Campo magnetico e forza di Lorentz (II)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Campo magnetico e forza di Lorentz (II)"

Transcript

1 Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro

2 Moto di una particella carica in un campo magnetico F = q v d p dt = q v m d v dt = q v (per v << c) d v dt = v = q m precessione intorno a con velocita` angolare ω

3 Moto di una particella carica Supponiamo il campo magnetico ortogonale al piano del moto v F Non compie lavoro Forza centripeta F = m v2 R = q v R = m v q = p q

4 Moto di una particella carica Supponiamo il campo magnetico ortogonale al piano del moto F v T = 2 R v = 2 m q = 2 " Non compie lavoro Forza centripeta F = m v2 R = q v senza correzioni relativistiche

5 Moto di una particella carica Se la velocità ha componente non nulla nella direzione di, il percorso e` elicoidale Il passo dell elica e` determinato dalla componente della velocita` parallela al campo magnetico Se la carica e` positiva, il moto dalla punta del campo magnetico appare orario (antiorario se q<0)

6 Filo conduttore percorso da corrente elettrica (con ) Moto degli elettroni di conduzione J = ne v D Su ciascun elettrone si esercita la forza F e = e v D " Filo indeformabile: la forza e` trasmessa alla massa del filo attraverso l interazione (urto) degli elettroni con il reticolo cristallino

7 Filo conduttore percorso da corrente elettrica (con ) Su un tratto di conduttore di sezione A e lungheza dl sono contenuti elettroni nadl d F = nadl F e = nadle v D " = Adl J Orientando il filo (dl) come la densita` di corrente e scrivendo AJ=i, si ottiene: d F = id l seconda legge elementare di Laplace (approssimazione: si considera costante sulla sezione del filo)

8 Filo conduttore percorso da corrente elettrica (con ) Su un filo di lunghezza finita con estremi A, si esercita la forza: F = i " A d l Forza perpendicolare al filo e al campo magnetico, orientata secondo la regola della vite destrorsa Forza come risultante di contributi elementari Applicata al centro di massa E` un espediente di calcolo, un tratto infinitesimo di filo percorso da corrente non e` fisicamente realizzabile (un loop si)

9 Filo conduttore percorso da corrente elettrica (con ) Filo rettilineo F = i d l # " = i% " d l A $ A & ( ' Il modulo del campo e` costante L angolo θ tra il campo e il filo e` costante F = i l F = ilsin

10 Filo conduttore percorso da corrente elettrica (con ) Filo su un piano F = i d l " = i " (dxe x + dy e y ) A A = i(x e x + y e y ) " """ = i A " La forza su un filo che giace in un piano dipende solo dalla posizione dei suoi estremi Se il filo e` chiuso la forza e` nulla (gli estremi coincidono A=0)

11 Esempio a = 5 cm i = 1 A m = 0.5 g m i F a =??? F = i l = i a F = ia all equilibrio F = mg ia = mg = mg ia = " "2 = "2 T

12 Esempio y i = e y tratto rettilineo " A = 2R e " x """ F = i A A R Il circuito e` chiuso è sul tratto circolare: x = 2iR e x e y = 2iR e z F = 2iR e z Verifica d l = dx e x + dy e y d F = id l = i("dx e x + dy e y ) e y F = i e R z dx = 2iRe z " R = idx e z

13 Momento meccanico. Principio di equivalenza di Ampere. Momento magnetico di una spira piana di area A percorsa dalla corrente i n A i m = ia n Connessione con il momento meccanico quando e` immersa in un campo magnetico

14 Spira in un campo magnetico Spira piana rigida Campo magnetico uniforme La forza totale e` nulla La spira non si sposta e non si deforma Il momento meccanico puo` essere diverso da zero La spira puo` compiere una rotazione

15 Spira in un campo magnetico a b F 4 F3 = F stessa retta di azione 4 n F 3 i F 1 bsin θ n F 2 F 1 = F 2 = F = ia M = bsinf = iabsin = iasin = msin M = m

16 Spira in un campo magnetico x n = e z i D A a z θ b = sin e y + cos e z C y # FA = i( r a e r A ) " = ia e y " y = iacos e x % $ % % &

17 Spira in un campo magnetico x n = e z i D A a z θ b = sin e y + cos e z C y # F A = i( r r A ) " = ia e y " = iacos e % x % F CD = i( r D r C ) " = F $ A % % &

18 Spira in un campo magnetico x n = e z i D A a z θ b = sin e y + cos e z C y # F A = i( r r A ) " = ia e y " = iacos e % x % F CD = i( r D r C ) " = F $ A % F C = i( r C r ) " = ib e x " = ibsin e z + ibcos e y % b e & x

19 Spira in un campo magnetico x n = e z i D A a z θ b # % % $ % % & = sin e y + cos e z C y F A = i( r r A ) " = ia e y " = iacos e x F CD = i( r D r C ) " = F A F C = i( r C r ) " = ib e x " = ibsin e z + ibcos e y F AD = i( r A r D ) " = F C

20 Spira in un campo magnetico x n = e z i D A a z θ b # % % $ % % & = sin e y + cos e z C y F A = i( r r A ) " = ia e y " = iacos e x F CD = i( r D r C ) " = F A F C = i( r C r ) " = ib e x " = ibsin e z + ibcos e y F AD = i( r A r D ) " = F C

21 Spira in un campo magnetico x n = e z i D A a z θ b M = a 2 = sin e y + cos e z C y e y F C " a 2 Momento meccanico e y F F C AD = a e y F C = a e y ("ibsin e z + ibcos e y ) = iabsin e y " e z = iabsin e z e y = ia n = m

22 Spira in un campo magnetico x n = e z i D A a z θ b m = ia n = sin e y + cos e z C y Momento meccanico M = m

23 Spira in un campo magnetico Vale per un circuito piano di forma arbitraria un circuito puo` sempre essere approssimato da un reticolo di spire rettangolari infinitesime i lati adiacenti sono percorsi da correnti opposte e non contribuiscono al momento della forza m / / M = 0 = 0 Equilibrio stabile = " Equilibrio instabile

24 Spira in un campo magnetico Spira con momento di inerzia I rispetto ad un asse di rotazione parallelo a M dl dt = M = msin m L = I d dt I d 2 dt 2 + m = 0

25 Spira in un campo magnetico: piccole oscillazioni Spira con momento di inerzia I rispetto ad un asse di rotazione parallelo a M + m = 0 I d 2 dt 2 = m I

26 Principio di equivalenza di Ampere Un ago magnetico sottoposto ad un campo magnetico si comporta come una spira percorsa da corrente Una spira piana di area da percorsa dalla corrente i equivale agli effetti magnetici a un dipolo magnetico di momento magnetico d m = ida n n perpendicolare al piano della spira e orientato rispetto al verso della corrente secondo la regola della vite destrorsa

27 Principio di equivalenza di Ampere Un ago magnetico sottoposto ad un campo magnetico si comporta come una spira percorsa da corrente Una spira piana di area da percorsa dalla corrente i equivale agli effetti magnetici a un dipolo magnetico di momento magnetico d m = ida n i d m da d m

28 Interazione dipolo magnetico campo magnetico Analogia con il dipolo elettrico U = m " = mcos = iacos Energia potenziale M = du = msin d Momento meccanico

29 Forza, lavoro, momento, flusso magnetico Circuito C percorso da corrente Superficie Σ contorno Circuiti elementari: resta il contorno du = d m " energia potenziale del circuito C U = du = i d m = ida n % " nda = i# $ ( ) " = 0 = " # A $ C i Σ da n

30 Forza, lavoro, momento, flusso magnetico Circuito C percorso da corrente Superficie Σ contorno Circuiti elementari: resta il contorno energia potenziale del circuito C U = U = i du = i d m = ida n % " nda = i# $ ( ) $ & " # A$ nda = i % Stokes # C A" d l C i Σ da θ n

31 Forza, lavoro, momento, flusso magnetico U = i" # ( ) = i Il flusso del campo magnetico attraverso una superficie dipende solo dal contorno C della superficie è flusso concatenato con il circuito L energia potenziale di interazione di un circuito C percorso da una corrente i con un campo magnetico attraverso una superficie Σ e` data dal prodotto della corrente per il flusso del campo magnetico concatenato con il circuito, cambiato di segno. % C A$ d l C i Σ da θ n

32 Forza, lavoro, momento, flusso magnetico Moto del circuito relativamente al campo magnetico: variazione del flusso concatenato variazione dell energia di interazione dw = U A U A+dA = du = id( ) se la corrente resta costante durante lo spostamento W = i"( ) = i $ " 2 ( ) # " 1 ( ) & % '

33 Forza, lavoro, momento, flusso magnetico Traslazione infinitesima x dw = i # $ ( x + x) " ( x) % & = i " # x dw = F x F forza che agisce sul circuito F = "U = i "#( )

34 Forza, lavoro, momento, flusso magnetico Rotazione rigida infinitesima " dw = du = M " = i " " M = "U = i "

35 Forza, lavoro, momento, flusso magnetico Circuito piano di area A molto piccola (campo uniforme su A) F = "U = "( m # ) = i "( # na) M = $ $ ( m # ) = i $ $ ( # na) - Valide anche per un piccolo ago magnetico - Equivalenza con il dipolo elettrico in un campo elettrostatico

36 Condizione: i=costante E` importante osservare che tutte le considerazioni svolte valgono a condizione che durante lo spostamento la corrente resti costante Infatti la variazione del flusso magnetico concatenato con il circuito induce fenomeni (che studieremo piu` avanti) che variano la corrente circolante

37 Condizione: i=costante E` pertanto necessario un dispositivo esterno che mantenga costante la corrente Ne consegue che l energia potenziale di interazione dipolo-campo non puo` essere l unica forma di energia coinvolta

38 Unita` di misura del flusso Flusso magnetico: campo x superficie " # $ % = " # $ % " # A$ % & Tm2 Weber 1Wb = 1T 1m 2 Momento magnetico: Am 2 = J T Momenti magnetici correnti microscopiche elettrone ~ 10 Am protone ~ 5 10 Am

39 Effetto Hall = e z J = i ab e = nq v x D Su ciascun portatore agisce la forza di Lorentz F = e v Campo elettromotore (non conservativo) D F E = H q = v J = D nq = J e nq y il verso del campo elettromotore dipende dal segno della carica

40 Effetto Hall = e z J = i ab e = nq v x D Il campo elettromotore genera una deflessione delle cariche in moto e tende ad accumulare cariche su un lato della barretta conduttrice Equilibrio tra campo elettrostatico e campo elettromotore v D + E = E H + E = 0

41 Effetto Hall = ez d J = i ab e = nq v x D Tensione del campo elettromotore H = E H a = J nq a = i ab nq a = i nqb i = V R = V d ab = Vab d = Vab d nqb = a V nq d

42 Effetto Hall = ez J = i ab e = nq v x D segno di ε H segno dei portatori di carica moduli di ε H e densita` di carica nq = a V H nq" d H V dalla misura della tensione di Hall si puo` misurare

43 Galvanometro Strumento alla base della realizzazione di strumenti per la misura di intensita` di corrente, differenze di potenziale e resistenze l θ magnete permanente bobina di N spire rettangolari di area S attraverso cui passa la corrente da misurare cilindro di ferro dolce fa si che le linee del campo magnetico siano sempre perpendicolari alla superficie del cilindro è ai lati verticali della bobina

44 Galvanometro Strumento alla base della realizzazione di strumenti per la misura di intensita` di corrente, differenze di potenziale e resistenze l θ momento magnetico della bobina θ = π forma un angolo sui lati verticali 2 m = NiS n con il campo agente la bobina e` mantenuta in asse da due molle quando circola corrente la bobina entra in rotazione, e le molle si oppongono

45 Galvanometro F m M = NiSsin( m ) = NiSsin( 2 ) = NiS M = m = NiS ˆm F All equilibrio k = NiS = NiS k i

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

df = I dl B df = dq v B

df = I dl B df = dq v B Forza Magnetica su un conduttore Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica Una corrente elettrica produce un campo magnetico Un campo magnetico esercita una forza sui circuiti percorsi da corrente È possibile generare correnti per mezzo di campi magnetici?

Dettagli

UNIVERSITA degli STUDI del SANNIO

UNIVERSITA degli STUDI del SANNIO UNIVERSITA degli STUDI del SANNIO FACOLTA di INGEGNERIA CORSO di LAUREA in INGEGNERIA TRACCE DI FISICA II (aggiornato al luglio 9) Calcolare, per una sfera di raggio R, l energia del campo elettrostatico

Dettagli

Compito di Fisica II del 14/09/2009

Compito di Fisica II del 14/09/2009 Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee

Dettagli

Lezione 15 Geometrie lineari di confinamento magnetico

Lezione 15 Geometrie lineari di confinamento magnetico Lezione 15 Geometrie lineari di confinamento magnetico G. Bosia Universita di Torino G. Bosia Introduzione alla fisica del plasma Lezione 15 1 Disuniformità con gradiente in direzione del campo ( ) Una

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE

Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Nuova Forza La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Come Agisce? Può essere attrattiva Un metallo (la magnetite)

Dettagli

Campo magnetico e forza di Lorentz (I)

Campo magnetico e forza di Lorentz (I) Campo magnetico e forza di Lorentz (I) Fatti sperimentali (Oersted e Ampere) Legge di Gauss per il campo magnetico Forza di Lorentz Definizione del campo magnetico Magnetismo Noto fin dall antichita` (VI

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI IOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio 2012 Campo magnetico e suoi effetti Alunno:................................................ Domande a risposta

Dettagli

rdr = 1 2!Bl2 = 0:5 V:

rdr = 1 2!Bl2 = 0:5 V: Lauree in Ing. Gest. dell Inform. e Industr. e Ing. Ambientale A.A. 2010/2011 Corso di Fisica Generale II_con Lab. 28 Gilberto Giugliarelli 4.1 Una sbarretta conduttrice di lunghezza l = 10 cm ruota con

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

Misure di campi magnetici: bobine di Helmholtz e solenoidi

Misure di campi magnetici: bobine di Helmholtz e solenoidi Misure di campi magnetici: bobine di Helmholtz e solenoidi - S.S., 12 Settembre 2007 - Per il calcolo del campo magnetico prodotto da una corrente che fluisce in un circuito di forma nota è utile servirsi

Dettagli

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROBLEMA 1. PROVA DI AMMISSIONE A.A.:2007-2008 SOLUZIONE DELLA PROVA SCRITTA DI FISICA a) da g = GM segue: M = gr2 R 2 G b) La forza centripeta che fa descrivere

Dettagli

Quesiti di Fisica Generale

Quesiti di Fisica Generale Quesiti di Fisica Generale 3. Elettromagnetismo prof. Domenico Galli, prof. Umberto Marconi 3 aprile 2012 I compiti scritti di esame del prof. D. Galli e del prof. U. Marconi propongono 4 quesiti, sorteggiati

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in uiete a una istanza = 100 µm a un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti el campo E in un generico punto P el semispazio

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

Modellistica di sistemi elettromeccanici

Modellistica di sistemi elettromeccanici Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)

Dettagli

MOTO DI CARICHE IN CAMPI MAGNETICI

MOTO DI CARICHE IN CAMPI MAGNETICI MOTO DI CARICHE IN CAMPI MAGNETICI E1. Un protone (q = 1.6(10 19 )C, m = 1.67(10 7 )kg) con una velocità iniiale v = 4(10 6 m/s)i + 4(10 6 m/s)j entra in una ona dove vi è un campo magnetico uniforme =

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Elettromagnetismo

Elettromagnetismo Elettromagnetismo 1. Una bolla di sapone di raggio r = 7.0 cm è caricata al potenziale V 1 = 150 V. La parete della bolla ha spessore s = 5.2 x 10-6 cm. Se si fa scoppiare la bolla e si suppone di raccogliere

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

Elettromagnetismo. Induzione elettromagnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Induzione elettromagnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 35 13.04.2016 Induzione elettromagnetica Anno Accademico 2015/2016 La scoperta di Faraday Ricordiamo la scoperta di

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

Lezione 6 Geometrie lineari e toroidali di confinamento magnetico

Lezione 6 Geometrie lineari e toroidali di confinamento magnetico Lezione 6 Geometrie lineari e toroidali di confinamento magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 6 1 Disuniformità con gradiente in direzione del campo ( )

Dettagli

Moto degli elettroni di conduzione per effetto di un campo elettrico.

Moto degli elettroni di conduzione per effetto di un campo elettrico. LA CORRENTE ELETTRICA: Moto degli elettroni di conduzione per effetto di un campo elettrico. Un filo metallico, per esempio di rame, da un punto di vista microscopico, è costituito da un reticolo di ioni

Dettagli

Il campo Magnitico e sue azioni

Il campo Magnitico e sue azioni Il campo Magnitico e sue azioni 1) Definizione operativa del campo magnetico Era nota sin dall antichità l esistenza di alcune sostanze in grado di esercitare delle azioni su piccoli pezzi di materiali

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz Ver. 1. del 7/1/9 L induzione elettromagnetica - Legge di Faraday-Lentz i osservano alcuni fatti sperimentali. 1 ) Consideriamo un filo metallico chiuso su se stesso (spira) tramite un misuratore di corrente

Dettagli

di ogni particella carica che raggiunge con velocità v la regione in cui è presente campo 2 m

di ogni particella carica che raggiunge con velocità v la regione in cui è presente campo 2 m íîñôéøúïôúî ùôðôñüïî oôç üúîñét ôïöøöïøëôüüøëîêíüãôüñø ôüííøññîùô ÔÊÔÚÜêÍØËÔÐØÏÉÜÑØ ü û öôèêéô ÔÚÜËØ ÑØ ËÔÊÍÎÊÉØ ØÊÚËÔÇØËØ ÔÏ ÐÎÙÎ ÚÕÔÜËÎ ØÑØÖÖÔÛÔÑØ êîêéôéèôëø ÔÇÜÑÎËÔ ÏÈÐØËÔÚÔ ÊÎÑÎ ÜÑÑÜ ÔÏØ ÙÎÍÎ ÜÇØË

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

Compitino di Fisica II 15 Aprile 2011

Compitino di Fisica II 15 Aprile 2011 Compitino di Fisica II 15 Aprile 2011 Alcune cariche elettriche q sono disposte ai vertici di un quadrato di lato a come mostrato in figura. Si calcoli: +2q y +q a) il momento di dipolo del sistema; b)

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il capo agnetico 1. Fenoeni agnetici 2. Calcolo del capo agnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Prof. Giovanni Ianne 1/21 Fenoeni agnetici La agnetite è un inerale

Dettagli

campo magnetico Introduzione

campo magnetico Introduzione campo magnetico ntroduzione F i s i c a s p e r i m e n t a l e Si era detto: La forza elettrica è descritta dalla legge di Coulomb Tuttavia: La verifica sperimentale era fatta in condizioni statiche La

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère CRCUTAZONE E FLUSSO DEL CAMPO MAGNETCO Abbiamo gia detto che per determinare completamente un campo vettoriale dobbiamo dare il valore della sua circuitazione ed il flusso del campo attraverso una superficie

Dettagli

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II ELETTROLOGIA Cap II Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica 1 Anello di raggio R uniformemente carco con carica Q. Anello di dimensioni trasversali trascurabili rispetto al

Dettagli

i. Calcolare le componenti del campo in un generico punto P dell asse z. i. Calcolare la densità superficiale di corrente che fluisce nella lamina.

i. Calcolare le componenti del campo in un generico punto P dell asse z. i. Calcolare la densità superficiale di corrente che fluisce nella lamina. Esercizio 1: Una cilindro dielettrico di raggio R = 10 cm e lunghezza indefinita ha una delle sue basi che giace sul piano xy, mentre il suo asse coincide con l asse z. Il cilindro possiede una densità

Dettagli

Campo magnetico e forza di Lorentz (I)

Campo magnetico e forza di Lorentz (I) Campo magnetico e forza di Lorentz (I) Fatti sperimentali (Oersted e Ampere) Legge di Gauss per il campo magnetico Forza di Lorentz Definizione del campo magnetico Magnetismo Noto fin dall antichita` (VI

Dettagli

Corso di Fisica Per Informatica Esercitazioni 2009

Corso di Fisica Per Informatica Esercitazioni 2009 Coordinate Esercitatore: Stefano Argirò stefano.argiro@unito.it tel 011670-7372 Ricevimento: su appuntamento tramite e-mail http://www.to.infn.it/ argiro 1 Esercitazioni di Fisica - Vettori 1. Dato un

Dettagli

Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite

Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Magnetismo Alcuni minerali (ossidi di ferro) attirano la limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Proprietà non uniforme. Se si ricava opportuno

Dettagli

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino Esercitazione 1 Matteo Luca Ruggiero 1 1 Dipartimento di Fisica del Politecnico di Torino Anno Accademico 2010/2011 ML Ruggiero (DIFIS) Esercitazione 1: Elettrostatica E1.2010/2011 1 / 29 Sommario 1 Riferimenti

Dettagli

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico:

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico: Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico; l'importante

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Misura del campo magnetico terrestre con le bobine di Helmholtz

Misura del campo magnetico terrestre con le bobine di Helmholtz Misura del campo magnetico terrestre con le bobine di Helmholtz Le bobine di Helmholtz sono una coppia di bobine con alcune caratteristiche particolari: hanno entrambe raggio ; hanno una lunghezza L molto

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

FISICA (modulo 1) PROVA SCRITTA 23/06/2014

FISICA (modulo 1) PROVA SCRITTA 23/06/2014 FISICA (modulo 1) PROVA SCRITTA 23/06/2014 ESERCIZI E1. Un corpo puntiforme di massa m = 2 Kg si muove su un percorso che ha la forma di un quarto di circonferenza di raggio R = 50 cm ed è disposta su

Dettagli

1 FORZE AGENTI SU CARICHE IN MOTO

1 FORZE AGENTI SU CARICHE IN MOTO 1 FORZE AGENTI SU CARICHE IN MOTO Per molti secoli il magnetismo rimase separato dallo studio dei fenomeni elettrici. La svolta che avvicinò il magnetismo all elettricità avvenne tra il 1819 e il 1820,

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Composizione di stati cinetici Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna)

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) 7 giugno 2013 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

DE MAGNETE. 1. Fino al 1820

DE MAGNETE. 1. Fino al 1820 DE MAGNETE 1. Fino al 1820 Che i magneti esistano lo sanno anche i sassi fin dai tempi dei greci. In particolare è assodato che: come accade per l elettricità, esistono anche due tipi di magnetismo; ciò

Dettagli

Interazioni di tipo magnetico

Interazioni di tipo magnetico INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico 1 Il campo magnetico In natura vi sono alcune sostanze, quali la magnetite, in grado di esercitare una forza

Dettagli

Temi di elettromagnetismo

Temi di elettromagnetismo Temi di elettromagnetismo Prova scritta del 12/04/1995 1) Una carica puntiforme q 1 = 5 µc e' fissata nell'origine ed una seconda carica q 2 = -2µC e' posta sull'asse x, a una distanza d = 3 m, come in

Dettagli

Strumenti in corrente continua

Strumenti in corrente continua (o elettromagnetico) è il tipico strumento per misura di corrente in continua ed appartiene alla più generale classe degli strumenti elettromeccanici. Essi possono essere ricondotti al seguente schema

Dettagli

= 0 B = 0 perché la corrente

= 0 B = 0 perché la corrente CALCOLO DEL CAMPO LEGGE D AMPÈRE Da. Un conduttore cilindrico cavo, di raggio esterno a. cm e raggio interno b.6 cm, è percorso da una corrente A, distribuita uniormemente sulla sua sezione. Calcolare

Dettagli

Quesiti dell Indirizzo Tecnologico

Quesiti dell Indirizzo Tecnologico Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella

Dettagli

FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI

FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI DOWNLOAD Il pdf di questa lezione (ele2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 26/11/2012 DIPOLO ELETTRICO La configurazione costituita

Dettagli

Proprietà elettriche della materia

Proprietà elettriche della materia Proprietà elettriche della materia Conduttori Materiali in cui le cariche elettriche scorrono con facilità. In un metallo gli elettroni più esterni di ciascun atomo formano una specie di gas all interno

Dettagli

2. L unità di misura della costante k che compare nella legge di Coulomb è:

2. L unità di misura della costante k che compare nella legge di Coulomb è: Fatti sperimentali e loro descrizione fenomenologica 1 Vero o falso 2 Quesiti a risposta multipla 1. Si considerino due cariche elettriche, q 1 = +2 10 4 C e q 2 = 3 10 5 C, poste alla distanza d = 1,

Dettagli