Lezione 12: Ancora sulle matrici

Documenti analoghi
Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Metodi per la risoluzione di sistemi lineari

Lezione 13: I sistemi di riferimento

Geometria BIAR Esercizi 2

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

1 Il polinomio minimo.

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

Prodotto scalare e ortogonalità

Lezione 9: Le matrici

5 Un applicazione: le matrici di rotazione

Anno 4 Matrice inversa

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Lezione 6 Richiami di Geometria Analitica

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Parte 8. Prodotto scalare, teorema spettrale

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

Esercitazione 6 - Soluzione

Geometria BATR-BCVR Esercizi 9

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

Appunti su Indipendenza Lineare di Vettori

Parte 12b. Riduzione a forma canonica

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

Esercizi sulle coniche (prof.ssa C. Carrara)

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

LEZIONE i i 3

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

x 1 Fig.1 Il punto P = P =

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

CLASSIFICAZIONE DELLE CONICHE AFFINI

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

IV-2 Forme quadratiche

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Sistemi d equazioni lineari

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi di Matematica Discreta - Parte I

Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.

Dipendenza e indipendenza lineare

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi per Geometria II Geometria euclidea e proiettiva

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

1 Ampliamento del piano e coordinate omogenee

4 Autovettori e autovalori

Algebra lineare Geometria 1 11 luglio 2008

Massimi e minimi vincolati

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

Richiami di algebra delle matrici a valori reali

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

Applicazioni eliminazione di Gauss

Esercizi di ripasso: geometria e algebra lineare.

MATRICI E SISTEMI LINEARI

Massimi e minimi relativi in R n

Lezione 11: Il Determinante

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

Lezione 3: Ancora sui vettori

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi.

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

SISTEMI LINEARI MATRICI E SISTEMI 1

Il teorema di Rouché-Capelli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

1 Cambiamenti di coordinate nel piano.

Equazioni di primo grado

Geometria analitica del piano pag 32 Adolfo Scimone

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari - Parte Seconda - Esercizi

Prodotto scalare e norma

3x 2 = 6. 3x 2 x 3 = 6

Precorso di Matematica

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

y 5z = 7 y +8z = 10 +3z = 3

1 SIGNIFICATO DEL DETERMINANTE

1 Combinazioni lineari.

ESERCIZI sui VETTORI

(x B x A, y B y A ) = (4, 2) ha modulo

Corso di Calcolo Numerico

UNITÀ DIDATTICA 5 LA RETTA

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così :

Matematica per Analisi dei Dati,

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

0.1 Numeri complessi C

Transcript:

Lezione 12: Ancora sulle matrici La matrice inversa e il metodo di Cramer Abbiamo detto che usando le matrici e i vettori possiamo scrivere sinteticamente un sistema come Ax b Pensate ora di avere una sola equazione lineare con una sola incognita x, cioè ax b dove sia a che b sono due numeri reali (il coefficiente e il termine noto), con a diverso da zero Trovare la soluzione di questa equazione è ovviamente banale Cosa facciamo? Moltiplichiamo entrambi i membri dell equazione per l inverso di a, a 1 1/a, e otteniamo la soluzione dell equazione x 1 x 1 a ax b a, cioè abbiamo una formula esplicita per la soluzione (vi ho scritto esplicitamente tutti i passaggi per sottolineare che stiamo usando il fatto che il prodotto tra un numero e il suo inverso fa 1, che ha la bella proprietà di non cambiare i numeri per cui lo moltiplichiamo, è l elemento neutro del prodotto ) Nell equazione matriciale Ax b sarebbe bello fare la stessa cosa Molte volte questo sarà possibile, ma ovviamente non sarà così banale come nel caso appena visto Non è difficile convincersi del fatto che se ci aspettiamo un metodo simile a quello visto per una singola equazione, che dopo alcuni passaggi algebrici ci porti a una formula esplicita per la soluzione (x ), il sistema che consideriamo dovrà essere tale da avere (sicuramente) soluzione unica, che sarà quella data dalla formula Mettiamoci, allora, nel caso in cui la matrice A sia quadrata Questo vuol dire che il sistema corrispondente ha tante equazioni quante incognite e allora la condizione perché il sistema abbia soluzione unica è che la matrice A abbia rango massimo, ossia det A 0 Troveremo la formula di cui sopra sotto queste condizioni Ma andiamo per gradi La prima cosa che ci servirebbe è l equivalente dell 1, cioè una matrice che moltiplicata per una qualsiasi altra matrice (con essa compatibile rispetto al prodotto righe per colonne) la lasci invariata Questa si dice la matrice identità : Definizione 106 Tra le matrici quadrate di ordine n si chiama l identità (di ordine n), e si indica con I n, la matrice diagonale che ha tutti gli elementi della diagonale uguali a 1, cioè 1 0 0 0 0 1 0 0 I n 0 0 1 0 0 0 0 1 114

Lezione 12 115 Proposizione 107 La matrice identità I n (di ordine n) ha la seguente proprietà: se A è una qualsiasi matrice m n e B una qualsiasi matrice n m si ha AI n A e I n B B cioè è l elemento neutro del prodotto righe per colonne Proviamo a convincerci del fatto che questa proprietà è vera attraverso qualche esempio Esempio 108 Consideriamo l indentità di ordine 2 e calcoliamo per esempio ( 3 2 5 9 ) 1 0 0 1 analogamente si verifica facilmente che 1 0 0 1 3 1 + ( 2) 0 3 0 + ( 2) 1 5 1 + 9 0 5 0 + 9 1 ( 1 0 0 1 ) 3 2 5 9 (con l identità il prodotto è commutativo ) Facciamo un altro esempio 3 2 5 9 3 2 5 9 Esempio 109 1 0 0 2 2 1 + 6 0 + 7 0 2 0 1 0 6 2 0 + 6 1 + 7 0 6 0 0 1 7 2 0 + 6 0 + 7 1 7 Visto? E vedrete che qualunque altro esempio vi inventiate, funziona sempre Bene, una volta che abbiamo la matrice identità siamo a buon punto Ora il nostro problema sarebbe risolto se data una matrice quadrata A, fossimo in grado di trovare un altra matrice, per ora la chiamo D, che moltiplicata per A mi dia l identità Allora potremmo partire dall equazione matriciale Ax b, moltiplicare ambo i membri per D e trovare la soluzione come facevamo nel caso di una semplice equazione di un incognita, ossia Ax b DAx Db x Ix Db!!! Una matrice che fa questo con la matrice A si chiama la matrice inversa di A Definizione 110 Data una matrice quadrata A di ordine n, con det A 0, si chiama matrice inversa di A e si indica con A 1, quella matrice quadrata di ordine n che moltiplicata (a destra o a sinistra) per A da l identità, cioè verifica A 1 A I n e AA 1 I n

Lezione 12 116 Nota: Se A è una matrice quadrata, allora A ammette l inversa se e soltanto se det A 0 Attenzione: La notazione A 1 è solo un simbolo che noi usiamo per indicare che questa matrice è l inversa di A, cioè ha insieme ad A la proprietà descritta dalla definizione, e questa matrice può essere costruita (come vedremo subito) a partire da A Nel caso dei numeri reali, l inverso di un numero a 0 si determina facilmente e come sappiamo a 1 1/a, nel caso delle matrici, ovviamente la regola per calcolare l inversa sarà un po più complicata Esempio 111 Prendiamo la matrice A 2 1 4 3 e verifichiamo che A 1 1 ( 3 4 3 1 ) 2 2 2 1 2 2 1 Come facciamo a verificarlo? Basta fare il prodotto delle due e assicurarsi che il risultato sia la matrice identità! Allora: ( 3 A 1 A 1 ) ( 2 2 2 1 3 2 14 3 13 ) 2 2 2 2 1 0 I 2 1 4 3 4 + 4 2 + 3 0 1 2 e vedrete che è altrettanto facile verificare che AA 1 I 2 Evidentemente c è un metodo che ci permette di determinare l inversa di una matrice quadrata con determinante non nullo Nel caso particolare di una matrice 2 2 è molto facile scriverlo esplicitamente ed è il seguente: se a11 a A 12, a 21 a 22 allora A 1 1 a22 a 12 det A a 21 a 11 Fate la verifica in generale e troverete che se fate il prodotto di A con questa A 1, trovate come risultato l identità indipendentemente da quali siano i valori a ij In generale (per una matrice n n) la regola è un po più complicata Prima di darvela devo introdurre un altra definizione, quella di matrice trasposta (niente di che, è solo un passaggio intermedio che ci permette di descrivere più sinteticamente la regola e che comunque si incontrerà altre volte) Definizione 112 Se A è una matrice m n si chiama la matrice trasposta di A, e si denota con A t, la matrice n m ottenuta da A scambiando le righe con le colonne Esempio 113 Se 3 2 8 π A 0 4 3 7 allora, scambiando le righe con le colonne, si ottiene 3 0 A t 2 4 8 3 π 7

Lezione 12 117 Oppure, se B (3 6 9 0), allora 3 B t 6 9 0 Per l operazione di trasposizione valgono le seguenti proprietà (piuttosto ovvie da verificare) 1 det A det (A t ) (il determinante di A è uguale al determinante della sua trasposta) 2 (A t ) t (se facciamo la trasposta della trasposta di A, riotteniamo A) 3 rangoa rangoa t (il rango di A è uguale al rango della sua trasposta) Ora possiamo concludere questa questione della determinazione della matrice inversa Se A è una matrice quadrata n n con det A 0, allora per determinare la matrice inversa si considera la matrice ottenuta da A mettendo al posto di ogni elemento a ij il suo complemento algebrico A ij (vi ricordate? L abbiamo definito quando abbiamo fatto il determinante), quindi si fa la trasposta di questa matrice e la si divide per il determinante di A, la matrice che così si ottiene è la matrice inversa Scritta in formula: A 1 1 det A A 11 A 21 A n1 A 12 A 22 A n2 A 1n A 2n A nn Non ci vuole molto a verificare che questa formula scritta in generale si riduce a quella che vi ho dato prima per le matrici 2 2 È chiaro però che già nel caso 3 3 (per non parlare di matrici più grandi) la determinazione della matrice inversa può richiede un po di operazioni ed essere abbastanza faticosa È bene, però, sapere che questa formula esiste e che all occorrenza si può usare Applichiamo su un esempio semplice quello che abbiamo fatto cercando di mettere in evidenza l utilità della matrice inversa nella risoluzione dei sistemi lineari Esempio 114 Supponiamo di voler studiare un sistema lineare di cui fissiamo i coefficienti, ma in cui ci riserviamo di scegliere più avanti i termini noti { 3x 2y b1 4x + 6y b 2 Scritto in forma matriciale questo sistema diventa x A y b1 b 2 con A 3 2 4 6

Lezione 12 118 Adesso sappiamo come determinare la matrice inversa di A e di conseguenza la soluzione corrispondente a ogni possibile scelta del termine noto Facilmente si calcola det A 10 e quindi la matrice inversa è data da A 1 1 10 6 2 4 3 e allora, moltiplicando (a sinistra) entrambi i membri dell equazione matriciale si ha x A 1 b1 1 { 6 2 b1 x 6 b 10 1 + 2 b 10 2 y b 2 10 4 3 b 2 y 4 b 10 1 + 3 b 10 2 Vedete il vantaggio? Abbiamo risolto il sistema una volta per tutte e ogni volta che scegliamo dei termini noti diversi, basta sostituire i due valori di b 1 e b 2 in quest ultimo sistema e questo ci dà direttamente la soluzione corrispondente Per esempio se avessimo voluto risolvere il sistema con termini noti b 1 10 e b 2 5 avremmo ottenuto le soluzioni { x 6 10 + 2 5 7 10 10 y 4 10 + 3 5 11 10 10 2 (la verifica che questa è effettivamente la soluzione è immediata) Riassumendo abbiamo detto che se abbiamo una matrice quadrata A con det (A) 0 abbiamo un unica soluzione del sistema Ax b per qualsiasi termine noto b E sappiamo anche come trovare la soluzione: è data dalla formula x A 1 b Se ci ricordiamo qual è l espressione della matrice inversa e calcoliamo esplicitamente le coordinate della soluzione, ci accorgiamo per esempio che e quindi in generale x 1 b 1A 11 + b 2 A 21 + + b n A n1 det (A) x i b 1A 1i + b 2 A 2i + + b n A ni det (A) C è un modo più veloce di scrivere questa formula Prendiamo la matrice, che chiamiamo A i b, che otteniamo da A mettendo al posto della i-esima colonna la colonna b Per esempio b 1 a 12 a 1n b 2 a 22 a 2n A 1 b b n a n2 a nn Ora provate a calcolare il determinante di A 1 b sviluppandolo con la colonna b e vedrete che vi viene proprio det (A 1 b ) b 1A 11 + b 2 A 21 + + b n A n1

Lezione 12 119 E analogamente per tutte le altre det (A i b ) b 1A 1i + b 2 A 2i + + b n A ni In altre parole abbiamo che la componente i-esima della soluzione è data da un espressione che non è altro che il rapporto tra il determinante della matrice che otteniamo da A sostituendo l i-esima colonna con la colonna dei termini noti e il determinante di A, ossia x i det (Ai b) det (A) Questa è nota come la regola di Cramer per la soluzione dei sistemi quadrati determinati (che quindi non è altro che un modo esplicito di scrivere x A 1 b) Cenni sulle trasformazioni lineari: autovalori e autovettori Finora, nello studio dei sistemi lineari, abbiamo fissato una matrice A M mn e un vettore b in V m e ci siamo domandati quale fosse la soluzione x del sistema Ax b Qualche volta, invece, non abbiamo fissato b e ci siamo domandati per quali b ci fosse soluzione Proviamo allora a vedere la questione da un altro punto di vista e riformuliamo la domanda nel seguente modo: fissata la matrice A e dato un qualsiasi x V n, quali sono i b che possiamo ottenere calcolando Ax? In altre parole potremmo pensare che la matrice A ci fornisce una regola per trasformare tutti i vettori x di V n in certi vettori b di V m Ossia diremo che la matrice A rappresenta una trasformazione lineare degli elementi di V n in elementi di V m Così sembra piuttosto astratto (e infatti lo è), ma proviamo a vederlo su un esempio Esempio 115 (di trasformazione lineare) Prendiamo la matrice A 3 2 1 4 ( x x Ogni vettore x del piano si trasforma secondo A in un altro vettore x y ) ossia Ax x e quindi { 3x 2y x x + 4y y 1 1 Quindi, per esempio, il vettore diventa Quindi per visualizzare la situazione 1 3 disegnamo il punto (1, 1) in un riferimento cartesiamo e il punto (1, 3) in un altro riferimento y

Lezione 12 120 Q 1 P 1 Figura 57: Il punti P 1 si trasforma nel punto Q 1 Se ora questa stessa trasformazione la facciamo per tutti i punti di un quadrato di lato 2 centrato nell origine otteniamo che il quadrato si trasforma in un parallelogramma Q 4 Q 1 P 4 P 1 P 3 P 2 Q 3 Q 2 Figura 58: Il quadrato si trasforma nel parallelogramma Fatelo È facile verificare che i punti P 2, P 3 e P 4 si trasformano rispettivamente nei punti Q 2 (5, 5), Q 3 ( 1, 3) e Q 4 ( 5, 5) Vedete, guardando la figura si capisce meglio cosa intendiamo per trasformazione Una trasformazione di questo tipo la troviamo in molte situazioni Per esempio se proiettiamo l ombra del quadrato su un piano non parallelo al piano del quadrato Oppure, un esempio ancora più significativo: se il quadrato fosse fatto di materiale elastico, si trasformerebbe in un quadrato se lo tiriamo in una opportuna direzione Questa interpretazione ci suggerisce un altra domanda importante Domanda: Quali vettori x non cambiano direzione se li trasformiamo con A? Ossia ci sono dei vettori x che trasformati con A che si allungano o si accorciano ma rimangono sulla stessa retta? Se ripensiamo all interpretazione della deformazione elastica questo corrisponde a

Lezione 12 121 chiedere in quali direzioni dobbiamo tirare (o eventualmente comprimere) il quadrato per deformarlo nel parallelogramma Sappiamo riscrivere questa domanda in termini matematici? Pensiamoci, è facile Ci stiamo chedendo se ci sono degli x per cui Ax è parallelo ad x, ossia se ci sono degli x per cui esiste uno scalare λ R tale che Ax λx Nel caso che stiamo trattando questo equivale a chiedere se ci sono soluzioni non banali del sistema omogeneo { (3 λ)x 2y 0 x + (4 λ)y 0 Che usando un po di algebra delle matrici possiamo scrivere come (A λi 2 )x 0 Noi sappiamo risolvere questo sistema e la risposta dipende dal rango della matrice dei coefficienti 3 2 1 0 3 λ 2 A λi 2 λ 1 4 0 1 1 4 λ Infatti chiedere che ci siano soluzioni non banali equivale a chiedere che il rango non sia massimo e quindi che questa matrice abbia determinante nullo Quindi cerchiamo dei valori di λ per cui si abbia 3 λ 2 det 0, 1 4 λ ossia tale che (3 λ)(4 λ) 2 λ 2 7λ + 10 0 I valori di λ per cui questo determinante è nullo sono allora λ 2 e λ 5 Ora, come troviamo le direzioni corrispondenti? Ossia quelle che rimangono fisse nella trasformazione lineare? È facile Basta trovare le soluzioni non banali dei due sistemi corrispondenti ai due valori λ 2 e λ 5 Facciamo il caso λ 2 Il sistema corrispondente è quindi { x 2y 0 x + 2y 0 Come è giusto il sistema si riduce a due equazioni proporzionali (infatti λ 2 annulla il determinante di A λi+2) Quindi le soluzioni sono tutti i punti della retta x 2y 0, ossia tutti i punti della forma (2α, α) È questa la direzione che rimane fissa nella trasformazione Altrettanto facile è il caso λ 5 che dà { 2x 2y 0 x y 0 Quindi i punti della retta x + y 0 sono le soluzioni e quindi tutti quelli della forma ( α, α) 2 1 In conclusione abbiamo capito che i vettori paralleli ai vettori e non 1 1 cambiano direzione con trasformazione e si allungano rispettivamente ( di ) 2 ( e 5 I ) valori 2 1 2 e 5 si chiamano autovalori della matrice A e i vettori paralleli a e sono 1 1 i corrispondenti autovettori

Lezione 12 122 Quello che abbiamo visto in questo esempio vale in generale Definizione 116 Data una matrice quadrata A M nn i suoi autovalori, se esistono, sono i valori λ 1,, λ n che sono soluzioni della seguente equazione det (A λi n ) 0 Se λ è un autovalore, tutti i vettori x 0 che verificano Ax λx si chiamano gli autovettori di A corrispondenti a λ Attenzione Non tutte le matrici quadrate ammettono autovalori È chiaro infatti che se una trasformazione fa ruotare tutti vettori di un dato angolo allora per questa trasformazione nessuna direzione rimarra fissa Esempio 117 Consideriamo la matrice 0 1 1 0 a Un qualsiani vettore si trasforma in b 0 1 a 1 0 b b a Quindi ogni vettore si trasforma nel suo vettore ortogonale ottenuto ruotandolo in senso antiorario di 90 gradi Questo esempio lo possiamo fare anche più in generale (cosi con l occasione vi ricordo un paio di formule trigonometriche che non è male sapere che esistono) Fissiamo un angolo θ e consideriamo la matrice cosθ sin θ sin θ cosθ Proviamo a trasformare un qualsiasi versore usando questa matrice Se io vi do l angolo che questo versore forma con l asse delle x, diciamo che lo chiamo α, vi ricordate come si indicano le sue coordinate Ma è facile sono date rispettivamente da cos α e sin α Bene ora che conosciamo le sue coordiante siamo pronti a rasformarlo Quindi otteniamo ( cosθ sin θ sin θ cos θ ) cos α sin α cosθ cosα sin θ sin α sin θ cosα + cosθ sin α Vedete le due coordiante del vettore trasformato si possono scrivere più efficientemente usando le due seguenti formule del cos(α+θ) cos(α) cos(θ) sin(α) sin(θ) sin(α+θ) cos(α) sin(θ)+cos(θ) sin(α), quindi il vettore trasformato è semplicemente cos(α + θ) sin(α + θ) Ossia è stato ruotato di un angolo θ

Lezione 12 123 sin( ) sin( + ) + cos( ) cos( + ) Figura 59: Rotazione di un angolo θ Esercizio 118 Determinare gli autovalori della matrice 2 0 0 0 3 5 0 5 1 Notate che questa matrice ha una forma particolare, se cambiate le righe con le colonne rimane uguale, ossia è uguale alla sua trasposta, A A t Questo è dovuto al fatto che tutti gli elementi verificano: a ij a ji Una matrice così si dice simmetrica (nelle applicazioni vedrete per lo più matrici simetriche) Si può dimostrare che se la matrice è simmetrica si riescono sempre a determinare i suoi autovalori Facciamolo nel caso della matrice dell Esercizio 118 Dobbiamo calcolare il determinante di A λi 3, ossia det 2 λ 0 0 0 3 λ 5 (2 λ)((3 λ)( 1 λ) 5) (2 λ)(λ 2 2λ 8) 0 5 1 λ Si vede facilmente che il polinomio λ 2 2λ 8 si annulla per λ 2 e λ 4 e quindi det (A λi 3 ) (2 λ)(2 + λ)(4 λ) Da cui si deduce facilmente per quali valori di λ questa espressione si annulli e si trovano quindi gli autovalori, che saranno λ 2, λ 2 e λ 4 E l esercizio è svolto Casi particolari 1 Consideriamo la trasformazione associata alla matrice 3 0 A 0 3 È facile vedere che questa trasformazione allunga tutti i vettori di 3 (infatti per qualsiasi vettore x si ha Ax 3x) Allora è chiaro che gli autovalori sono dati dal solo valore λ 3 e tutte le direzioni rimangono ferme (ossia tutti i vettori del piano sono autovettori) Una trasformazione così si chiama omotetia In generale una matrice della forma α 0 A 0 α

Lezione 12 124 Figura 60: L omotetia dilata tutto 2 Un altro esempio significativo è il caso delle matrici diagonali Prendiamo per esempio 1 0 A 0 2 Come trasforma il quadrato questa matrice? È facile, non cambia la prima coordianta e raddoppia la seconda, quindi trasforma il quadrato in un rettangolo Figura 61: Allunga diversamente le due direzioni coordiante Allora è anche chiaro che gli autovalori sono proprio i due valori sulla diagonale 1 e 2 e gli autovettori corrispondenti saranno tutti i vettori sull asse x e tutti i vettori sull asse y, rispettivamente (infatti Ae 1 e 1 e Ae 2 2e 2 ) È chiaro quanto detto è vero per qualsiasi matrice diagonale, come per esempio α1 0 A A 0 α 2 3 L ultimo esempio che voglio mostrarvi è dato dalla matrice 0 1 A 1 0 x È chiaro che questa matrice trasforma un qualsiasi vettore nel vettore y ossia 0 1 x y 1 0 y x ( y x ), Quindi scambia l asse x con l asse y Provate a trasformare il quadrato di vertici (1, 1), (2, 1), (2, 0) e (1, 0) e capirete in che consiste questa trasformazione

Lezione 12 125 Figura 62: Allunga diversamente le due direzioni coordiante Ma quindi è chiaro cosa succede, questa trasformazione è un ribaltamento del piano lungo la bisettrice del primo e terzo quadrante Ma allora è facile capire quali sono le rette che rimangono fisse: le due busettrici Infatti tutti i vettori sulla bisettrice del primo e terzo quadrante rimango fermi e tutti i vettori sulla bisettrice del secondo e quarto quadrante cambiano verso (fate la prova) Quindi 1 1 gli autovettori sono e e i corrispondenti autovalori sono 1 e 1 1 1 Matrici a blocchi Concludo questa lezione accennandovi a un modo di scrivere le matrici che a volte è utile quando si considerano matrici molto grandi (e questo in futuro vi capiterà! Infatti è molto raro che in una vera applicazione si abbia a che fare con solo due o tre incognite) In questo caso può essere comodo scrivere la matrice usando delle sue sottomatrici Usando delle righe orizzontali o verticali possiamo suddividere una matrice A in varie sottomatrici (blocchi) 3 4 5 1 0 0 2 1 3 0 1 0 2 8 1 0 0 1 1 0 3 0 0 0 In questo caso diremo che A è una matrice a blocchi È evidente che ci sono diversi modi di dividere a blocchi una matrice, per esempio la matrice appena vista può essere divisa anche come segue

Lezione 12 126 3 4 5 1 0 0 2 1 3 0 1 0 2 8 1 0 0 1 1 0 3 0 0 0 La prima volta l abbiamo divisa in quattro blocchi, la seconda in due e ovviamente ci sono tanti altri modi di dividerla in blocchi L utilità di questa procedura sta nel fatto che possiamo scrivere più velocemente una matrice grande specificandone i singoli blocchi (che magari hanno caratteristiche particolari) e poi che possiamo fare anche le operazioni sui singoli blocchi, come fossero veri e proprio elementi della matrice Per essere più esplicita Se scrivo la matrice B A I 2 dove la matrice A è quella dell esempio precedente e I 2 è identità di ordine 2, intendo la matrice 3 2 1 0 B 4 6 0 1 Se ora per esempio voglio fare delle operazioni su B, posso farle sui singoli blocchi di B Quindi 2B 2A 2I 2 oppure A 1 B I 2 A 1 sono stata un po sbrigativa, ma fate la verifica e vedrete che torna E quichiudo