ALCUNI CENNI SUGLI INSIEMI

Documenti analoghi
ALCUNI CENNI SUGLI INSIEMI

Teoria intuitiva degli insiemi

Teoria degli Insiemi

Matematica I. Modulo: Analisi Matematica. Corso 3 (matricole dal n al n 40167) Docente: R. Argiolas

Teoria degli Insiemi

Elementi di teoria degli insiemi

insieme c n ce c r e t r ez e z z a a par a t r ien e e e o no distinguere l uno dall altro insieme degli animali a quattro zampe

Progetto Matematica in Rete - Insiemi - Insiemi

Nozioni introduttive e notazioni

01 - Elementi di Teoria degli Insiemi

Cenni di teoria degli insiemi

BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1

Appunti di Matematica 1 - Insiemi - Insiemi

Insiemi e sottoinsiemi

1. Teoria degli insiemi

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

Insiemi: Rappresentazione

Gli insiemi. Che cosa è un insieme? Come si indica un insieme?

Insiemi di numeri reali

Anno 1. Teoria degli insiemi: definizioni principali

Gli Insiemi. Cos'è un insieme? Sapete darne una definizione? In matematica il termine insieme ha lo stesso significato del linguaggio comune?

GLI INSIEMI PROF. WALTER PUGLIESE

ALGEBRA DEGLI INSIEMI

1. Cenni di teoria degli insiemi e operazione sugli insiemi. Insiemi numerici (N, Z, Q, R)

Matematica Lezione 2

ELEMENTI DI TEORIA DEGLI INSIEMI A.A.2017/2018

GLI INSIEMI. Dispensa a cura del prof. Vincenzo Lo Presti

Un insieme si dice ben definito quando si può stabilire in modo inequivocabile se un oggetto appartiene o non appartiene a tale insieme

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A.

Propedeutico di matematica Centro Multimediale Montiferru. Lezione 1. Gli insiemi

GLI INSIEMI. Il termine INSIEME è una parola primitiva, cioè un termine che ha bisogno di un esempio per essere spiegato e quindi compreso.

Informazioni generali

CORSO DI AZZERAMENTO DI MATEMATICA

1 Cenni di logica matematica

Insiemi. Concetto di insieme

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica A.A.

DEFINIZIONE DI INSIEME

delta δ mu (mi) µ M iupsilon υ Y eta η H omicron o O psi ψ Ψ 1. Scrivere il proprio nome e cognome in lettere greche.

Introduzione alla Matematica per le Scienze Sociali - parte I

01 - Elementi di Teoria degli Insiemi

3. OPERAZIONI TRA CLASSI 2

Prima lezione. Gilberto Bini. 16 Dicembre 2006

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A

Matematica e Statistica per Scienze Ambientali

Il concetto di insieme. La rappresentazione di un insieme

ELEMENTI di TEORIA degli INSIEMI

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.

01 - Elementi di Teoria degli Insiemi

Precorsi di matematica

Generalità - Insiemi numerici

Insiemi ed applicazioni

Gli insiemi. Definizioni: Sia X un insieme e siano A, B sottoinsiemi di X. Si definisce:

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

LA CLASSIFICAZIONE DEI VIVENTI

Informazioni generali

Materiale didattico relativo al corso di Matematica corso base Prof. G. Rotundo a.a.2013/14

- Appunti di Matematica 1 Licei Umanistici - - Insiemi - Insiemi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Corso di Laurea in Scienze Naturali Matematica con Elementi di Statistica

Matematica. Via Ospedale 72, Palazzo delle Scienze, 1 piano

Un insieme si dice finito quando l operazione consistente nel contare i suoi elementi ha termine.

LAUREA IN SCIENZE NATURALI MATEMATICA CON ELEMENTI DI STATISTICA

Precorso di Matematica. Parte I : Fondamenti di Matematica

Complementi di Analisi Matematica Ia. Carlo Bardaro

Prof. Roberto Capone

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

LA CLASSIFICAZIONE DEI VIVENTI

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

Introduzione alla Matematica per le Scienze Sociali - parte II

1 Linguaggio degli insiemi

Capitolo 1. Insiemi e funzioni. per elencazione: si elencano uno ad uno gli elementi dell insieme.

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

Corso di Laurea in Scienze dell Architettura Modulo di Analisi Matematica

Alcuni prerequisiti per il corso di Analisi 1 (breve vademecum, da perfezionare)

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto.

Generalità - Insiemi numerici- Proprietà di completezza di R

GLI INSIEMI RAPPRESENTAZIONE DI UN INSIEME. 1. Per ELENCAZIONE o RAPPRESENTAZIONE TABULARE

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni

Elementi di Logica Teoria degli insiemi

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

ESERCITAZIONE 4 : INSIEMI E LOGICA

INSIEMI. (in english set)

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni

Gli insiemi N, Z e Q. I numeri naturali

I NUMERI NATURALI E RELATIVI

1. Ripasso. ! : esiste ed è unico.

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Complemento 1 Gli insiemi N, Z e Q

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche

1 Richiami di logica matematica

1. Elementi di teoria degli insiemi

GLI INSIEMI PROF. STEFANO SPEZIA

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

LA TEORIA DEGLI INSIEMI

INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica

Transcript:

ALCUNI CENNI SUGLI INSIEMI

In Matematica il concetto di insieme è assunto come primitivo, cioè non si definisce. Considereremo quindi la nozione di insieme dal punto di vista intuitivo. Un insieme è quindi un agglomerato di oggetti di qualsiasi specie (numeri, persone, piante, elementi chimici, ecc.) Tali oggetti si chiamano elementi dell insieme.

Esempi l agglomerato dei pazienti di un ospedale

Esempi l agglomerato dei pazienti di un ospedale la totalità dei numeri pari

Esempi l agglomerato dei pazienti di un ospedale la totalità dei numeri pari la collezione degli studenti iscritti al Corso di Laurea in Farmacia dell Università di Cagliari.

Gli insiemi si indicano usualmente con le lettere maiuscole A, B, C, racchiudendo in parentesi graffe gli elementi che appartengono all insieme.

Per esempio, S = {vista, udito, olfatto, gusto, tatto} è l insieme dei cinque sensi

Per esempio, S = {vista, udito, olfatto, gusto, tatto} è l insieme dei cinque sensi A = {1, 2, 4, 8} è l insieme dei divisori del numero 8.

Un modo per rappresentare graficamente un insieme è disegnare una figura geometrica di questo tipo: S vista udito olfatto gusto tatto 1 2 4 8 A insieme dei 5 sensi insieme dei divisori di 8 S ed A sono esempi di insiemi finiti, cioè insiemi con un numero finito di elementi.

Invece un esempio di insieme infinito è l insieme dei numeri naturali N = {1, 2, 3, 4,..}.

Invece un esempio di insieme infinito è l insieme dei numeri naturali N = {1, 2, 3, 4,..}. Un altro esempio di insieme infinito è l insieme dei numeri relativi Z = {0, 1, -1, 2, -2, 3, -3,.} o l insieme dei numeri reali, indicato con il simbolo R

Per esprimere che un oggetto appartiene ad un insieme si usa il simbolo e si legge appartiene a. Per esempio, per dire che il numero 12 appartiene all insieme dei numeri naturali si scrive 12 N.

Invece, per dire che un oggetto non fa parte di un insieme si usa il simbolo che si legge: non appartiene a. Per esempio, intuito S π N 5 {numeri pari}

Per insiemi molto grandi spesso è sconveniente o impossibile elencarne tutti gli elementi. Quindi essi vengono definiti per mezzo di parole o espressioni matematiche.

Per insiemi molto grandi spesso è sconveniente o impossibile elencarne tutti gli elementi. Quindi essi vengono definiti per mezzo di parole o espressioni matematiche. Per esempio, come descriviamo l insieme di tutti i numeri più grandi di 8? Non possiamo enumerare tutti i numeri reali più grandi di 8. Ma possiamo scrivere {x R tali che x > 8}

Per usare una scrittura più abbreviata, al posto delle parole tali che si può usare il simbolo : oppure

Per usare una scrittura più abbreviata, al posto delle parole tali che si può usare il simbolo : oppure Per esempio cosa indica questa scrittura? {x R x 2 = 4}

Per usare una scrittura più abbreviata, al posto delle parole tali che si può usare il simbolo : oppure Per esempio cosa indica questa scrittura? {x R x 2 = 4} Essa indica l insieme dei numeri reali che elevati al quadrato danno 4, cioè i numeri 2 e -2. Quindi {x R x 2 = 4} = {2, 2}.

Due insiemi A e B si dicono uguali, e si indica con il simbolo A = B quando contengono esattamente gli stessi elementi.

Ora consideriamo {x R x 2 = 1}

Ora consideriamo {x R x 2 = 1} Tale insieme non ha alcun elemento, perché nessun numero reale elevato al quadrato è uguale a -1.

Nasce quindi l esigenza di considerare l insieme privo di elementi, indicato con il simbolo e chiamato insieme vuoto.

Nasce quindi l esigenza di considerare l insieme privo di elementi, indicato con il simbolo e chiamato insieme vuoto. Pertanto {x R x 2 = 1} =

Sottoinsiemi Consideriamo A = insieme dei farmaci antipiretici B = insieme di tutti i farmaci Chiaramente tutti gli elementi di A sono anche elementi di B.

Sottoinsiemi Consideriamo A = insieme dei farmaci antipiretici B = insieme di tutti i farmaci Chiaramente tutti gli elementi di A sono anche elementi di B. Possiamo rappresentare graficamente tale situazione in questo modo: A B

In generale, diremo che A è sottoinsieme di B se tutti gli elementi di A sono anche elementi di B Ciò si indica con il simbolo A B

Conseguenze immediate 1) A A 2) A per qualsiasi insieme A.

Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?

Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3},

Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1},

Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2},

Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2}, {3},

Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2}, {3}, {1,2},

Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2}, {3}, {1,2}, {1,3},

Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}

Esempi 1. Quali sono i sottoinsiemi di {1,2,3}?, {1,2,3}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3} 2. Consideriamo A = insieme di tutte le malattie cardiovascolari B = {angina pectoris} Allora B A.

3. Indichiamo con A = l insieme dei quadrilateri B = l insieme dei rombi C = l insieme dei quadrati Allora si ha che C B A

Unione L unione di due insiemi A e B è l insieme, indicato A B i cui elementi sono esattamente gli elementi che appartengono ad A oppure che appartengono a B. Più in breve: A B = { x x A oppure x B}

A B A B

Esempi 1. Consideriamo gli insiemi e Allora: A = {-2, 0, 1} B = {1, 2, 3, 4} A B =?

Esempi 1. Consideriamo gli insiemi e Allora: A = {-2, 0, 1} B = {1, 2, 3, 4} A B = {-2, 0, 1, 2, 3, 4}

2. Siano A = insieme dei numeri pari B = insieme dei numeri dispari Allora A B =?

2. Siano A = insieme dei numeri pari B = insieme dei numeri dispari Allora A B = Z

Intersezione Si chiama intersezione di A e B l insieme, indicato con A B costituito dagli elementi che appartengono sia ad A che a B. Più in breve, A B = { x x A e x B}

In altre parole, A B è l insieme degli elementi che i due insiemi A e B hanno in comune. A B A B

Può anche capitare che due insiemi non abbiano alcun elemento in comune. In questo caso A B = cioè i due insiemi hanno intersezione vuota.

Esempi 1 π,10,11,12,10,11, 50? 2 1., { π } =

Esempi 1 π,10,11,12,10,11, 50? 2 1., { π } = A -π 12 1/2 10 11 π 50 B A B

Esempi 1 2 1. π,,10,11,12 { π,10,11, 50} = { 10,11} A -π 12 1/2 10 11 π 50 B A B

2. R N = N. Infatti ogni numero naturale è anche un numero reale.

2. R N = N. Infatti ogni numero naturale è anche un numero reale. 3. Sia A = insieme dei rettangoli B = insieme dei rombi Allora A B = insieme di quei rombi che sono anche rettangoli = insieme dei quadrati

2. R N = N. Infatti ogni numero naturale è anche un numero reale. 3. Sia A = insieme dei rettangoli B = insieme dei rombi Allora A B = insieme di quei rombi che sono anche rettangoli = insieme dei quadrati

2. R N = N. Infatti ogni numero naturale è anche un numero reale. 3. Sia A = insieme dei rettangoli B = insieme dei rombi Allora A B = insieme di quei rombi che sono anche rettangoli = insieme dei quadrati

Differenza La differenza tra due insiemi A e B è l insieme, indicato A \ B i cui elementi sono gli elementi di A che non appartengono a B: A \ B { x A x B} =

A B A \ B

Nel caso particolare in cui A S, la differenza S \ A si chiama complementare di A rispetto ad S e si indica con A c S A c S \ A = A

Esempi 1. {-1, 0, 4, 5} \ {-1, 4} =?

Esempi 1. {-1, 0, 4, 5} \ {-1, 4} = {0, 5}

Esempi 1. {-1, 0, 4, 5} \ {-1, 4} = {0, 5} 2. Siano Allora A = insieme degli anti-infiammatori B = insieme dei cortisonici A \ B =?

Esempi 1. {-1, 0, 4, 5} \ {-1, 4} = {0, 5} 2. Siano Allora A = insieme degli anti-infiammatori B = insieme dei cortisonici A \ B = anti-infiammatori non steroidei

Simbologia In Matematica si tende ad usare dei simboli in luogo di espressioni di parole

Simbologia In Matematica si tende ad usare dei simboli in luogo di espressioni di parole per una questione di comodità

Simbologia In Matematica si tende ad usare dei simboli in luogo di espressioni di parole per una questione di comodità per evitare di scrivere espressioni matematiche troppo lunghe

Simbologia In Matematica si tende ad usare dei simboli in luogo di espressioni di parole per una questione di comodità per evitare di scrivere espressioni matematiche troppo lunghe per poter disporre di un linguaggio universale comune a tutti gli scienziati, anche di diversa nazionalità

Riassumiamo qui sotto alcuni di questi simboli con il relativo significato. x A x appartiene A B A è sottoinsieme di B all insieme A x A x non appartiene A B unione di A e B all insieme A A B intersezione di A e B tale che : A \ B differenza di A e B esiste A c complementare di A per ogni implica insieme vuoto è equivalente a (oppure se e solo se )

L implicazione Cosa significa il simbolo?

L implicazione Cosa significa il simbolo? Si usa per esprimere in forma abbreviata che se succede P allora capita anche Q Scriveremo e si legge P Q P implica Q

Esempio Consideriamo la frase Se Ugo è uno studente italiano allora è uno studente europeo

Esempio Consideriamo la frase Se Ugo è uno studente italiano allora è uno studente europeo Questo si può abbreviare scrivendo Ugo è studente italiano Ugo è studente europeo

Esempio Consideriamo la frase Se Ugo è uno studente italiano allora è uno studente europeo Questo si può abbreviare scrivendo Ugo è studente italiano Ugo è studente europeo P Q

Esempio Consideriamo la frase Se Ugo è uno studente italiano allora è uno studente europeo Questo si può abbreviare scrivendo Ugo è studente italiano Ugo è studente europeo P Q Se P Q non è affatto detto che Q P. Per esempio il fatto che Ugo è un alunno europeo non implica che egli sia necessariamente italiano.

Quando accade che si abbia P Q e nello stesso tempo anche che Q P diremo che P e Q sono equivalenti e useremo il simbolo P Q Che si legge P equivale a Q oppure P se e solo se Q.

Esempio Consideriamo le affermazioni P = Andrea ha superato l esame di Matematica Q = Andrea ha ottenuto un voto almeno pari a 18/30 all esame di Matematica

Esempio Consideriamo le affermazioni P = Andrea ha superato l esame di Matematica Q = Andrea ha ottenuto un voto almeno pari a 18/30 all esame di Matematica Chiaramente P Q

Esempio Consideriamo le affermazioni P = Andrea ha superato l esame di Matematica Q = Andrea ha ottenuto un voto almeno pari a 18/30 all esame di Matematica Chiaramente Ma anche P Q Q P

Esempio Consideriamo le affermazioni P = Andrea ha superato l esame di Matematica Q = Andrea ha ottenuto un voto almeno pari a 18/30 all esame di Matematica Chiaramente Ma anche Quindi P Q Q P P Q