Biosensori.

Documenti analoghi
Modulo Biosensori BioSensori.

Lezione n. 11. Reazioni enzimatiche Michaelis-Menten Dipendenza di k da T. Antonino Polimeno 1

Chimica Fisica Biologica

Il meccanismo d azione degli enzimi può essere trattato: -analizzando i cambiamenti energetici che si verificano nel corso della reazione -

Cinetica Chimica. Cinetica chimica

Gli enzimi sono i catalizzatori dei processi biologici. Possono essere proteine globulari oppure acidi nucleici (ribozimi)

Biosensori Sensori Chimici. Alessandro Tognetti

17/05/2010 BIOSENSORI

CLASSIFICAZIONE O.T.I.L.Is. Lig

La cinetica chimica. Si occupa dello studio dei meccanismi di reazione con i quali i reagenti si trasformano in prodotti (kinesis = movimento)

Esistono reazioni energeticamente favorite (ΔH<0) che non avvengono.es. C(diamante) à C(grafite)

Prof. Maria Nicola GADALETA

costruire un equazione che potesse descrivere in generale il comportamento cinetico degli enzimi e quindi di determinare parametri cinetici più

ENZIMI. Un enzima è un catalizzatore (acceleratore) di reazioni biologiche.

Cinetica chimica E lo studio della velocità delle reazioni chimiche, delle leggi di velocità e dei meccanismi di reazione.

TEORIA DELLO STATO DI TRANSIZIONE (Henry Eyring anni 30)

Cinetica chimica. Capitolo 13

CINETICA CHIMICA. Ogni reazione chimica però impiega un certo tempo per raggiungere le condizioni di equilibrio.

Teorie per il calcolo dei coefficienti di trasporto di materia (interfaccia fluido-fluido) Fenomeni di Trasporto

Misure di gas disciolti

Precorsi Test AMMISSIONE Medicina e Chirurgia - Professioni Sanitarie Università degli Studi di Perugia. a.a

Gli enzimi sono molecole proteiche aventi il compito di catalizzare praticamente tutte le reazioni chimiche che avvengono negli organismi viventi.

Termodinamica e termochimica

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Università degli Studi Mediterranea di Reggio Calabria Facoltà di Agraria Sez. Lamezia Terme A.A

Chimica Biologica A.A Cinetica Enzimatica. Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

In questo caso parliamo di un processo entalpico. Si tratta di un processo entalpico.

GLI ENZIMI: proteine con attività CATALITICA

Corrosione e protezione dei metalli: introduzione

Termodinamica ENTALPIA...6

Se il sito attivo fosse perfettamente complementare al substrato la reazione non procederebbe. Substrato

Esercitazioni di Elementi di Chimica. Modulo 3 Trasformazioni della Materia

Lezioni del Corso di Misure Meccaniche e Termiche

Velocita di reazione Reazioni di I e II ordine Molecolarita di una reazione t 1/2 Velocita e costanti di equilibrio

Cine%ca enzima%ca. Copyright 2013 Zanichelli editore S.p.A.

EQUILIBRIO CHIMICO. Nella reazione omogenea e reversibile: v 1 A (g) + B (g) v 2. C (g) + D (g)

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Transizioni liquido-solido: Aspetti cinetici

ENZIMI. A + B AB (100 Kcal= E. Attiv.) A + B AB (50 Kcal) SUBSTRATO ENZIMA E N E R G I A

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

ENZIMI. Durante la reazione l enzima può essere temporaneamente modificato ma alla fine del processo ritorna nel suo stato originario, un enzima viene

ELETTROCHIMICA. Zn(s) + Cu +2 Zn +2 + Cu. Ossidazione: perdita di elettroni Riduzione: acquisto di elettroni. +2e

BIOENERGETICA IL METABOLISMO RISULTA DALL INSIEME DELLE REAZIONI CHIMICHE CHE PERMETTONO AI SISTEMI VIVENTI DI UTILIZZARE ENERGIA E MATERIA

LA DIFFUSIONE. M At 1 A. dm dt

Velocità di reazione Una trasformazione chimica modifica completamente la natura delle sostanze iniziali ( i reagenti), formando altre specie (i prodo

La Termodinamica è la disciplina che si occupa dello studio degli scambi di energia e di materia nei processi fisici e chimici

5. Trasporto di membrana

ESERCIZI ESERCIZI. 3) Data la reazione chimica: H 2

TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI

Materiale tratto da Prof. Nicola Cioffi Università di Bari =10

relazioni tra il calore e le altre forme di energia.

SOLUZIONI derivate da: Acido debole/ sale (CH 3 COOH/CH 3 COONa) Base debole/ suo sale (NH 4 OH/NH 4 Cl)

Esploriamo la chimica

Amminoacidi/peptidi/proteine. Chimica Organica II

Fisica per scienze ed ingegneria

LE REAZIONI CHIMICHE

Termodinamica e termochimica

CENNI DI ELETTROCHIMICA

INTRODUZIONE AL METABOLISMO

Elettrochimica. Studia la trasformazione dell energia chimica in energia elettrica e viceversa.

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente.

L equilibrio chimico dal punto di vista cinetico

L Equilibrio chimico

Il riducente si ossida cedendo elettroni all agente ossidante

Bioelettrodi. Elettrodi e pricipi di elettrochimica

Capitolo 18 L equilibrio chimico

Caratteristiche di trasferimento:

La sinterizzazione rappresenta il processo che porta dalle polveri ad un compatto in genere più denso, meno poroso e più resistente (è il passaggio

1 Me Me (s) Me + (aq) + e -

Un modello per il gas ideale

1.Pressione di un Gas

Applicazioni biomediche e biotecnologiche di biomolecole: I Biosensori

Strumenti di Misura. Strumento di Misura

Legge dell azione di massa. Misura sperimentale della costante di equilibrio. Corso di Studi di Fisica Corso di Chimica

BIOCHIMICA APPLICATA e CLINICA

Lo scopo della biochimica è la comprensione della vita in termini molecolari.

CONVENZIONE SUI SEGNI

Voltammetria idrodinamica

Sensori Fisici.

POSSIBILI DOMANDE PER L ESAME DI CHIMICA ANALITICA

Sistemi Gassosi. GAS = specie che occupa tutto lo spazio disponibile. VOLUME = spazio occupato si misura in: m 3, L (1L = 1dm 3 )

Gli enzimi. Gli enzimi sono le proteine 1 che catalizzano 2 le reazioni chimiche che avvengono nei sistemi biologici

Cinetica Chimica. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Contatto Metallo-Semiconduttore

Reazioni chimiche reversibili

L EMOGLOBINA ED IL TRASPORTO DI OSSIGENO

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Appunti di Stechiometria per Chimica. Elettrochimica

Appendice cap. 29: applicazioni

La cinetica chimica. Velocità media di reazione

Per la stessa reazione possono essere utilizzati catalizzatori diversi. es. HCOOH H 2 + CO 2 viene catalizzata da Ni, Cd, Pt, Cu.

Il I principio della termodinamica. Calore, lavoro ed energia interna

ELETTROCHIMICA. Consideriamo la reazione che si ha quando si aggiunge dello zinco ad una soluzione acquosa di acido cloridrico:

Tra nm Nucleotidi mono-fosfato

Gli enzimi e l inibizione enzimatica.

LABORATORIO DI INTEGRAZIONE

PRINCIPI DI INGEGNERIA BIOCHIMICA ESERCITAZIONI NUMERICHE A.A

Enzimi = catalizzatori di una reazione biochimica Caratteristiche: Specificità: ogni enzima riconosce specificamente il/i substrato/i e non altre

Cinetica chimica. 2 H 2 (g) + O 2 (g) 2 H 2 O (g)

Transcript:

Biosensori nicola.carbonaro@centropiaggio.unipi.it

Biosensori Definizione Un biosensore è un dispositivo di misura che utilizza un recettore biologico (o un suo derivato sintetico ) associato ad un trasduttore di tipo chimico fisico Segnale elettrico da elaborare/ memorizzare Analita ->sostanza che intendiamo misurare Page 2 Glucosio, biomarker cardiaci, biomarker tumorali.. Biorecettore Enzima (biosensore catalitico), anticorpo (biosensore di affinità), DNA/RNA, aptametro Trasduttore Elettrochimico (potenziometrico, amperometrico), ottico, elettromeccanico, meccanico, acustico.

Biosensori In generale l analita (A) reagisce con il recettore dando luogo ad un prodotto (P) la cui concentrazione viene misurata con tecniche tradizionali (elettrochimiche, ottiche ). In generale l interazione biorecettore/analita dà luogo al prodotto e ci aspettiamo una certa relazione tra [A] e [P]. Nota: la relazione sovra-riportata non contiene la variabile tempo, ci riferiamo dunque a uno stato stazionario (consideriamo tutti i transitori esauriti) La relazione che intercorre tra concentrazione dell analita ([A]) e concentrazione del prodotto ([P]) è di fondamentale importanza per un biosensore. Tale relazione deve essere nota (modelli cinetici, fisico/ chimici) o determinabile attraverso una taratura effettuata per mezzo di sistemi standard NB: In un biosensore si misura la concentrazione di P e si risale alla concentrazione di A attraverso la conoscenza di f (misura indiretta) Page 3 [A] = f ([P])

Biosensori La principale caratteristica di un biosensore è la specificità che è garantita dall utilizzo di recettori biologici che per loro natura intrinseca sono specifici verso particolari analiti. Specificità: capacità di reagire solo con un determinato analita e non con altri che possono essere presenti nel nostro ambiente di misura. In altri termini, gli altri analiti presenti nell ambiente di misura sono grandezze di influenza con un effetto trascurabile. Caratteristiche biosensori: Alta sensibilità Velocità di misura Economicità Page 4

Biosensori Catalitici Rappresentano la prima generazione di biosensori Applicazione principale nella misura del glucosio per pazienti diabetici Sfruttano la caratteristica degli enzimi di catalizzare in modo specifico determinate reazioni In particolare la presenza di un enzima specifico per una determinata reazione diminuisce l energia di attivazione e accelera notevolmente la sua velocità. La maggior parte delle reazioni biologiche catalizzate da enzimi hanno una velocità superiore di milioni di volte rispetto alla velocità che avrebbero senza alcun catalizzatore. Come per tutti i catalizzatori, gli enzimi non sono consumati dalla reazione che catalizzano e non alterano l'equilibrio chimico della reazione. La differenza principale degli enzimi dagli altri catalizzatori chimici è la loro estrema specificità di substrato. Essi infatti sono in grado di catalizzare solo una reazione o pochissime reazioni simili, poiché il sito attivo interagisce con i reagenti in modo stereospecifico (è sensibile anche a piccolissime differenze della struttura tridimensionale). Page 5

Biosensori Catalitici La superficie del trasduttore è in contatto con uno strato enzimatico trattenuto da una membrana, ed il tutto viene immerso nella soluzione da analizzare. Il substrato diffonde attraverso la membrana e reagisce con l enzima. I prodotti della catalisi devono a loro volta diffondere verso il trasduttore per poi essere convertiti in un segnale quantificabile. Page 6

Biosensori Catalitici Substrato K 1 K 2 E + S ES E + P K -1 Enzima libero Prodotto Complesso Enzima/substrato K i : costanti di velocità di reazione Si misura [P] e si risale a [S] tramite la conoscenza del modello [S]=f([P]) In generale avremo relazioni fortemente non lineari (spesso non linearizzabili) La presenza dell enzima garantisce la specificità del sensore In altre parole essendo E specifico per S avrò un incremento del prodotto solo e soltanto in presenza della specie S Page 7

Esempio 1: biosensore glucosio La maggior parte dei biosensori per il glucosio sono basati sull'ossidazione del glucosio catalizzato dall'enzima glucosio-ossidasi (GOD). L'enzima GOD, di solito estratto da funghi, ossida il glucosio secondo la reazione seguente Glucosio + GOD(FAD + )! acido gluconico + GOD (FADH 2 ) Dove FAD è una flavina che funziona da cofattore dell'enzima GOD a cui è legato. Il GOD (FADH2) è solitamente riossidato tramite reazione con ossigeno GOD(FADH 2 ) + O 2! H 2 O 2 + GOD(FAD + ) La sequenza di reazioni enzimatiche può essere riassunta come: S GOD P Glucosio + O 2! H 2 O 2 + acido gluconico Page 8 La concentrazione del prodotto può essere determinata con diversi metodi, una dei più utilizzati è quello elettrochimico in cui viene misurato la diminuzione di ph dovuta al prodotto (acido gluconico). Un altra possibilità è quella di rilevare una riduzione locale della pressione parziale di O 2

Esempio 2: biosensore urea Il sensore per urea utilizza l enzima ureasi, la sequenza delle reazioni è: S ureasi P O=C(NH 2 ) 2 (urea) + H 2 O! CO 2 + 2NH 3 A ph fisiologico (intorno a 7), la CO2 e NH3 danno le seguenti reazioni: CO 2 + H 2 O! HCO 3 - + H + NH 3 + H 2 O! NH 4 + + OH - Quindi l urea può essere rivelata tramite un sensore di pressione parziale di CO 2 (P CO2 aumenta con la concentrazione di urea) Page 9

Biosensore catalitico potenziometrico Si tratta di un biosensore catalico il cui trasduttore associato è di tipo elettrochimico potenziometrico La componente essenziale di tali sensori consiste in un elettrodo per il ph modificato (elettrodo a vetro, elettrodo antimonio/ossido di antimonio ) Come noto la misura potenziometrica è basata sulla determinazione del potenziale fra l elettrodo di riferimento (esempio AgAgCl) e l'elettrodo di misura. L elettrodo per il ph fa parte di una cella elettrochimica ed il potenziale fra i due elettrodi viene misurato con un voltmetro. Nei biosensori catalitici potenziometrici, l elettrodo di ph viene modificato intrappolando molecole di enzima (GOD per il glucosio) tra l'elettrodo di vetro e la soluzione da analizzare. Tale sistema misura la variazione del ph dovuta al prodotto della reazione catalizzata dall enzima. Nel caso del glucosio si misura la diminuzione del ph locale dovuta alla produzione di acido gluconico generata dall'ossidazione del glucosio. Page 10

Biosensore catalitico potenziometrico E = E o + RT F ln a H+ Risposta elettrodi a vetro (iono-selettivi) Setto poroso Page 11 Il potenziale sviluppato dalla membrana, nel caso degli H + è dato da un equazione simile a quella di Nernst. Dove Eo è una costante (ma non il potenziale standard!), R è la costante dei gas, T la temperatura in Kelvin ed F è la costante di Faraday. Quindi il potenziale sviluppato è proporzionale al ph.

Svantaggi del sensore potenziometrico Necessita di un elettrodo di riferimento molto stabile, che risulta difficilmente realizzabile in presenza di fluidi biologici come nel caso di impiego del sensore in vivo. Lo svantaggio che riguarda tutti sensori basati sull'uso dell'enzima GOD, è quello del consumo di ossigeno. Infatti nei fluidi corporei è presente una certa concentrazione di ossigeno che però può diminuire localmente a causa della ossidazione del glucosio e questo può portare a risultati falsati. Page 12

Cinetica dell elettrodo ad enzima potenziometrico La modellazione del comportamento di un biosensore enzimatico è un problema di carattere bio-ingegneristico Come risalire alla concentrazione dell analita (S) attraverso la misura del prodotto? x x= L x= 0 soluzione d i b ulk elettrodo membrana enzima Schema semplificato biosensore ad enzima con lettura potenziometrica riportato in sezione. Si considera un sistema planare, con elettrodo posto a x=0 e la membrana a x=l. La soluzione si estende fino a x=. Page 13

Cinetica dell elettrodo ad enzima potenziometrico Un elettrodo a enzima opera un processo a 5 passi: 1. Trasporto del substrato verso la membrana 2. Diffusione del substrato attraverso la membrana 3. Reazione vera e propria (generazione di P) 4. Trasporto del prodotto verso l elettrodo 5. Reazioni di scambio elettronico all elettrodo Attraverso la misura del potenziale di elettrodo rispetto ad un elettrodo di riferimento (metodo potenziometrico) sarà possibile risalire alla concentrazione del prodotto. Ognuno di questi cinque passi necessita di un certo tempo e contribuisce alla cinetica in maniera più o meno rilevante. Il punto 1 è dipendente fortemente dall agitazione della soluzione, agitando opportunamente il substrato si ottiene un trasporto rapido non limitato dalla cinetica diffusionale (punto 1 trascurabile). Usando una membrane molto sottile rispetto allo spessore dello strato enzimatico (punto 2 trascurabile). Inoltre, possiamo considerare la reazione come processo molto veloce (punto 5 trascurabile). Page 14

Cinetica dell elettrodo ad enzima potenziometrico In generale all interno dello strato enzimatico avremo sia S che P che avranno dei profili di concentrazione che variano con la distanza dall elettrodo (x) L obiettivo è quello di relazionare la concentrazione di P sulla superficie dell elettrodo (x=0) con la concentrazione del substrato S nel bulk (x>l) Considerando trascurabili i punti 1-2 (slide precedente) andremo a considerare gli effetti del trasporto di S e P (legge di Fick) e della velocità della reazione enzimatica (cinetica di Michaelis e Menten) Ci riferiremo sempre ad un caso stazionario (tutti i transitori sono esauriti e le reazioni hanno raggiunto il loro equilibrio) Page 15

Cinetica di Michaelis-Menten La cinetica di Michaelis-Menten (MM) descrive l aumento della velocità delle reazioni catalizzate da enzimi al variare della concentrazione di substrato In particolare, per bassi incrementi della concentrazione del substrato disponibile, la velocità di reazione aumenta in modo considerevole fino ad arrivare ad un valore massimo Vmax. Ia cinetica di MM vale sotto le seguenti ipotesi: Concentrazione totale dell enzima costante Saturazione: il substrato satura l enzima in soluzione, non resta enzima libero Page 16

Cinetica di Michaelis-Menten Effetto catalitico ES è un complesso intermedio di reazione con basso valore di energia di attivazione tale da far avvenire la reazione in maniera molto favorevole Equilibrio termodinamico Stato stazionario in cui la concentrazione molare di ES è costante nel tempo Page 17 Velocità di produzione di ES è uguale alla velocità di consumo [E] 0 concentrazione enzimatica totale (costante) Velocità produzione [ES] Sostituisco [E] nella prima relazione [ ] K 1 [E][S]=K -1 [ES]+k 2 [ES]=(K -1 +K 2 )[ES] [E] 0 =[E]+[ES] V= K1 [ E] 0 [ S] ES = K -1 +K 2 +K 1[ S ] d[p] dt =K! 2 " ES # $ Velocità consumo [ES] Velocità di formazione del prodotto

Cinetica di Michaelis-Menten V=K K m 2 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] K1 E 0 S K2 E 0 S K2 E 0 S = = K -1+K 2 +K1 S K -1+K2 K [ ] m + S +S K K +K = K -1 2 1 In condizioni limite [E] 0 =[ES] quando l enzima è completamente saturato dal substrato abbiamo V max =K2[E] 0 1 Costante di Michaelis-Menten Page 18 m [ S] [ ] V V= max K + S K m rappresenta la concentrazione di substrato per cui la velocità è la metà della massima possibile K m indica l affinità di un enzima ad un certo substrato. K m basso: con minor substrato arrivo alla metà della massima velocità di reazione

Cinetica di Michaelis-Menten Velocità di formazione del prodotto Page 19

Cinetica dell elettrodo ad enzima potenziometrico In generale all interno dello strato enzimatico la concentrazione di S e di P avranno dipendenza sia da x che dal tempo t In generale, per ogni x, la velocità di formazione del substrato dipenderà dalla quantità di S trasportata (Fick, costante di diffusione D S ) sottratta per la velocità di formazione del prodotto (Michaelis e Menten). Viceversa la velocità di formazione del prodotto sarà data dalla somma tra la quantità di P trasportata (Fick, costante di diffusione D S ) e la velocità di formazione del prodotto (Michaelis e Menten). Ipotesi: in tutto lo strato enzimatico siamo lontani dalla condizione di massima velocità di formazione del prodotto [S] L <<K M ([S] per x = L, in L ci aspettiamo la massima concentrazione di S in quanto lo strato enzimatico è appena iniziato, la concentrazione di S è trascurabile rispetto a K m in tutto lo strato enzimatico) Page 20 [ S] 2[ S] V [ S] 2 S = DS = D 2 S t x K [ ] 2 M + S x K + S 2 2 [ P] [ P] V [ S] P = DP + = D 2 P + t K [ ] 2 x M + S x KM + S [ ] K2 [ E] 0 [ S] M [ ] [ ] K2 [ E] 0 [ S] [ ]

Cinetica dell elettrodo ad enzima potenziometrico ( * * ) * * + * D S 2 # $ S % & x 2 D P 2 # $ P % & x 2 + K 2 # $ E % & # S 0 $ % & K M + # $ S % & K 2 # $ E % & # S 0 $ % & K M + # $ S % & = 0 = 0 Condizioni stazionarie ) + + * + +, + 2 " # S $ % x 2 = 1 K 2 " # E$ % " 0 # S $ % D S K M + " # S $ % 2 " # P $ % x 2 = 1 K 2 " # E$ % " 0 # S $ % D P K M + " # S $ % 1 K 2 " # E$ % " 0 # S $ % D S K M 1 K 2 " # E$ % " 0 # S $ % D P K M [S] L << K m Page 21 2 x 2 x [ S] 2 [ P] 2 = α = [ S] D D S p α [ S] α = K 2 [ E] 0 K M D S

Condizioni al contorno [ S] L substrato per x = L [ P] L = 0 prodotto per x = L! " S # $ x = 0 per x = 0! P " # $ x = 0 per x = 0 Substrato e prodotto non diffondono all elettrodo A=B Page 22 [ ] x α x α S A e + B e = [ ] ( ) ( α ) x α x α S = A e + e = 2 A cosh x [ S] = [ S] = 2 A cosh( α ) X = L L L cosh( x α ) [ S] = ( ) [ S ] L cosh L α 2 A = cosh [ S] L ( L α )

Per risolvere la seconda equazione che definisce il comportamento del sistema, usiamo un bilancio di massa attraverso lo strato enzimatico. Per fare ciò riscriviamo il sistema di partenza: D D S p Integrando ed applicando le condizioni al contorno si ottiene S Page 23 2 x 2 x [ S] V [ S] 2 K M + [ S] [ P] V [ S] + 2 K + [ S] M = = 0 0 [ S] [ ] D S 2 + D x 2 p 2 P = 0 x 2 [ S] [ P] DS + DP = cost = 0 x x I flussi diffusivi del substrato in ingresso e del prodotto in uscita dallo strato di enzima. Poiché nello strato enzimatico niente è creato o distrutto, ma ci sono solo trasformazioni da substrato a prodotto, la somma di bilancio deve essere zero. [ ] + [ ] = cos 1 D [ S ] + D [ P ] = cos t 1 D S D P t [ P] P S L DS [ S] L DS [ S] DS D ( ) = = ( [ S] [ S] ) S cosh x α [ ] [ ] D P D P L P P = D P L S L Integro in dx 1 cosh ( L α )

L*α 0.5 Page 24 Andamento di [P]/[S] L e [S] /[S] L in funzione della distanza (normalizzata) nel caso che sia [S] L <<K M. All aumentare di L*α 0.5, una maggior percentuale di substrato si trasforma in prodotto sulla superficie dell elettrodo

Esempio Sensore di Glucosio Potenziometrico Per progettare un sensore enzimatico è importante poterlo dimensionare per ottenere la risposta desiderata. Ad esempio l enzima GOD estratto da Aspergillus niger ha una Km di 0.1 M. Quindi, nel caso di glucosio nel sangue, che può avere una concentrazione di 1 o 2 mm in condizioni di ipoglicemia, fino a 20 mm in caso di elevata ipoglicemia, siamo nelle condizioni [S] L <<K M. In un tipico sensore potenziometrico, dato che il rapporto Ds/Dp è pari ad 1, per L=400 µm, K 2 =1 s -1, Ds=0.5*10-10 m 2 s -1 ed [E] è del ordine del 1mg/ml (0.02 mm), risulta che L*(α) 0.5 =0.8. Quindi dopo che il sistema ha raggiunto l equilibrio, circa il 25% di glucosio è stato convertito in acido gluconico alla superficie dell elettrodo Prodotto sulla superficie dell elettrodo (x=0) Glucosio bulk x>l [P] 0 =0.25*[S] L Page 25

Esempio Sensore di Glucosio Potenziometrico L acido gluconico si dissocia in H+ e C6H 11 O7 -. La differenza di potenziale sviluppata all interfaccia dell elettrodo è data dall equazione di tipo-nernst (E=E0+0,059 log[h+]), che per H+ risulta 59 mv/decade. In pratica, la differenza di potenziale rispetto alla concentrazione di glucosio per un sensore potenziometrico è tipicamente circa 40 mv/decade, che indica che ci sono reazioni locali di tipo riduttivo che interferiscono con l ossidazione, e inoltre l acido gluconico non è completamente dissociato. Con una concentrazione di glucosio pari a 5mM e considerando i dati del problema otteniamo: [P] 0 =0.25*[S] L =1.25mM V=E0+0.04log([P] 0 ) NB: l uscita dipende dalla concentrazione del prodotto sulla superficie dell elettrodo che dipende a sua volta dalla concentrazione del substrato nel bulk Page 26

Biosensore catalitico amperometrico Si tratta di un biosensore catalico il cui trasduttore associato è di tipo elettrochimico amperometrico La componente essenziale di tali sensori consiste in un elettrodo per la misura della pressione parziale di un gas modificato (elettrodo per ossigeno, elettrodo di Clark) Come noto la misura amperometrica è basata sulla misura della corrente che scorre in un elettrodo di Pt polarizzato negativamente rispetto ad un elettrodo di riferimento AgAgCl. Se la tensione di polarizzazione è opportunamente dimensionata, la corrente è limitata dalla diffusione e la corrente è proporzionale alla pressione parziale del gas Page 27 Nei biosensori catalitici amperometrici, l elettrodo viene modificato intrappolando molecole di enzima (GOD per il glucosio). Tale sistema misura la variazione della pressione parziale di un gas dovuta al prodotto della reazione catalizzata dall enzima. Nel caso del glucosio si misura la diminuzione della pressione parziale dell O 2 consumato.

Biosensore catalitico amperometrico Elettrodo di Clark modificato Reazione del glucosio provoca una riduzione della presione parziale di O 2 che viene misurata con l elettrodo di Clark Elettrodo Clark: corrente proporzionale alla pressione parziale di O 2 A KCl Elettrodo AgAgcl Elettrodo Pt Membrana O 2 Permeabile Page 28 Strato Enzimatico