Forze su cariche nei fili: il motore elettrico

Documenti analoghi
Interazioni di tipo magnetico II

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Fisica II. 7 Esercitazioni

Esercizi di Fisica LB: Induzione Elettromagnetica

Fisica Generale II (prima parte)

Esercizi con campi magnetici statici

CAMPO MAGNETICO E FORZA DI LORENTZ

PROBLEMA N.2 Il motorino elettrico

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti

2. Si pone una carica elettrica in prossimità di un filo percorso da corrente; cosa accadrà?

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

df = I dl B df = dq v B

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

Esercizi relativi alla legge di Faraday-Lenz

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Esercizi di magnetismo

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

Induzione elettromagnetica

Formulario Elettromagnetismo

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

7. Il campo magnetico di una spira e di un solenoide

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Modellistica di sistemi elettromeccanici

FORZE MAGNETICHE SU CORRENTI ELETTRICHE

Modellistica dei Sistemi Elettro-Meccanici

Induzione magnetica 1

Elementi di Fisica 2CFU

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

L induzione elettromagnetica - Legge di Faraday-Lentz

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

(a) ;

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400)

Compito di prova - risolti

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2011/12. Prova di esame del 23/7/ NOME

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

FISICA (modulo 1) PROVA SCRITTA 21/02/2014

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

Appunti di elettromagnetismo

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Cognome Nome Matricola

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

Campo magnetico terrestre

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

Misure di campi magnetici: bobine di Helmholtz e solenoidi

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Problemi di Fisica I Vettori

Soluzioni della prova scritta di Fisica Generale

rdr = 1 2!Bl2 = 0:5 V:

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

Università del Sannio

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico:

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Compito di Fisica II del 14/09/2009

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

Campo magnetico e forza di Lorentz (II)

1 Prove esami Fisica II

Corso di Fisica Per Informatica Esercitazioni 2009

Lezione 15 Geometrie lineari di confinamento magnetico

Magnetismo. Fisica x Biologi 2017 Fabio Bernardini

2. L unità di misura della costante k che compare nella legge di Coulomb è:

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Il magnetismo magnetismo magnetite

UNIVERSITA degli STUDI del SANNIO

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni:

Elettromagnetismo

Dr. Stefano Sarti Dipartimento di Fisica

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

Storia delle scoperte del campo magnetico

Angolo polare, versori radiale e trasverso

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Unità 8. Fenomeni magnetici fondamentali

Attrito statico e attrito dinamico

Esercitazione 3. Soluzione Il raggio della spira varia secondo la legge A = ¼D2. = ¼ 4 4 (D 0 2vt) 2 ; B = BA = ¼ 4 B(D 0 2vt) 2 :

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME

IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo

La corrente alternata

GRANDEZZE SCALARI E VETTORIALI

Nome Cognome...Classe Data.. 1

Il lavoro e l energia

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Lavoro ed energia cinetica

GRANDEZZE SCALARI E VETTORIALI

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

Campo magnetico B e correnti

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

Elementi di Fisica Il Campo Magnetico

Transcript:

Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di lunghezza L subisce quindi una forza F = i L 0 d l B = il(ˆl B) F = ilb sin α dove ˆL è il versore diretto lungo la direzione individuata dal filo e di verso corrispondente al verso in ci scorre la corrente nel filo, e α è l angolo fra ˆL ed il campo magnetico B. Si consideri ora una spira quadrata di lato L, percorsa da una corrente elettrica i ed immersa in un campo magnetico B (v.figura: la spira è vista di lato, con la corrente che scorre nel filo davanti da in alto a sinistra ad in basso a destra (freccia continua), nel filo dietro da in basso a destra a in alto a sinistra (freccia tratteggiata), mentre nei due fili perpendicolari al foglio la corrente scorre verso fuori nel filo in alto a sinistra e verso dentro nel filo in basso a destra) Applicando la formula della forza detta in precedenza, si vede immediatamente che nei due fili paralleli al foglio la forza è diretta perpendicolarmente al filo (ed al foglio...) e tende solo a deformare la spira (che si assume indeformaile, e quindi queste forze non hanno effetto). Nei due tratti di filo perpendicolari al foglio, viceversa, la forza magnetica è diretta sempre perpendicolarmente al filo, ma in questo caso tende a muovere la spira anzichè a deformarla (v.figura) 1

Le due foze infatti, pur essendo uguali e opposte non giacciono sulla stessa linea di applicazione, e inducono quindi un momento torcente che farà ruotare la spira. Per calcolare il momento torcente, si considera che nei due tratti di filo in esame la corrente scorre sempre perpendicolarmente al campo magnetico (e quindi F = ilb) ed i due momenti delle forze, calcolati rispetto al centro dela spira, si scrivono quindi M 1 = r 1 F 1 = r 1 F sin θ = L ilb sin θ 2 M 2 = r 1 F 2 = r 2 F sin θ = L ilb sin θ 2 Entrambi questi momenti torcenti sono diretti, seguendo la regola della mano destra, perpendicolarmente al foglio, in verso uscente. Il momento complessivo è quindi la somma dei due momenti: M = M 1 + M 2 = il 2 B sin θ Definendo il versore ˆn perpendicolare al piano della spira e diretto secondo la regola della mano destra (le dita della mano destra seguono la corrente, il pollice indica la direzione di ˆn), si ha che l angolo θ compreso fra r i e F i è uguale all angolo fra il versore ˆn ed il campo B (in quanto ˆn r i e B F ). Definito il vettore µ = il 2ˆn si ha allora M = µ B Il risultato può essere generalizzato ad una spira di forma qualunque: l unica differenza è che al posto di L 2, nella definizione di µ, va sostituita l area della spira S. Questo momento torcente effettuerà un lavoro (elementare)

e sviluppa quindi una potenza (meccanica) dl = M dθ = µ B sin θdθ = isbd cos θ W = dl = isb d cos θ Per aumentare il valore di questa potenza (ed ottenere quindi un motore in grado di muovere oggetti anche molto pesanti), si considera, anzichè una spira, un numero N molto grande di spire avvolte una attorno all altra. Ciascuna di esse subirà un momento torcente pari a quello scrtto in precedenza, e quindi complessivamente il motore costituito da N spire svilupperà una potenza W = insb d cos θ Chi fornisce l energia necessaria asviluppare questa (grande) energia meccanica? Non certo il campo magnetico (basta mettere una calamita, che non si scarica man mano che il motore gira...). Chiaramente, sarà il generatore che fa scorrere la corrente nel circuito a fornire l energia. Ma quanta energia fornisce il generatore? Per una resistenza percorsa da corrente (il filo che costituisce la spira ha sempre una resistenza non nulla...) il generatore deve fornire una energia pari all energia persa per effetto Joule (ovvero W J = i 2 ) ma questo numero non è in alcun modo legato all energia meccanica prodotta dal motore scritta in precedenza (e poi va tutto a finire in calore sviluppato per effetto Joule, quindi non è utilizzabile per il movimento...). Per capire inche modo il generatore fornisce l energia necessaria al movimento, bisogna fare un passo ulteriore. Per semplicità di calcolo, ci riferiao di nuovo al caso della spira quadrata. Se la spira, soggetta al momento torcente, comincia a muoversi (v.figura), gli elettroni che si trovano al suo interno dovranno muoversi con essa, acquistando una componente di velocità nella direzione del moto del tratto di filo in cui sono contenuti. A causa di questa nuova componente della velocità (se la spira è ferma ma percorsa da corrente gli elettroni hanno comunque una componente di velocità, relativa al fatto che la spira è percorsa da corrente, come discusso in precedenza...), la forza che agisce su di essi avrà una nuova componente, determinata come in precedenza dalla forza di Lorentz ( F = q v B). Tale nuova componente è perpendicolare al filo nei due tratti di filo paralleli al foglio (e quindi inefficace) ma nei due tratti di filo perpendicolari al foglio la nuova forza risulta parallela al filo e quindi tende a muovere gli elettroni lungo il filo. Se si usa la regola della mano destra, si scopre che tale forza è diretta in modo opposto alla direzione in cui scorre la corrente (v.figura).

Questa nuova forza agisce da forza elettromotrice del circuito costituito dalla spira. Applicando la definizione di forza elettromotrice F d l ε i = = ( v B) q d l Scegliendo come verso di percorrenza della spira quello determinato dalla corrente, si ha che v B è perpendicolare a d l nei due tratti paralleli al foglio (e quindi inquei tratti v B non contribuisce all integrale) mentre è antiparallela a dl nei due tratti perpendicolari al foglio. In definitiva, ( v B = v B sin θ) Ma v = ds = L/2dθ = L dθ 2, e quindi ε i = 2L v B sin θ ε i = L 2 B sin θ dθ = L2 B d cos θ Nel circuito costituito dal generatore e dalla spira in movimento, quindi, ci sono due forze elettromotrici: la prima è quella determinata dal generatore (ε 0 ) mentre la seconda è quella appena calcolata. Dato che quest ultima è diretta n modo opposto alla direzione in cui scorre la corrente in assenza di movimento, il circuito equivalente si può disegnare in questo modo: Dove la resistenza è l inevitabile resistenza del filo che costituisce la spira. La corrente che scorre nella resistenza (cioè nella spira) vale allora i = ε 0 ε i = ε 0 L 2 B d cos θ Man mano che la spira acquista velocità (e quindi aumenta il termine d cos θ ), la corrente che scorre nel circuito diminuisce, quindi diminuisce la forza che si esercita sul filo e quindi diminuisce

il momento torcente. Se si vuole mantenere il momento torcente calcolato in precedenza (che equivale a dire che si vuole mantenere il valore di i pari a quello che si aveva quando la spira non si muoveva) è qindi necessario che il generatore non fornisca una forza elettromotrice ε 0, ma una forza elettromotrice ε = ε 0 + L 2 B d cos θ i = ε L 2 B d cos θ = ε 0 in modo da compensare la nuova forza elettromotrice indotta dal moto della spira. Se però questa è la forza elettromotrice fornita dal generatore, la potenza generata da quest ultimo sarà W G = ε i = ε 0 i + il 2 B d cos θ = ε 0 i + µ B d cos θ Il primo termine è esattamente l energia che viene dissipata per effetto Joule nella resistenza ε (ε 0 i = ε 0 0 = ( ) ε0 2 = i 2 = W J ), mentre il secondo è esattamente pari alla potenza meccanica generata dal motore, calcolata in precedenza. In conclusione, l energia necessaria al moto del motore viene fornita dal generatore, che, se si vuole che il motore funzioni, deve fornire una forza elettromotrice (e quindi una potenza) aggiuntiva rispetto a quella che serve semplicemente per far scorrere una corrente nella spira.