momento di inerzia efficace) compressione per maggiori dettagli flessione

EN 1993 - sezione 6.2.5 Flessione valore di progetto del momento sollecitante M Ed < resistenza a flessione di progetto M c,rd W el,min e W eff,min corrispondono alle fibre più sollecitate in campo elastico W pl è una proprietà geometrica dell'intera sezione (non di un punto in particolare) i fori nell'ala A f vengono trascurati se

Instabilità locale elementi compressi parte compressa di elementi inflessi diagrammi momento-curvatura

verifica delle travi allo stato limite di esercizio δ max = freccia totale (permanente + variabile) δ 2 = freccia dovuta al solo carico variabile

esempio di dimensionamento di una trave carico permanente = carico permanente non strutturale = carico variabile = 1.0 kn/m 2 1.5 kn/m 2 2 kn/m 2 lamiera grecata + riempimento, travi massetto, pavimento, controsoffitto, ecc carico utile in base alla categoria d'uso stato limite ultimo: fattori parziali dei carichi γ G = 1.3, γ Q = 1.5 secondo le Norme Tecniche per le Costruzioni ipotizziamo: luce della trave = 5 m (in semplice appoggio) larghezza di influenza della trave principale = 2.5 m carico applicato distribuito (non una serie di concentrati) peso proprio del profilato = 0.5 kn/m

da carico al metro quadro a carico al metro permanente = 1.0 kn/m 2 x 2.5 m = 2.5 kn/m (21.5%) peso proprio del profilato 0.4 kn/m (3.4%) (ipotizzando h = luce/20 = IPE 240 o 270) perm. non strutt e variabile = (1.5 + 2.0) kn/m 2 x 2.5 m = 8.75 kn/m (75.1%) carico totale di progetto allo stato limite ultimo permanente x 1.3 + (perm. non strutt. + variabile) x 1.5 q d,slu = 1.3 x 2.9 kn/m + 1.5 x 8.75 kn/m = 16.9 kn/m carico di progetto allo stato limite di esercizio verifica della freccia nella combinazione di carico rara: - tutti i carichi permanenti col loro valore caratteristico - l'azione variabile principale col suo valore caratteristico - le altre azioni variabili con il coefficiente di combinazione ψ 1,i nell'esempio c'è un solo variabile q d,sle = 2.9 kn/m + 8.75 kn/m = 11.7 kn/m

progetto allo stato limite ultimo M Ed = q d,slu x L 2 / 8 = 16.9 x 5 2 / 8 = 52.8 kn m acciaio S235 f yd = f yk / γ M0 = 235 N/mm 2 / 1.05 = 224 N/mm 2 momento resistente minimo W min = M Ed / f yd = 2.36x10 5 mm 3 = 236 cm 3 il W min va ricercato nella colonna W pl se il profilo è di classe 1 o 2 altrimenti si utilizza la colonna W el per profili in classe 3 o il valore efficace per classe 4

progetto allo stato limite di esercizio freccia totale luce / 250 freccia dovuta al variabile luce / 300 se il variabile è meno di 250/300 = 83% del totale è più severa la verifica sul totale quindi f max = 5/384 (ql 4 / EI) L/250 dove q d,sle = 11.65 kn/m I 5/384 ql 3 / E x 300 = 2.3 x 10 7 mm 4 = 2300 cm 4

per entrambe le verifiche è sufficiente una IPE220 allo stato limite ultimo M Rd = 224 N/mm 2 x 285.4 cm 3 = 63.9 kn m M Ed = 52.8 kn m < M Rd M Ed / M rd = 83% allo stato limite di esercizio la freccia massima effettiva è pari a 16.6 mm < luce / 250 = 20 mm freccia effettiva / freccia limite = 83% la trave ha un rapporto luce altezza di 22/500 = 1 / 23 le verifiche di resistenza e di deformabilità sono verificate con lo stesso margine significa che questa proporzione geometrica è particolarmente favorevole dal punto di vista progettuale

Approfondimento: come si può generalizzare questo confronto tra il progetto per gli stati limite ultimo (resistenza) e di esercizio (freccia)? M Ed M Rd è come dire M Ed = α SLU M Rd dove α SLU 1 f max L / N è come dire f max = α SLE L / N dove α SLE 1 vogliamo che le due verifiche siano soddisfatte con lo stesso margine e quindi cheα SLU = α SLE = α M Ed = k M q d,slu L 2 dove k M = 1/ 8 per la trave appoggiata = 1/12 per la trave incastrata f max = k f q d,sle L 4 / EI dove k f = 5/384 per la trave appoggiata = 1/384 per la trave incastrata le verifiche diventano M Ed = k M q d,slu L 2 = α M Rd = α f yd W pl = α f yd ψ pl W el = α f yd ψ pl I / (h/2) f max = k f q d,sle L 4 / EI =α L / N ψ pl = coeff. di adattamento plastico h = altezza della sezione

semplificando k M q d,slu L 2 = α f yd ψ pl I / (h/2) k f q d,sle L 3 / EI = α / N dividendo membro a membro la seconda equazione per la prima si ottiene k f / k M q d,sle / q d,slu L / EI = h/2 / (N f yd ψ pl I) si può semplificare il mom.di inerzia I riarrangiando i termini si ottiene L / h = 1/2N k M / k f q d,slu / q d,sle E / f yd 1/ψ pl k M / k f dipende dallo schema statico: trave appoggiata 1/8 384/5 = 48/5 trave incastrata 1/12 384/1 = 32 q d,slu / q d,sle dipende dai coefficienti γ G e γ Q e dal rapporto permanente/variabile (γ G q perm + γ Q q var ) / (q perm + q var ) = (γ G + γ Q q var /q perm ) / (1 + q var /q perm ) nel nostro caso si ottiene q d,slu / q d,sle = 1.45 E / f yd dipende dal materiale utilizzato, per l'acciaio S235 si ha 206000/224 = 919 ψ pl per le travi IPE è circa 1.14

raggruppando i coefficienti per la trave appoggiata L / h = 1/(2 250) 48/5 1.45 919 /1.14 = 22.4 coefficiente che avevamo già individuato nell'esercizio se la trave è incastrata agli estremi cambia il rapporto k M / k f e si otterrebbe 75, ma l'incastro perfetto è difficilmente realizzabile (meglio non superare 30-35) se si cambia materiale occorre aggiornare E / f yd e ψ pl acciaio ad alta resistenza: il rapporto L/h di bilanciamento cambia come 235 / f y e quindi più alta è la resistenza e più tozza è la trave per la quale c'è il bilanciamento resistenza / freccia legno lamellare E = 12.000 (ma la viscosità può raddoppiare la deformazione) f d = 15 N/mm 2 è la resistenza a flessione da moltiplicare per W el quindi non si considera il coeff. di adattamento ψ pl quindi E / f yd / ψ pl = 800 (molto simile all'acciaio S235) ma se si considera la viscosità il coefficiente può anche dimezzarsi

riassumendo alcuni valori pratici di L / h per il prorpozionamento degli elementi inflessi (rispettandoli la verifica di resistenza garantisce anche quella di deformabilità) travi in acciaio semplice appoggio 20 iperstatica 25-30 travi reticolari in acciaio 12-16 travi in calcestruzzo in spessore 16 fuori spessore 12 solai 25 piastre 30 travi in legno 12-16

EN 1993 - sezione 6.2.4 Compressione valore di progetto < design compression della forza di compressione N Ed resistance N t,rd i fori dei collegamenti non devono essere depurati per gli elementi compressi, purché vi sia inserito il bullone (e con l'eccezione dei fori maggiorati o asolati) Nel caso di sezioni di classe 4 asimmetriche, deve essere considerato il momento aggiuntivo MEd dovuto all'eccentricità dell'asse baricentrico della sezione efficace

EN 1993 - sezione 6.3.1 Instabilità degli elementi soggetti a compressione semplice valore di progetto < resistenza di progetto della forza di compressione N Ed all'instabilità N b,rd dove χ è il fattore di riduzione per il modo di instabilizzarsi considerato instabilità = bucking

Curve di instabilità χ = f (snellezza dell'elemento, resistenza del materiale, tipo di sezione) fattore di riduzione snellezza adimensionale