J.J. Thomson (1897): dimostra l esistenza dell elettrone E. Ruthenford (1911): dimostra l esistenza del nucleo

Documenti analoghi
ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo

Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

Esploriamo la chimica

Atomo. Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale)

Le Caratteristiche della Luce

Capitolo 8 La struttura dell atomo

Generalità delle onde elettromagnetiche

Comune ordine di riempimento degli orbitali di un atomo

Teoria Atomica di Dalton

Struttura Elettronica degli Atomi Meccanica quantistica

COMPETENZE ABILITÀ CONOSCENZE. descrivere la. Comprendere ed applicare analogie relative ai concetti presi in analisi. struttura.

La Struttura degli Atomi

L atomo di Bohr. Argomenti. Al tempo di Bohr. Spettri atomici 19/03/2010

Corso di CHIMICA LEZIONE 2

ATOMO POLIELETTRONICO. Numero quantico di spin m s

Il principio di indeterminazione di Heisenberg

La struttura dell atomo

Nel 1926 Erwin Schrödinger propose un equazione celebre e mai abbandonata per il calcolo delle proprietà degli atomi e delle molecole

Scienziati in Erba Chimica

Quarta unità didattica. Disposizione degli elettroni nell atomo

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

CHIMICA E SCIENZA E TECNOLOGIA DEI MATERIALI ELETTRICI

Teoria atomica. Dr. Lucia Tonucci Ingegneria delle Costruzioni

GLI ORBITALI ATOMICI

Unità Didattica 3. L atomo di idrogeno

La struttura degli atomi

ESERCIZI W X Y Z. Numero di massa Neutroni nel nucleo Soluzione

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1

Modello atomico ad orbitali e numeri quantici

Struttura dell atomo atomo particelle sub-atomiche - protoni positiva - neutroni } nucleoni - elettroni negativa elemento

Atomo: modello microscopico

La radiazione elettromagnetica. aumento della frequenza n della radiazione aumento dell energia E della radiazione

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata

Problemi con l'atomo. Significato delle righe spettrali. Modello dell'atomo

Come si può definire la chimica? Quella scienza che studia la composizione, la struttura e le trasformazioni della materia. Cosa si intende per

Principi della chimica

Chimica generale. Corsi di laurea in - Tecnologie alimentari - Viticoltura ed enologia PARTE 1

La Teoria dei Quanti e la Struttura Elettronica degli Atomi. Capitolo 7

Pinzani, Panero, Bagni Sperimentare la chimica Soluzioni degli esercizi Capitolo 9

Particelle Subatomiche

Chimica e Propedeutica Biochimica

E. SCHRODINGER ( )

Diametro del nucleo: m. Diametro dell atomo: m

Come sono disposti gli elettroni intorno al nucleo in un atomo?

Sommario della lezione 4. Proprietà periodiche. Massa atomica e massa molecolare. Concetto di mole. Prime esercitazioni

λν = c, ove c velocità della luce.

3. Struttura dell atomo

Scienziati in Erba Chimica

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti).

Tavola Periodica degli Elementi

Principio dell Aufbau (riempimento)

Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà.

P. Sapia Università della Calabria. a.a. 2009/10

Struttura elettronica e tavola periodica

2.1 (p. 37) Bohr descrisse un orbitale atomico come una traiettoria circolare seguita dall elettrone. Un orbitale è una

Interazione luce- atomo

6) Modello atomico a ORBITALI

ATOMI MONOELETTRONICI

CHIMICA: studio della struttura e delle trasformazioni della materia

Tabella periodica degli elementi

Meccanica quantistica Mathesis 2016 Prof. S. Savarino

Configurazioni elettroniche e periodicità

Come superare le critiche al modello di Bohr? 1 1

Unità 2. La teoria quantistica

Testi Consigliati. I. Bertini, C. Luchinat, F. Mani CHIMICA, Zanichelli. Qualsiasi altro testo che tratti gli argomenti elencati nel programma

VERIFICA Dalla tavola periodica al modello atomico

I NUMERI QUANTICI. per l = orbitale: s p d f

LA RADIAZIONE ELETTROMAGNETICA. c = λ ν. c = 2, m s-1 (nel vuoto)

Gli orbitali atomici. Il modo più semplice di visualizzare un atomo. TUTTAVIA NON POSSO DIRE CON PRECISIONE DOVE SI TROVA OGNI e -

I numeri quantici. Numero quantico principale, n: numero intero Caratterizza l energia dell elettrone

GLI ORBITALI ATOMICI

FISICA delle APPARECCHIATURE per RADIOTERAPIA

Il modello atomico fino all Ottocento

Classe4:chimicaStrutturaAtomica1. Controlla se sai definire i seguenti termini: teoria atomica di Dalton (atomo di Dalton),

CORSO DI LAUREA IN OTTICA E OPTOMETRIA

M M n+ + n e - X + n e - X n-

Numero atomico Z : numero di protoni presenti nell atomo di quell elemento. Numero di massa A : somma dei protoni e dei neutroni in un atomo

Tavola Periodica degli Elementi: Gruppi e Periodi

Fisica atomica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

il modello atomico di Bohr

FISICA QUANTISTICA LIMITI AL MODELLO ATOMICO DI RUTHERFORD. e - Per spiegare la disposizione degli elettroni nell atomo (STRUTTURA ELETTRONICA)

Fenomeni quantistici

Chimica e laboratorio

Lezioni di Meccanica Quantistica

Tavola periodica. Concetto fondamentale della chimica: strumento per classificare, riconoscere, prevedere le proprietà degli elementi.

Lo strofinio di qualsiasi oggetto provoca la comparsa su di esso di una carica elettrica che può attrarre piccoli oggetti.

Meccanica quantistica (5)

Atomi a più elettroni

Loriano Storchi.

Bohr 1913 Gli elettroni viaggiano su orbite fisse

Bohr 1913 Gli elettroni viaggiano su orbite fisse

Struttura elettronica degli atomi. La teoria dei quanti e la meccanica ondulatoria. La moderna descrizione dell atomo

Transcript:

STRUTTURA dell ATOMO J.J. Thomson (1897): dimostra l esistenza dell elettrone E. Ruthenford (1911): dimostra l esistenza del nucleo J. Chadwich (193): dimostra l esistenza del neutrone

J.J. Thomson (1897): dimostra l esistenza dell elettrone raggi catodici: He + n He + + e - e m E H r Osservazione: il rapporto carica/massa dell elettrone è costante e indipendente dalla natura del gas. e m 1,7610 R.A. Millikan: misura la carica dell elettrone 11 coulomb kg 1 e = - 1,6 * 10-19 coulomb m = 9,10 *10-31 Kg

E. Goldstein, Ruthenford (1907): scoperta del protone raggi anodici: He + n He + + e - Viene misurata la massa e la carica dello ione positivo dell atomo di idrogeno: protone (p + ) carica uguale e opposta all elettrone massa 1836 volte maggiore dell elettrone q = 1,60 * 10-19 C m = 1,673 * 10-7 Kg J. Chadwich (193): dimostra l esistenza del neutrone particella priva di carica con massa simile al protone q = 0 m = 1,675 * 10-7 Kg

massa (uma) 1,0078 1,00867 0,000549 unità di massa atomica (u.m.a.) = 1,66 10-4 g

J.J. Thomson (1897): modello dell atomo Forma sferica con massa e carica positiva uniformemente distribuita Cariche negative uniformemente distribuite L atomo è elettricamente neutro.

E. Ruthenford (1911): esperimenti sul potere penetrante delle particelle a e scoperta del nucleo (particella a) = nucleo di elio 4 He polonio Modello dell atomo di Ruthenford (1911): L atomo è vuoto: Nel nucleo è concentrata tutta la massa e tutta la carica positiva. Modello dinamico, planetario: Attorno al nucleo si muovono gli elettroni in numero uguale alle cariche del nucleo. L atomo è elettricamente neutro. In proporzione: diametro nucleo 1 cm - diametro atomo 100 m

Modello dell atomo di Ruthenford (1911): l elettrone negativo ruota attorno al nucleo positivo, bilanciando l attrazione elettrostatica con la forza centrifuga F Coulomb F centrifuga k q q r 1 mv r meccanica classica: l elettrone perde energia emettendo radiazione elettromagnetica, rallenta il suo moto e collassa sul nucleo. Il modello contraddice le osservazioni sperimentali: l atomo è stabile

Spettrometro di massa: scoperta degli isotopi naturali gli atomi vengono ionizzati a ioni positivi e deviati dal campo magnetico in funzione della massa. Percentuale isotopica dell antimonio l entità della deflessione dipende da q/m

DIFETTO DI MASSA (Dm) La massa di un nuclide è sempre inferiore alla massa che si ottiene sommando le masse delle particelle che lo compongono. He 4 massa teorica = (1,0078 uma) + (1.00867 uma) + (0.000549 uma) = 4,039 uma massa sperimentale = 4.006 uma Dm = 0.0303 uma Il processo di formazione del nucleo a partire da protoni e neutroni libera una grande quantità di energia, che rappresenta l energia di legame (BE) del nucleo. Dall equazione di Einstein si ricava che > è Dm > energia occorre fornire per separare le particelle del nucleo. E = mc (BE) = (Dm)c BE = (0.0303 uma x 1,66*10-7 kg)(.99*10 8 ms -1 ) = 4.53*10-1 J BE per una mole di He (4 g) = 6,53 *10 8 kcal mol -1

Carta dei nuclidi Elementi con Z < 0 Massima stabilità per N/Z = 1 n p 1 1 0 0 1 1 4 He C 1 16 6 8O Elementi con Z > 0 Massima stabilità per N/Z = 11.5 10 00 06 50Sn 80Hg 8Pb p n 1 0 0 1 1

Radioattività: (Trasmutazione nucleare) I nuclidi instabili (isotopi radioattivi) emettono spontaneamente particelle e/o radiazioni elettromagnetiche, formando nuclei più stabili. A B + particella + E nuclide padre nuclide figlio a,, radiazione Tempo di dimezzamento (t 1/ ): caratteristico di ogni sostanza è il tempo in cui la quantità iniziale di nuclei radioattivi diviene la metà Elementi con T 1/ sufficientemente lungo che possiamo trovare in natura Nuclide (A) Tipo di emissione Tempo di dimezzamento Uranio 38 a 4.51 x 10 9 anni Uranio 34 a.48 x 10 5 anni Polonio 18 a 3.3 minuti Polonio 14 a 1.6 x 10-4 secondi Polonio 10 a 138,4 giorni Piombo 14 6.8 minuti Piombo 10 0.4 anni Bismuto 14 19.7 minuti Bismuto 10 5.0 giorni Carbonio 14 5730 anni tutti gli elementi con Z > 83 (bismuto) sono radioattivi

Metodo di datazione col radiocarbonio per organismi di 10000-0000 anni 1 6C C N N 14 14 0 6 7 1 n C e 14 1 14 1 7 0 6 1 H stabile t 1/ =5730 anni 14 6 1 6 C C Organismi vegetali e animali O fotosintesi alimentazione respirazione 14 6 1 6 CO CO Il rapporto è costante negli organismi vivi diminuisce nel tempo negli organismi morti (S.I) La radioattività si misura in Becquerelle(Bq) = un decadimento al secondo: Bq = [s-1]

Struttura elettronica dell ATOMO La quantizzazione dell energia di Planck Il modello atomico di Bohr Il principio di indeterminazione di Heisenberg La natura ondulatoria dell elettrone L equazione d onda di Schrödinger Le forme e le energie degli orbitali La configurazione elettronica degli atomi

RADIAZIONE ELETTROMAGNETICA: campo elettrico e campo magnetico oscillanti, tra loro ortogonali, che si propagano nello spazio. Frequenza n = n di onde che passano per un punto in un secondo v λ n Hertz (s -1 ) La velocità delle onde elettromagnetiche che si propagano nel vuoto (velocità della luce) è c: c =.998 x10 8 m s -1 c ~ 300 000 Km s -1

Spettro elettromagnetico: insieme delle onde elettromagnetiche a diverse lunghezze d onda

Max Planck (1901): la teoria dei quanti L energia non è una grandezza continua, essa viene emessa o assorbita in quantità discrete, chiamate quanti. Equazione di Planck E hn h = costante di Planck = 6,66*10-34 J s L energia di una radiazione è legata a quella del suo quanto. L intensità della radiazione dipende dal numero di quanti che costituisce una radiazione. La quantizzazione dell energia non è rilevabile a livello macroscopico, ma si osserva nei fenomeni su scala atomica.

Interazione materia-radiazione elettromagnetica Le conoscenze sulla struttura degli atomi provengono da esperimenti di interazione tra materia e radiazione elettromagnetica. Una sostanza eccitata emette radiazioni elettromagnetiche (spettro di emissione). Una sostanza colpita da una radiazione elettromagnetica, assorbe parte delle radiazioni (spettro di assorbimento). Le frequenze emesse o assorbite sono le stesse.

n n C n 3,4,5,6 1 1 1 1 n n R H n 1 1,... 1,,3,4 n n n Spettro di emissione dell idrogeno Equazione di Rydberg R H =.180 x10-18 J Equazione di Balmer

Modello atomico di Niels Bohr (1913): Primo postulato di Bohr: l elettrone si muove su orbite circolari intorno al nucleo, sono permesse soltanto le orbite per le quali il momento angolare dell elettrone (mvr) è un multiplo intero di h/π. mvr h n π n = numero intero: 1,,3,. Secondo postulato di Bohr: L elettrone non emette energia quando si trova in una orbita permessa (stato stazionario). L atomo emette energia quando l elettrone salta da un orbita più esterna a una più interna e la frequenza della radiazione emessa è: E E1 hν E i = energia dell elettrone nell orbita i Terzo postulato di Bohr: la carica del nucleo è +Ze. La carica dell elettrone è -e L energia totale di un elettrone che si muove su orbita circolare a distanza r è definita da: E E Cinet E Potenz 1 mv Ze 4 πε 0 r

Bohr calcola il raggio dell orbita e l energia dell elettrone per l idrogeno (Z=1) F Coulomb F centrifuga mvr n h π Ze 4 πε 0 r v mv r nh πmr (1) r ε0n h πmze () quantizzazione momento angolare n 1,,3,4,... numero quantico r n (0.53 10 10 ) Raggio quantizzato n a 0 inserendo il valore della velocità (ricavata da (1)) e il raggio quantizzato () nell espressione dell energia E, si ottiene: E E Cinet E Potenz 1 mv Ze 4 πε 0 r E 4 mz e 8πε n h 0 R n H R H =.179 x 10-18 J Energia quantizzata

r n a 0 E R n H n =, 3, 4 stati eccitati n = 1 Stato fondamentale corrispondente al minimo di energia

atomo di idrogeno Ogni riga corrisponde all emissione di energia associata a un salto da E a E 1 hv (E E1 ) hn R R H H n n1 hn 1 1 R H n 1 n Le frequenze calcolate con il modello di Bohr coincidono con le righe dello spettro.

De Broglie (194): la materia ha natura ondulatoria Plank:I fotoni si propagano con moto ondulatorio e hanno energia E = hn Einstein: I fotoni si muovono con velocità c e energia E = mc E hn E mc hn mc n c h c mc λ h mc La radiazione elettromagnetica (fotoni) ha natura corpuscolare De Broglie estende il concetto a qualsiasi massa: A qualunque particella di massa m, in movimento con velocità v, può essere associata un onda di lunghezza d onda λ h mv La materia ha natura ondulatoria

Dualismo onda-particella La materia ha comportamento ondulatorio. Per le particelle macroscopiche il comportamento ondulatorio può essere trascurato e il moto può essere descritto dalle leggi della meccanica classica Per le particelle microscopiche (elettroni, protoni, e neutroni) occorre tenere conto della natura ondulatoria. Le particelle atomiche presentano caratteristiche ondulatorie o corpuscolari a seconda del tipo di esperimento e strumentazione che usiamo per osservarle.

PRINCIPIO DI INDETERMINAZIONE DI HEISENBERG (196): Non è possibile determinare esattamente e contemporaneamente la posizione e la velocità di una particella. ΔxΔp h 4 π ΔxΔ( m v) h 4 π ΔxΔv h 4 π m p = momento della quantità di moto = mv h = 6,66 * 10-34 J s Se m è grande, l incertezza Dv è trascurabile Se m è molto piccola (massa dell e - ) l incertezza su Dv è molto grande m = 30,0 g, Dx = 1x10-3 cm Dv = 1,7*10-6 cm s -1 m e- = 9*10-8 g, Dx = 0.1Å = 10-9 cm Dv = 5,8*10 8 cm s -1 = 5800 km s -1.

Spettri atomici Principio di Heisenberg Natura duale della materia (corpuscolare e ondulatoria) L energia è quantizzata Impossibile di conoscere contemporaneamente posizione e velocità di una particella microscopica Le particelle microscopiche si comportano come onde Meccanica classica Meccanica quantistica Non è possibile determinare la traiettoria dell elettrone: si può parlare solo di probabilità in una unità di volume orbita orbitale

EQUAZIONE di Erwin SCHRÖDINGER (196) Modello ondulatorio per l elettrone dell atomo di idrogeno: descrive il moto di un elettrone attorno al nucleo come un onda stazionaria. πr nλ n=5 n=6 Onda progressiva: l ampiezza in un punto dipende dalla variabile tempo Onda stazionaria: l ampiezza non dipende dalla variabile tempo La lunghezza d onda può assumere solo determinati valori(le vibrazioni sono quantizzate) πr nλ

Equazione d onda di Schrödinger Il moto di un onda è descrivibile tramite una equazione differenziale. Schrödinger formula un equazione differenziale per atomo di idrogeno le cui soluzioni descrivono il moto dell elettrone attorno al nucleo. La funzioni d onda (x,y,z) è funzione delle coordinate x, y, z dell elettrone. Esistono infinite funzioni d onda (x,y,z) che sono possibili soluzione dell equazione. Per avere valore fisico deve soddisfare dei requisiti: 1) essere continua e finita ) deve annullarsi all infinito 3) devo assumere un solo valore in ogni punto autofunzione

= funzione d onda descrive l ampiezza dell onda in funzione delle coordinate spaziali, quindi assume valori positivi e negativi. Non ha significato fisico. s = funzione di probabilità Ha valore sempre positivo o nullo e ha significato fisico. E proporzionale all intensità della radiazione in un punto. dv = Esprime la probabilità che un elettrone si trovi in un infinitesimo volume dv. Nel modello ondulatorio non si hanno distanze definite tra elettrone e nucleo Orbita orbitale

Le funzioni d onda (autofunzioni) sono caratterizzate da tre numeri quantici. Ogni terna di numeri quantici definisce un unica funzione, cioè un unico orbitale: nlm. n l Numero quantico principale Numero quantico secondario energia dimensioni forma m l Numero quantico magnetico orientazione in un campo magnetico

4pr ψ = funzione di distribuzione radiale orbitale 4pr ψ dr = Probabilità di trovare l elettrone in un guscio sferico di raggio r e spessore dr Il massimo della curva di probabilità radiale si ha per una distanza dal nucleo pari a 0.53 Å che corrisponde al raggio dell orbita di Bohr (conferma la validità della teoria!) La probabilità è diversa da zero anche a grandi distanze.

n =, l = 1, m l = 0, 1, -1 ORBITALI p ORBITALI LOBATI Ruotando il profilo di 180 si ottiene la superficie limite tridimensionale 3 orbitali degeneri 11 10 1-1

l = ORBITALI LOBATI ORBITALI d m l = 0, 1, -1,, - 5 orbitali degeneri 3 31 30 3-1 3-

IL NUMERO QUANTICO DI SPIN: m s Ogni terna di numeri quantici n, l, m l definisce un unica funzione, cioè un unico orbitale. Il numero quantico di spin m s non è correlato agli altri tre. Determina il momento angolare di rotazione di un elettrone (spin), immaginato come una particella sferica ruotante attorno al proprio asse. valori possibili per m s : 1 1 1

ATOMI POLIELETTRONICI Ogni e - risente della repulsione di tutti gli altri elettroni. Equazione d onda più complicata e di difficile soluzione. ATOMO DI IDROGENO (1 e-) Orbitali simili per forma e dimensioni a quelli dell atomo di idrogeno. E E L energia degli orbitali dipende solo da n. L energia degli orbitali dipende da n e da l.

CONFIGURAZIONE ELETTRONICA DEGLI ATOMI PRINCIPIO DELL AUFBAU (principio di costruzione) Principio di esclusione di Pauli: due elettroni di uno stesso atomo non possono avere identici valori dei quattro numeri quantici n, l, m l, m s. Regola di Hund: la configurazione di minima energia di un atomo è quella che presenta il maggior numero di elettroni a spin parallelo Gli orbitali vengono riempiti in ordine di energia crescente Ogni orbitale può ospitare al massimo e -, purché con diverso valore di m s L accoppiamento di e - in uno stesso orbitale avviene dopo che tutti gli orbitali degeneri contengono già un elettrone.

H (Z=1) 1s 1 1s He (Z=) 1s 1s m s 1 m s 1 Li (Z=3) 1s s 1 s p 1s Be (Z=4) 1s s s p 1s B (Z=5) 1s s p 1 s p 1s

Regola di Hund: in un gruppo di orbitali degeneri, gli e - si dispongono singoli a spin paralleli. L accoppiamento di e - in uno stesso orbitale avviene dopo che tutti gli orbitali degeneri contengono già un elettrone. C (Z=6) 1s s p s p N (Z=7) 1s s p 3 1s s p 1s O (Z=8) 1s s p 4 s p 1s

4s ha energia minore di d Cr 3d 4 4s Cr 3d 5 4s 1 Configurazione più stabile

Periodicità della configurazione elettronica esterna Periodi: Iniziano con configurazione s 1 e terminano con configurazione esterna completa s (per He) o s p 6. Tutti gli elettroni più esterni hanno stesso numero quantico principale n. Il numero del periodo corrisponde a n. Gruppi: uguale configurazione esterna (stesso numero di elettroni esterni con numero quantico principale crescente). Gli elementi di un gruppo hanno proprietà chimiche simili.

Proprietà periodiche dimensioni atomiche (volume atomico, raggio atomico) dimensioni ioniche energia di ionizzazione affinità elettronica

DIMENSIONI ATOMICHE: raggio atomico La nube elettronica non ha un confine preciso a una certa distanza dal nucleo. I raggi atomici sono ricavati misurando sperimentalmente le distanze tra i nuclei di due atomi uguali nei solidi o nelle molecole gassose. Viene assunto pari alla metà della distanza tra i due nuclei. Nel sistema SI le dimensioni atomiche sono espresse in nm 1 nm = 10-9 m 1 Å = 10-10 m 1 pm = 10-1 m

Z eff carica nucleare effettiva ATOMI POLIELETTRONICI: Ogni e - risente della attrazione del nucleo e della repulsione di tutti gli altri elettroni. La carica nucleare effettiva (Z eff ) che agisce su ogni elettrone è minore della carica nucleare Z, poiché un elettrone esterno subisce l attrazione di un nucleo schermato dagli elettroni interni Z eff = Z - S S = costante di schermo ogni elettrone dei livelli di energia superiori non ha effetto di schermo (S = 0) per ogni elettrone dello stesso livello di energia S = 0.35 per ogni elettrone s o p del livello immediatamente inferiore S = 0.85 ogni elettrone dei livelli interni scherma un protone (S = 1) K: Z = 19 1s s p 6 3s 3p 6 4s 1 Z eff sull elettrone 4s 1 = 19-(8 x 0,85)-(10 x 1) =,

RAGGI ATOMICI DEGLI ELEMENTI (picometri = 10-1 m) Lungo un periodo: aumenta la carica nucleare Zeff; aumentano gli elettroni del guscio esterno (gli e - dello stesso guscio hanno scarso effetto di schermo). gli e - subiscono maggiore attrazione verso il nucleo, r diminuisce. Il raggio atomico aumenta Lungo un gruppo: aumenta il numero quantico principale n, l effetto di scherno è analogo, aumenta la distanza dal nucleo, r aumenta.

RAGGI IONICI DEGLI ELEMENTI A A n+ aumento della carica nucleare Z eff A A n- diminuzione della carica nucleare Z eff contrazione volume aumento volume

Energia di Ionizzazione (EI) Energia da fornire per allontanare a distanza infinita uno degli elettroni esterni di un atomo isolato allo stato gassoso. A (g) A + (g) + e - EI 1 prima ionizzazione A + (g) A + (g) + e - EI seconda ionizzazione EI >> EI 1 : è più difficile allontanare un elettrone da un ione positivo Il segno di EI è sempre positivo. L EI è una misura della forza con cui l atomo lega l elettrone. Gli elementi con i valori più alti di EI sono i gas nobili Gli elementi con i più bassi valori di EI sono i metalli alcalini.

AFFINITA ELETTRONICA (AE) Energia che viene ceduta da un atomo neutro isolato in fase gassosa quando acquista un elettrone: A (g) + e - A - (g) Valori negativi di AE: (il sistema produce energia) tendenza dell elemento ad acquistare un elettrone spontaneamente. Valori positivi di AE: (dobbiamo fornire energia al sistema) per l elemento è difficile acquistare un elettrone. l affinità elettronica diviene più negativa (aumenta in senso assoluto) lungo un periodo l affinità elettronica diviene più negativa (aumenta in senso assoluto) salendo lungo un gruppo H, metalli alcalini (I G) : valori AE negativi piccoli o positivi, non formano anioni Alogeni (VII G ) : valori AE negativi elevati, formano facilmente anioni F -, Cl -, Br -, I -