Corso di Chimica e Propedeutica Biochimica Cinetica chimica ed enzimatica

Documenti analoghi
Cinetica chimica. 2 H 2 (g) + O 2 (g) 2 H 2 O (g)

Gli enzimi sono i catalizzatori dei processi biologici. Possono essere proteine globulari oppure acidi nucleici (ribozimi)

TEORIA DELLO STATO DI TRANSIZIONE (Henry Eyring anni 30)

CLASSIFICAZIONE O.T.I.L.Is. Lig

Chimica Fisica Biologica

Il meccanismo d azione degli enzimi può essere trattato: -analizzando i cambiamenti energetici che si verificano nel corso della reazione -

Cinetica Chimica. Cinetica chimica

ENZIMI. Un enzima è un catalizzatore (acceleratore) di reazioni biologiche.

Cinetica chimica E lo studio della velocità delle reazioni chimiche, delle leggi di velocità e dei meccanismi di reazione.

Esistono reazioni energeticamente favorite (ΔH<0) che non avvengono.es. C(diamante) à C(grafite)

Lezione n. 11. Reazioni enzimatiche Michaelis-Menten Dipendenza di k da T. Antonino Polimeno 1

La cinetica chimica. Si occupa dello studio dei meccanismi di reazione con i quali i reagenti si trasformano in prodotti (kinesis = movimento)

GLI ENZIMI: proteine con attività CATALITICA

CINETICA CHIMICA. Ogni reazione chimica però impiega un certo tempo per raggiungere le condizioni di equilibrio.

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Cinetica chimica. Capitolo 13

Enzimi: catalizzatori biologici

Gli enzimi sono molecole proteiche aventi il compito di catalizzare praticamente tutte le reazioni chimiche che avvengono negli organismi viventi.

VELOCITA DI REAZIONE

REAZIONI CHIMICHE: LEGGI CINETICHE, MECCANISMI DI REAZIONE E BILANCI DI MASSA

BIOCHIMICA APPLICATA e CLINICA

Enzimi come catalizzatori biologici

Se il sito attivo fosse perfettamente complementare al substrato la reazione non procederebbe. Substrato

In questo caso parliamo di un processo entalpico. Si tratta di un processo entalpico.

Chimica Biologica A.A Cinetica Enzimatica. Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

INIBIZIONE ENZIMATICA REVERSIBILE

Esploriamo la chimica

Velocità di reazione Una trasformazione chimica modifica completamente la natura delle sostanze iniziali ( i reagenti), formando altre specie (i prodo

Cinetica Chimica. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Velocità di reazione

Gli enzimi e l inibizione enzimatica.

costruire un equazione che potesse descrivere in generale il comportamento cinetico degli enzimi e quindi di determinare parametri cinetici più

Velocita di reazione Reazioni di I e II ordine Molecolarita di una reazione t 1/2 Velocita e costanti di equilibrio

ENZIMI. Durante la reazione l enzima può essere temporaneamente modificato ma alla fine del processo ritorna nel suo stato originario, un enzima viene

Le reazioni chimiche

Università degli Studi Mediterranea di Reggio Calabria Facoltà di Agraria Sez. Lamezia Terme A.A

Reazione di Briggs Rauscher

Precorsi Test AMMISSIONE Medicina e Chirurgia - Professioni Sanitarie Università degli Studi di Perugia. a.a

Catalisi. Biotecnologie applicate alla progettazione e sviluppo di molecole biologicamente attive A.A Modulo di Biologia Strutturale

Gli enzimi e l inibizione enzimatica.

Cine%ca enzima%ca. Copyright 2013 Zanichelli editore S.p.A.

- utilizzano esclusivamente le reattività chimiche di alcuni residui AA

TUTTI GLI ENZIMI POSSONO ESSERE ANALIZZATI IN MODO DA POTER QUANTIFICARE SIA LA VELOCITA DI REAZIONE CHE LA LORO EFFICIENZA ENZIMATICA

Termodinamica ENTALPIA...6

Esempi di funzioni svolte dalle proteine

Prof. Maria Nicola GADALETA

Gli enzimi. Gli enzimi sono le proteine 1 che catalizzano 2 le reazioni chimiche che avvengono nei sistemi biologici

Esistono reazioni energeticamente favorite ( H<0) che non avvengono.es. C(diamante) C(grafite)

ESERCIZI ESERCIZI. 3) Data la reazione chimica: H 2

Principi di Biochimica

di piccoli gruppi di molecole di RNA catalitico tutti gli enzimi sono proteine Molti enzimi per poter funzionare richiedono la presenza di cofattori.

BIOLOGIA GENERALE 19 dicembre 2006

Modellistica dei Sistemi Biologici. Lezione 1 Introduzione alla Cinetica Chimica Fabio Mavelli

Enzimi = catalizzatori di una reazione biochimica Caratteristiche: Specificità: ogni enzima riconosce specificamente il/i substrato/i e non altre

Elementi sistemati nella TAVOLA PERIODICA DEGLI ELEMENTI in base al numero atomico crescente O, H, N, C (+ del 96% della materia vivente)

Capitolo 18 L equilibrio chimico

Gli enzimi e la catalisi

La cinetica chimica. Velocità media di reazione

Regolazione enzimatica Isoenzimi

1/v

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Inibizione Enzimatica

Legge dell azione di massa. Misura sperimentale della costante di equilibrio. Corso di Studi di Fisica Corso di Chimica

LA VELOCITA DELLE REAZIONI

VELOCITA E MECCANISMI DI REAZIONE: LA CINETICA 10.A PRE-REQUISITI 10.V VERIFICA SE HAI CAPITO 10.B PRE-TEST ESERCIZI 10.

Applicazioni biotecnologiche degli enzimi: le lipasi

CINETICA CHIMICA. ChimicaGenerale_lezione21 1

Lo scopo della biochimica è la comprensione della vita in termini molecolari.

2015 /2016. scaricato da

Reazioni opposte. Reazioni opposte o reversibili A + B 2C (k 1 e k -1 )

Helena Curtis N. Sue Barnes

Corso di Chimica e Propedeutica Biochimica Reazioni in soluzione acquosa

Ioni inorganici (Mg 2+, Zn 2+ ), o molecole organiche o metallorganiche (coenzimi)

INTRODUZIONE ALLO STUDIO DELLA CHIMICA ORGANICA

Energia per la vita Bibliografia I colori della biologia Giusti- Gatti- Anelli Pearson Ed.

Fondamenti di Chimica Farmaceutica. Recettori come bersagli dei farmaci

Funzioni dei nucleotidi

Amminoacidi/peptidi/proteine. Chimica Organica II

U.D. CHIMICA classe 2 a TECN. (CAT) CHIMICA TECNOLOGICO (CAT) PROGRAMMAZIONE ANNUALE: SEQUENZA DI LAVORO

Amminoacidi Peptidi Proteine

relazioni tra il calore e le altre forme di energia.

Cinetica Chimica (cap. 15)

REGOLAZIONE DELL ATTIVITA ENZIMATICA 1) MODULAZIONE ALLOSTERICA NON-COVALENTE (REVERSIBILE)

La termodinamica studia i flussi/trasformazioni di energia. Bioenergetica: termodinamica applicata ai sistemi biologici

La catalisi enzimatica. Copyright 2013 Zanichelli editore S.p.A.

INIBIZIONE ENZIMATICA REVERSIBILE Gli inibitori (I) legano l enzima e interferiscono con la loro attività modificando la Vmax, la Km o entrambe.

Introduzione alla cinetica chimica con esercizi

FUNZIONI delle PROTEINE

La via per accelerare i processi biologici

Limiti del criterio della variazione entropia

Le proteine III. Corso di Biochimica 1. Prof. Giuseppina Pitari

PROGRAMMA DISCIPLINARE SVOLTO a. s / N.B. il programma è pubblico ad uso degli studenti e delle famiglie.

Capitolo 16 L energia si trasferisce

FUNZIONI BIOLOGICHE DELLE PROTEINE

ENERGIA LIBERA DI GIBBS (G)

Stampa Preventivo. A.S Pagina 1 di 11

Dipartimento Scientifico-Tecnologico

TECNICHE RADIOCHIMICHE

EQUILIBRIO CHIMICO. Nella reazione omogenea e reversibile: v 1 A (g) + B (g) v 2. C (g) + D (g)

Transcript:

Corso di Chimica e Propedeutica Biochimica Cinetica chimica ed enzimatica 2 H 2 (g) + 2 (g) 2 H 2 (g) 1 Alcune immagini sono state prese e modificate da Chimica di Kotz, Treichel & Weaver, Edises 2007, III edizione

La cinetica chimica A differenza della termodinamica che si occupa della stabilità relativa tra reagenti e prodotti in una reazione chimica, la cinetica chimica si occupa dello studio della velocità con cui avviene una reazione chimica e della dipendenza di questa da vari fattori. ltre che della descrizione della dipendenza della velocità di reazione da fattori sperimentali, la cinetica si occupa anche di esaminare la sequenza dei processi chimici o fisici attraverso cui ha luogo la conversione tra reagenti e prodotti. In questa maniera lo studio della velocità di reazione mira ad ottenere informazioni dettagliate sull interazione tra le molecole nel corso della reazione. 2

La velocità di reazione Il concetto di velocità si incontra in molti contesti anche non chimici s t velocità spazio percorso tempo impiegato s t La velocità di una reazione si definisce in modo analogo: essa corrisponde alla variazione di concentrazione di una specie chimica nell unità di tempo velocità di reazione variazione di concentrazione intervallo di tempo 3

Si consideri la reazione di decomposizione del N 2 5 che ha luogo secondo la seguente reazione: 2 N 2 5 (g) 4 N 2 (g) + 2 (g) il progredire della reazione può essere seguito in diversi modi: attraverso l aumento della pressione parziale dell 2 o di N 2 o la diminuzione di N 2 5 La quantità di 2 che si è formata è legata alla quantità di N 2 5 inizialmente presente: per ogni mole di 2 formatasi, 2 moli di N 2 5 si sono decomposte La velocità della reazione può essere espressa, per un qualunque intervallo di tempo, come il rapporto tra la variazione di concentrazione di N 2 5 e l intervallo di tempo trascorso variazione di [N25] [N 25] velocità di reazione intervallo di tempo t Il segno è dovuto al fatto che la [N 2 5 ] diminuisce nel tempo. 4

Data la reazione: A k B la velocità di una reazione indica come cambia la concentrazione dei reagenti o dei prodotti nel tempo. velocità media v [A] t [A] t 2 2 [A] t 1 1 [B] t 2 2 [B] t 1 1 [B] t [B] [B] 2 [B] [B] 1 t t 1 t 2 t 5

[B] È possibile definire la velocità istantanea come la derivata rispetto al tempo della concentrazione di B (o A). Questa è la tangente alla curva nel punto considerato. k v [B] d[b] A B lim t 0 t dt [B] 2 [B] 1 t t 1 t 2 [B] unità di misura della velocità: concentrazione / tempo t 6

La velocità di reazione dipende da vari fattori: la natura dei reagenti la concentrazione dei reagenti la temperatura di reazione la presenza di catalizzatori la superificie dell interfaccia (se la reazione avviene tra reagenti in due fasi diverse) 7

Dipendenza della velocità di reazione dalla concentrazione Sperimentalmente si trova che la velocità di una reazione chimica dipende dalla concentrazione dei reagenti. L equazione che correla la velocità di una reazione alle concentrazioni dei reagenti è nota come equazione cinetica o legge della velocità ed ha la forma: a A + b B c C + d D v k [A] m [B] n cioè il prodotto delle concentrazioni dei reagenti elevate ad opportuni coefficienti (i.e. m, n, in genere diversi dai coefficienti stechiometrici) moltiplicati per una costante (k). Questi coefficienti sono in genere (ma non sempre) numeri interi e vanno determinati sperimentalmente. La costante k è chiamata costante di velocità specifica o costante cinetica e dipende solo dalla natura dei reagenti e dalla temperatura.

rdine di reazione Per una data reazione chimica di cui è nota l equazione cinetica, si definisce ordine di reazione rispetto ad un certo componente l esponente della concentrazione di quel componente nell equazione cinetica Si definisce invece ordine di reazione complessivo la somma degli esponenti di tutti i reagenti presenti nell equazione cinetica. Ad esempio la generica reazione: che ha equazione cinetica: v a A + b B c C + d D k [A] è di ordine m rispetto al reagente A e di ordine n rispetto al reagente B e di ordine m+n complessivo. Esempio, la reazione: 2 N (g) + 2 H 2 (g) N 2 (g) + 2 H 2 (g) con equazione cinetica v = k [N] 2 [H 2 ] m [B] n è del secondo ordine rispetto a N, primo ordine rispetto a H 2 e del terzo ordine complessivo. Se un reagente non compare nell equazione cinetica per una data reazione questa è di ordine zero rispetto a tale reagente. 9

Determinazione sperimentale dell ordine di reazione: metodo delle velocità iniziali La relazione tra velocità e concentrazione deve essere determinata sperimentalmente. Un modo per affrontare questo problema è quello basato sulla misura delle velocità iniziali (velocità misurata a t=0). Misurare le velocità iniziale è conveniente perché le concentrazioni iniziali dei reagenti è nota e in quanto evita possibili complicazioni derivanti da interferenze da parte dei prodotti di reazione o dal verificarsi di altre reazioni. CH 3 CCH 3 (aq) + H (aq) CH 3 C (aq) + CH 3 H (aq) acetato di metile ione ossidrile acetato metanolo v [CH CCH m n 3 3] [H ] La reazione è di ordine 1 rispetto all acetato di metile e di ordine 1 rispetto allo ione ossidrile. 10

CH 3 CCH 3 (aq) + H (aq) CH 3 C (aq) + CH 3 H (aq) [acetato di metile] 0 = 0.001 M, T = 25 C 0.4 M 0.3 M 0.2 M 0.1 M pendenza = n = 1 0.05 M [H ] 0 log v [CH CCH 0 [H ] m n 0 3 3 0 ] log log v 0 m log[ch3cch3] 0 n log[h ] 0 11

La costante di velocità specifica k La costante di velocità specifica k è la costante di proporzionalità che mette in relazione velocità e concentrazione ad una data temperatura. È un parametro importante perché, una volta noto, permette di calcolare la velocità di reazione a qualunque valore di concentrazione. La unità di misura della costante di velocità specifica deve essere consistente con quelle degli altri termini contenuti nell equazione cinetica. k A B v = k [A] {k tempo 1 } k A + B C + D v = k [A] [B] {k concentrazione 1 tempo 1 } 12

Relazione tra concentrazione e tempo: leggi cinetiche integrate Talvolta è utile e importante sapere per quanto tempo una reazione deve aver luogo affinchè la concentrazione di un dato reagente raggiunga un dato valore oppure prevedere il valore della concentrazione di un reagente o di un prodotto dopo un certo tempo di reazione. A tal scopo si deriva una equazione che mette in relazione le concentrazioni ed il tempo: l equazione cinetica integrata. CH 3 CCH 3 (aq) + H (aq) CH 3 C (aq) + CH 3 H (aq) L equazione cinetica integrata descrive la tempo dipendenza di formazione dei prodotti o di scomparsa dei reagenti 13

Reazione del 1 ordine (monomolecolare) A k B v d[a] [A] d[a] dt k dt k[a] l equazione cinetica d[a] [A] k dt separazione delle variabili ln[ A] k t Q l equazione tempo integrata, dove Q = costante La costante d integrazione Q può essere calcolata imponendo la condizione che per t = 0, [A] = [A] 0 Q = ln[a] 0 : ln[ A] k t ln[a] 0 ln[ A] ln[a] 0 k t ln [A] [A] 0 k t [ A] [A] e k t 0 14

Reazione del 1 ordine (monomolecolare) A k B [A] [A] 0 e k t il decorso temporale è esponenziale k = 6.93 s 1 t ½ = 0.1 s [A] 0 = 1 mm dopo t ½ [A]= 0.5 mm il tempo di dimezzamento t ½ [A] 0 se [A] 2 2 t ½ [A]= 0.25 mm 3 t ½ [A]= 0.125 mm 1 t 2 ln 2 k 15

Radioisotopi in biologia e medicina sono usati come traccianti o come fonti di energia distruttiva (radioterapia) devono avere semivita di giorni o mesi non devono accumularsi nell organismo si devono trasformare in isotopi stabili radionuclide emivita (t ½ ) tipo di radiazione 3 H 12 anni 14 C 5715 anni 24 Na 15 ore 32 P 14 giorni 35 S 87 giorni 40 K 1.25 10 9 anni 45 Ca 163 giorni 125 I 59 giorni 131 I 8 giorni 16

Datazione al radiocarbonio Il carbonio possiede tre isotopi: due stabili ( 12 C e 13 C) e uno radioattivo ( 14 C). Quest'ultimo si trasforma per decadimento (elettroni) in azoto ( 14 N), con un tempo di dimezzamento medio (o emivita) di 5715 anni. 14 k 14 C N 6 7 0 1 k ln 2 t 0.693 5715 4 1 1.210 anni 1 2 La produzione di nuovo 14 C avviene in natura negli strati alti della troposfera e nella stratosfera, per la cattura di neutroni termici da parte degli atomi di azoto. L'equilibrio dinamico che si instaura tra produzione e decadimento radioattivo mantiene quindi costante la concentrazione di 14 C nell'atmosfera (dove è presente principalmente legato all'ossigeno sotto forma di C 2 ). 17

Tutti gli organismi viventi che fanno parte del ciclo del C scambiano continuamente C con l'atmosfera attraverso processi di respirazione (animali) o fotosintesi (vegetali), oppure lo assimilano nutrendosi di altri esseri viventi o sostanze organiche. Di conseguenza finché un organismo è vivo, il rapporto tra la sua concentrazione di 14 C e quella degli altri due isotopi si mantiene costante e uguale a quella che si riscontra nell'atmosfera. Dopo la morte, però, questi processi terminano e l'organismo non scambia più C con l'esterno. Per effetto del decadimento, quindi, la concentrazione di 14 C diminuisce in modo regolare secondo la formula: k 14 6C 7N 14 0 1 [ 14 C] [ 14 C] 0 e k t k ln 2 1 2 t Quì, [ 14 C] 0 rappresenta la concentrazione di 14 C al momento della morte 18

L esame radiometrico del 14 C sulla Sindone nel 1988 la datò fra gli anni 1260 e 1390 (!?). Emivita del 14 C = 5715 anni La Sindone e [ 14 C] = [ 14 C] 0 e kt [ 14 C] [ 14 C] 0 e t MRTE 1 2 t ln 2 t MRTE 1 2 t ln 2 ln [ [ 14 14 C] C] 0 19

Termodinamica e cinetica: le reazioni sono in genere reversibili A + B k 1 k 2 C velocità della reazione diretta (v D ) L equazione cinetica è: v k [A] [B] k 2 1 [C] velocità della reazione inversa (v I ) All equilibrio v D = v I e K EQ [C] [A] [B] k k 1 2

Le reazioni dal punto di vista microscopico Affinchè qualsiasi reazione chimica abbia luogo la teoria delle collisioni stabilisce che devono essere soddisfatte 3 condizioni: 1. le molecole reagenti devono collidere fra loro 2. le molecole reagenti devono collidere con energia sufficiente per rompere i legami coinvolti nella reazione 3. le molecole devono collidere secondo una orientazione che può consentire il riarrangiamento degli atomi e la formazione dei prodotti. 21

1. le molecole reagenti devono collidere fra loro 2. le molecole reagenti devono collidere con energia sufficiente per rompere i legami coinvolti nella reazione 3. le molecole devono collidere secondo una orientazione che può consentire il riarrangiamento degli atomi e la formazione dei prodotti. C (g) + N 2 (g) C 2 (g) + N (g) reagenti complesso collisionale prodotti avvicinamento dei reagenti riconoscimento separazione dei prodotti 22

1. le molecole reagenti devono collidere fra loro 2. le molecole reagenti devono collidere con energia sufficiente per rompere i legami coinvolti nella reazione 3. le molecole devono collidere secondo una orientazione che può consentire il riarrangiamento degli atomi e la formazione dei prodotti. distribuzione di Maxwell-Boltzmann 23

L energia cinetica minina richiesta per la reazione è detta energia di attivazione E a (l energia dello stato di transizione o complesso attivato) reazione esotermica A + B C + D reazione endotermica complesso attivato complesso attivato energia Energia avanzamento della reazione avanzamento della reazione avanzamento della reazione = coordianta di reazione 24

L'equazione di Arrhenius L'equazione di Arrhenius mette in relazione la temperatura con l'energia di attivazione E a (cioè la minima energia che le molecole debbono possedere perché la reazione proceda). k A e E a RT dove: ln k ln A E R a 1 T k rappresenta la costante di velocità specifica A il fattore di frequenza, che è correlato con la frequenza degli urti e con la probabilità che essi si verifichino con orientamento favorevole E a l'energia di attivazione R la costante universale dei gas T la temperatura assoluta 25

1. le molecole reagenti devono collidere fra loro 2. le molecole reagenti devono collidere con energia sufficiente per rompere i legami coinvolti nella reazione 3. le molecole devono collidere secondo una orientazione che può consentire il riarrangiamento degli atomi e la formazione dei prodotti. urto produttivo prima della collisione collisione dopo la collisione urto non produttivo 26

Gli Enzimi tripsina sito attivo 27

Proprietà generali degli enzimi (e differenze rispetto ai catalizzatori non biologici) Velocità di reazioni più elevate: le velocità delle reazioni catalizzate dagli enzimi sono normalmente da 10 6 a 10 14 superiori rispetto a quelle delle corrispondenti trasformazioni chimiche non catalizzate e almeno di diversi ordini di grandezza superiori a quelle delle corrispondenti reazioni catalizzate per via chimica. Condizioni di reazione più blande: le reazioni catalizzate dagli enzimi avvengono in condizioni relativamente più moderate, a temperature inferiori a 100 C e pressione atmosferica e ph prossimo alla neutralità. Al contrario, la catalisi chimica richiede sovente temperature e pressioni elevate e valori di ph estremi. Maggiore specificità di reazione: gli enzimi esibiscono un grado specificità per substrati e prodotti straordinariamente superiore rispetto ai catalizzatori chimici. Possibilità di regolazione: le attività catalitiche di numerosi enzimi variano in risposta alle concentrazioni di sostanze diverse dai loro substrati. I meccanismi inerenti a tali processi regolatori comprendono il controllo allosterico, la modificazione covalente degli enzimi, nonché la variazione della concentrazione degli enzimi.

Velocità di reazioni più elevate: le velocità delle reazioni catalizzate dagli enzimi sono normalmente da 10 6 a 10 14 superiori rispetto a quelle delle corrispondenti trasformazioni chimiche non catalizzate e almeno di diversi ordini di grandezza superiori a quelle delle corrispondenti reazioni catalizzate per via chimica. ln 2 1.310 1 2 t 1 t 1 2 ln 2 6 10 5.3 7 10 Tempo di dimezzamento: 7 s s reazione non enzimatica 0.7 s 1 t 2 reazione enzimatica ln 2 k

Condizioni di reazione più blande: le reazioni catalizzate dagli enzimi avvengono in condizioni relativamente più moderate, a temperature inferiori a 100 C e pressione atmosferica e ph prossimo alla neutralità. Al contrario, la catalisi chimica richiede sovente temperature e pressioni elevate e valori di ph estremi. N 2 + 3 H 2 2 NH 3 In laboratorio: pressioni e temperature altissime Rhizobium trifolii: condizioni ambientali

N 2 + 8 H + + 8 e + 16 ATP 2 NH 3 + H 2 + 16 ADP + 16 P i La nitrogenasi da Klebsiella pneumoniae Rhizobium trifolii

Maggiore specificità di reazione: gli enzimi esibiscono un grado specificità per substrati e prodotti straordinariamente superiore rispetto ai catalizzatori chimici. Un sito di legame per un substrato è costituito da una fessura posta sulla superficie dell enzima, la cui forma è complementare al substrato (complementarietà geometrica). I residui amminoacidici presenti nel sito attivo sono disposti in modo da attrarre il substrato mediante interazioni di van der Waals, elettrostatiche, idrofobiche e legami idrogeno (complementarietà elettronica). La complementarietà substrato/enzimi è il fondamento del modello chiave-serratura di Fischer Emil Fischer premio Nobel 1902

Sebbene i siti attivi della maggior parte degli enzimi siano in larga misura preformati, essi vanno incontro ad un certo grado di modificazione conformazionale indotto dal binding del substrato (adattamento indotto, induced fit)

La reazione esochinasica NH 2 ossidrile in 6 H H a-d-glucosio H H H - - Mg 2+ - N N N N - P P P + ATP H H esochinasi NH 2 H H P - H H - + - - P Mg 2+ - P N N N N ADP a-d-glucosio-6-fosfato H H

L adattamento indotto rende conto anche della regiospecificità della reazione esochinasica ossidrile in 6 del glucosio

Stereospecificità degli enzimi Gli enzimi sono altamente specifici sia nel legame di substrati chirali, sia nel catalizzare le loro reazioni. Esempi: la tripsina idrolizza proteine con L-amminoacidi ma non con D-amminoacidi gli enzimi coinvolti nel metabolismo del glucosio sono specifici solo per il D- glucosio.

La cinetica enzimatica Iniziò nel 1902 quando Adrian J. Brown studiò la reazione di idrolisi del saccarosio da parte di un enzima di lievito -fruttofuranosidasi (invertasi) purificato: H H H H H H H H H H H H H H H H + H 2 H H H saccarosio a-d-glucosio b-d-fruttosio Egli scoprì che quando la [saccarosio] >> [enzima], nell equazione cinetica la velocità di reazione era di ordine zero rispetto alla [saccarosio]. v k [saccarosio] Reazioni di ordine zero (i.e. indipendenti dalla concentrazione del reagente) sono dette anche cinetiche a saturazione. Brown propose che la reazione complessiva fosse composta da 2 reazioni elementari, in cui il substrato prima si lega all enzima ed in seguito è decomposto nei prodotti, rigenerando l enzima libero. 0 H H H H H H H H H H H H H H H k 1 k 2 E + S ES E + P k -1 37

Le due reazioni più comunemente trovate negli enzimi. k nella reazione A B l equazione cinetica è: v d[a] dt d[b] dt k [A] ed è del primo ordine rispetto ad A. Le dimensioni di k sono tempo 1 (es. s 1 ) k nella reazione A + B C l equazione cinetica è: v d[a] dt d[b] dt d[c] dt k [A] [B] il binding ed è del primo ordine rispetto ad A e B, complessivamente del secondo ordine. Le dimensioni di k sono M 1 tempo 1 (es. M 1 s 1 ) 38

L equazione di Michaelis-Menten (Henri) Leonor Michaelis (1875-1940) Maud Menten (1879-1960) Essa descrive la velocità di una reazione enzimatica in funzione della concentrazione del substrato. k 1 k 2 E + S ES E + P k 1 v 0 V K MAX M [S] [S] 39

k 1 k CAT E + S ES E + P k 1 Nel meccanismo E ed ES rappresentano l enzima libero ed il complesso enzima-substrato. gnuna delle reazioni elementari (qui 2) è descritta da una costante di velocità specifica: k 1 : costante di velocità per la formazione di ES (è una costante del secondo ordine con dimensioni M -1 s -1 ) k -1 : costante di velocità per la dissociazione di S da ES (è una costante del primo ordine con dimensioni s -1 ) k 2 : costante di velocità per la formazione di P da ES (è una costante del primo ordine con dimensioni s -1 ) Nota: per semplicità si assume che la reazione di formazione del prodotto P sia irreversibile. Ciò deve essere giustificato da esperimento ed in genere gli enzimi catalizzano reazioni reversibili.

v V K MAX M [S] [S] k K CAT M E0 [S] [S] v V K MAX M [S] v VMAX [S] = K M 41

Valori di K M, k CAT e k CAT /K M per alcuni enzimi e substrati v V K MAX M [S] [S] k K CAT M E0 [S] [S] H H 3 C NH C H 3 CH 3 HN CH 3 CH 3 NH CH 3 CH 3 N-acetilglicina etilestere N-acetilvalina etilestere N-acetiltirosina etilestere CH 3 42

Determinazione grafica dei parametri stazionari k CAT e K M grafico dei doppi reciproci o di Lineweaver- Burk grafico di Eadie-Hofstee 43

Grafico di Lineweaver-Burk 44

Concetto importante: gli enzimi abbassano l energia di attivazione della reazione reazione non catalizzata reazione catalizzata 45

L inibizione enzimatica proteasi a serina acetilcolinesterasi diisopropilfluorofosfato La maggior parte dei farmaci sono inibitori enzimatici Lo studio della cinetica enzimatica è utile per la progettazione di nuovi farmaci Gli studi cinetici permottono di stabilire l efficacia di un farmaco in vitro Le tossine naturali e molti agenti chimici bellici sono inibitori degli enzimi 46

L inibizione enzimatica Gli inibitori sono sostanze che legandosi all enzima ne riducono l attività, influenzandone il legame con il substrato (K M ) o il suo numero di turnover (k CAT ). Possono essere suddivisi in: inibitori irreversibili (o inattivatori): questi si legano così saldamente all enzima da bloccarne permanentemente l attività inibitori reversibili: riducono l attività legandosi reversibilmente all enzima. Sono suddivisi in: 1. inibitori competitivi 2. inibitori incompetitivi 3. inibitori non competitivi (inibizione mista) 47

Inibizione competitiva 48

Gli inibitori competitivi Si manifesta quando una sostanza strutturalmente simile al substrato si lega al sito attivo dell enzima. La sostanza compete con il substrato per occupare il sito attivo La triosofosfato isomerasi catalizza l isomerizzazione fra D-gliceraldeide-3-fosfato e diidrossiaceton fosfato. Il glicerolo-3-fosfato è un inibitore competitivo H H C substrato P - - H H H C H inibitore P - - pdb: 1m7p

Inibizione incompetitiva Per esempio il farmaco anti-hiv nevirapina può legarsi a ed inibire la DNA polimerasi virale soltanto dopo che questa si è legata al proprio substrato. Quando la polimerasi si lega al DNA cambia conformazione generando una tasca idrofobica (precedentemente non disponibile) a cui l'inibitore può legarsi 50

Inibizione mista (non competitiva) Alcuni inibitori si legano covalentemente a residui amminoacidici presenti sull'enzima. Il binding del Pb 2+ a residui di cisteina nell'enzima ferrochelatasi inibisce l'attività di inserzione del Fe 2+ nella protoporfirina IX. 51