Politecnico di Milano Dipartimento di Meccanica I passi di un analisi FEM



Documenti analoghi
Piani di input e piani di calcolo reale in FaTA-e

La modellazione delle strutture

Procedure di calcolo implicite ed esplicite

La modellazione delle strutture

La modellazione delle strutture

Relazione di fine tirocinio. Andrea Santucci

Analisi FEM applicata su una sedia da interni

Prova d esame del 30 giugno 2010 Soluzione

La modellazione delle strutture

Horae. Horae Software per la Progettazione Architettonica e Strutturale

Classificazione dei Sensori. (raccolta di lucidi)

TRAVE SU SUOLO ELASTICO

Corso di Componenti e Impianti Termotecnici LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011

Dimensionamento delle strutture

TRASMISSIONE DI POTENZA IN AMBITO ELICOTTERISTICO: ANALISI STATICA ED A FATICA DI UNA FUSIONE TRAMITE MODELLI AD ELEMENTI FINITI E PROVE STRUMENTALI.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre Prof. L.

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti;

Introduzione all uso di un programma per analisi agli Elementi Finiti

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI

TIP AND TRICKS 01 DEFINIZIONE DEI PARAMETRI DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA

11 Teorema dei lavori virtuali

Introduzione all analisi dei segnali digitali.

Progettazione funzionale di sistemi meccanici e meccatronici.

ARGOMENTI DI TECNICA DELLE COSTRUZIONI INDICE

ALCUNE NOTE SULLA MODELLAZIONE FEM DELLE PLATEE DI FONDAZIONE IN C.A.

Massimo Rundo Politecnico di Torino Dipartimento Energia Fluid Power Research Laboratory

Confronto tra i codici di calcolo QUAD4-M e LSR2D

RESISTENZA DEI MATERIALI TEST

Il calcolo delle sopraelevazioni in muratura in funzione del livello di conoscenza

Verifica delle tolleranze attraverso Reverse Engineering: sviluppo di algoritmi per l'analisi di superfici cilindriche

L IDENTIFICAZIONE STRUTTURALE

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

ELEMENTI TRIANGOLARI E TETRAEDRICI A LATI DIRITTI

7 Applicazioni ulteriori

La dinamica degli edifici e le prove sperimentali. Studio del comportamento dinamico di una struttura

Soluzione di equazioni quadratiche

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

TEST DI VALIDAZIONE DEL SOFTWARE VEM NL

Pordenone, Giugno Relatori: Tecniche per una corretta modellazione strutturale agli elementi finiti. In collaborazione con:

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA MECCANICA PROGETTAZIONE ASSISTITA DA COMPUTER I PROVA DI ESAME DEL / / ALLIEVO MATRICOLA

Prof. Sergio Baragetti. Progettazione FEM

LA TRAVE DI FONDAZIONE SU SUOLO ELASTICO STRATIFICATO DI SPESSORE LIMITATO CON MODULO ELASTICO VARIABILE CON LA PROFONDITÀ

Introduzione al Metodo agli Elementi Finiti

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE

Test, domande e problemi di Robotica industriale

STRUTTURE MISTE ACCIAIO-CLS Lezione 2

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Collegamenti nelle strutture

Ottimizazione vincolata

SETTI O PARETI IN C.A.

Corso di Matematica per la Chimica

ELEMENTI SHELL Piastra forata

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante

Circuiti amplificatori

2. Giovedì 5/03/2015, ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI

PORTANZA DELLE FONDAZIONI

La funzione di trasferimento

Sistema di diagnosi CAR TEST

MATRICE DELLE COMPETENZE DI SCIENZE E TECNOLIE APPLICATE INDIRIZZO DI MECCANICA, MECCATRONICA ED ENERGIA

Usando il pendolo reversibile di Kater

HPRS FINAL CONFERENCE. Utilizzo del metodo FEM nel progetto HPRS. Redatta da: Ing. Daniele Lai - IMAL

e-dva - eni-depth Velocity Analysis

VERIFICA DELLE IPOTESI

MODELLAZIONE DI UN EDIFICIO IN MURATURA CON IL PROGRAMMA DI CALCOLO 3MURI

INDICE. _Abstract pag Il Benchmark pag Modellazione in SAP2000 pag La Griglia (GRID) pag I Materiali pag.

Università degli Studi di Palermo

I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

Comportamento dinamico di valvole

SIMULAZIONI LTCA MEDIANTE METODI F.E.M. PER L ANALISI DI INGRANAGGI CILINDRICI A DENTI DRITTI

fit-up), cioè ai problemi che si verificano all atto dell assemblaggio quando non si riescono a montare i diversi componenti del prodotto o quando il

EDIFICI IN MURATURA ORDINARIA, ARMATA O MISTA

1 PREMESSE E SCOPI DESCRIZIONE DEI SUPPORTI SOTTOPOSTI A PROVA PROGRAMMA DELLE PROVE SPERIMENTALI... 5

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

DOLMEN PRESENTAZIONE DEL CODICE DI CALCOLO

Capriate in legno I edizione aprile Indice Introduzione

Analisi non lineari statiche e dinamiche valutate con il software: ETABS

McGraw-Hill. Tutti i diritti riservati

E mail: Web: Firenze, 12/03/2009

La trasformata Zeta. Marco Marcon

Modelli di dimensionamento

13. Campi vettoriali

Verifiche di sicurezza di una costruzione 1/2

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Estensimetri o Strain Gauges

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Corso di Costruzioni Aeronautiche

MODULO GRAT PROCEDURA TRASFXY TEST CASES

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

Consideriamo due polinomi

Università di Roma Tor Vergata

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA

24 - Strutture simmetriche ed antisimmetriche

LA CATENA DI ASSICURAZIONE. Lezione a cura di Torrini Andrea

Certificazione di produzione di codice di calcolo Programma CAP3

Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA

Transcript:

Politecnico di Milano Dipartimento di Meccanica Mario Guagliano

I PASSI SONO 3 1. MODELLING (Idealizzazione) (ipotesi su vincoli/carichi) 2. ANALISI (statica/dinamica, lineare/nonlineare) (Hardware/Software) 3. POSTPROCESSING (deformata, tensore sforzi/von Mises) (Verifiche dei risultati) 2

I PASSI DI UN ANALISI FEM ANALISI DEL COMPONENTE MECCANICO REALE INDIVIDUAZIONE DEGLI OBIETTIVI DELL ANALISI SCHEMATIZZAZIONE DEL COMPONENTE E SEMPLIFICAZIONI GEOMETRICHE SCHEMATIZZAZIONE DELLE CONDIZIONI AL CONTORNO OPERATIVAMENTE CONCETTUALMENTE Ø TIPO DI ELEMENTO Ø DIMENSIONE DEGLI ELEMENTI (ANALISI DI CONVERGENZA) Ø CONDIZIONI AL CONTORNO (CARICHI MECCANICI, TERMICI, ECC. E VINCOLI) Ø MODELLAZIONE DEL MATERIALE Ø TIPO DI ANALISI Ø ANALISI E INTERPRETAZIONE DEI RISULTATI 3

Esempio CAMERA IPERBARICA SCOPO DELL ANALISI FEM Ø verifica giunzione mantello/fondo Ø verifica della tenuta della porta 4

Esempio CAMERA IPERBARICA 5

DEFINIZIONE DELLA MESH ü modello geometrico ü scelta tipo di elemento ü dimensione elementi ü condizioni al contorno MODELLARE COMPORTAMENTO DELLA STRUTTURA MODELLARE LA GEOMETRIA 6

TIPI DI ELEMENTI STRUTTURE REALI CONTINUE e 3D N DISCRETO DI ELEMENTI FINITI FAMIGLIA (SOLIDI, PIANI, SHELL, ECC.) DOF NUMERO DI NODI/FUNZIONI DI FORMA FORMULAZIONE INTEGRAZIONE 7

TIPI DI ELEMENTI Es. TRAVE STRUTTURE REALI 3D ASTA (truss o rod) BEAM (trave) SHELL (gusci) PIANI (sforzo piano, deformazione piana, assialsimmetrici) ELEMENTI RIGIDI ALTRI 3D SOLIDI (esaedro, cunei, tetraedri) 1D ROD 2D AXYSIMMETRIC SHELL 3D SOLIDI BRICK 8

INTEGRAZIONE ANALISI STATICA [K] {u} = {F} [K] è la matrice di rigidezza della struttura {u} è il vettore degli spostamenti nodali {F} è il vettore delle forze nodali ANALISI CALCOLO DI VARIABILI u, F nodali σ, ε, ecc. agli elementi FEM utilizza metodi numerici (Algoritmo di Gauss) per integrare le grandezze caratteristiche sul volume di ogni elemento Punti in cui viene eseguito il calcolo numerico sono chiamati punti di integrazione o punti di Gauss Esempio Punti di integrazione in un elemento 2D sforzo piano a 4 nodi 9

NUMERO DI NODI E FUNZIONI DI FORMA ANALISI STATICA [K] {u} = {F} {u} è il vettore degli spostamenti nodali di un elemento Negli altri punti dell elemento gli spostamenti sono calcolati interpolando gli spostamenti nodali L ordine di interpolazione (lineare o quadratico) dipende dalle funzioni di forma dell elemento (ovvero dal numero di nodi dell elemento) interpolazione lineare elementi del primo ordine interpolazione quadratica elementi del secondo ordine 10

ELEMENTI 1D ASTA ASTA/rod/truss (spar, strut) a 2 nodi punto di integrazione Ø 2 o 3 DOF traslazionali Ø modellare strutture reticolari con elementi snelli incernierati agli estremi Ø supportano solo carichi assiali Ø non ci sono errori di discretizzazione, distorsione Ø (utilizzati per modellare bulloni o collegamenti in modelli assialsimmetrici) INPUT UTENTE OBBLIGATORI AREA SEZIONE TRASVERSALE MATERIALE 11

Esempi 12

ELEMENTI 1D BEAM BEAM/TRAVE a 2 (3) nodi punto di integrazione 1D BEAM Ø 3 DOF traslazionali e 3 DOF rotazionali Ø modellare strutture con elementi snelli (modello di calcolo travi) Ø non ci sono errori di discretizzazione, distorsione Ø facili errori di posizionamento e di rappresentazione nei collegamenti tra elementi Ø hanno sistemi di riferimento locali con un asse lungo lo sviluppo dell elemento trave INPUT UTENTE OBBLIGATORI SEZIONE (caratteristiche geometriche e inerziali) MATERIALE 13

Esempi 1D BEAM 14

ELEMENTI 2D PIANI 15

ELEMENTI 2D PIANI SFORZO PIANO/PLANE STRESS DEFORMAZIONE PIANA/PLANE STRAIN ASSIALSIMMETRICI/AXYSIMMETRIC v 2 g.d.l. traslazionali a ogni nodo v el. sforzo piano assumono sforzo fuori piano nullo, adatti per modellare strutture sottili v el. deform. piana assumono deform. fuori piano nulla, adatti per modellare strutture spesse v el. assials. adatti per modellare strutture con simmetria assials. e carichi assials. v sezione trasversale costante v (numerazione dei nodi dell elemento in senso orario) a 3, 4, 6, 8 nodi INPUT UTENTE OBBLIGATORI SPESSORE MATERIALE 16

ELEMENTI 2D PIANI ESEMPI Elementi a 4 nodi 4 punti di integrazione Elementi a 8 nodi 9 punti di integrazione Ø INTEGRAZIONE PIENA Ø INTEGRAZIONE RIDOTTA Numeri di punti di Gauss richiesti per integrare i termini polinomiali nella matrice di rigidezza di un elemento Significativo effetto sull accuratezza dei risultati 17

Esempi ELEMENTI 2D PIANI PLANE STRESS PLANE STRAIN Y AXYSIMMETRIC X 18

ELEMENTI SHELL SHELL (PLATE)/GUSCIO (LASTRA) a 3, 4, 6, 8 nodi ü 3 DOF traslazionali e 3 DOF rotazionali ü utili per modellare strutture in parete sottile con larga estensione in confronto ad un ridotto spessore (modello di calcolo guscio) ü sforzi nella direzione dello spessore trascurabili ü mesh relativamente semplici riferite alla superficie media (sovrastima sforzi) ü variazione degli sforzi attraverso lo spessore è lineare ü formulazione thin e thick, effetto del taglio trasversale trascurato o incluso ü possibili errori di modellazione legati alla dimensione degli elementi (el. a 4 nodi) ü possibili errori di modellazione nell unione di elementi con spessore differenti INPUT UTENTE OBBLIGATORI SPESSORE MATERIALE 19

ELEMENTI SHELL v definizione OFFSET rispetto alla superficie di riferimento v definizione NORMALE RISULTATI FLESSIONALE + MEMBRANALE v punti di integrazione lungo lo spessore TOP BOTTOM SUPERFICIE MEDIA MEMBRANALE 20

ELEMENTI SHELL sforzo membranale sforzo membranale FE sforzo membranale errori di discretizzazione Materiale non efficace errori di discretizzazione 21

Esempi ELEMENTI SHELL 22

Esempi ELEMENTI SHELL 23

SHELL VERSUS 2D/3D STRUTTURE PIANE CARICATE NEL PIANO ANALOGHI RISULTATI ELEMENTI 2D ELEMENTI SHELL STRUTTURE CON CONCENTRAZIONE DI SFORZO DI TIPO STRUTTURALE ES. GIUNZIONI FONDO/MANTELLO ELEMENTI SHELL STRUTTURE CON ELEVATI GRADIENTI DI SFORZO DOVUTI A VARIAZIONI GEOMETRICHE ES. APERTURE IN RECIPIENTI IN PRESSIONE ELEMENTI 3D 24

ELEMENTI 3D SOLIDI BRICK /MATTONE (HEXAHEDRAL) WEDGE /CUNEO 4, 6, 8, 10, 15 20 nodi TETRAHEDRAL/TETRAEDRO TETRAHEDRAL ü 3 g.d.l. traslazionali a ogni nodo ü formulazione non richiede semplificazioni della geometria ü adatte per geometrie complesse derivanti da modellatori solidi ü visualizzazione 2D (wire frame) poco utile ü risultati non accurati con tetraedri in presenza di gradienti degli sforzi WEDGE INPUT UTENTE OBBLIGATORI MATERIALE BRICK 25

Esempi ELEMENTI 3D SOLIDI 26

REALIZZAZIONE MESH MODELLO GEOMETRICO CARTACEO SUDDIVISIONE IN PARTI O BLOCCHI GENERAZIONE COORDINATE NODALI MODELLO GEOMETRICO GENERAZIONE ELEMENTI SISTEMI CAD o MODELLATORI SOLIDI SUDDIVISIONE IN PARTI O BLOCCHI (GENERAZIONE COORDINATE NODALI) MESHATURA FREE GENERAZIONE ELEMENTI MESHATURA MANUALE MESHATURA LOCAL FREE 27

REALIZZAZIONE MESH Es. BARRETTA INTAGLIATA CARICATA ASSIALMENTE CON FORO CENTRALE FREE 1 OPERAZIONE MAPPED 2 OPERAZIONI..ALCUNE OPERAZIONI Warnings o Errori di distorsione 28

FREE MESH Permette di ottenere velocemente la mesh (si può indicare solo la dimensione approssimativa degli elementi) I vantaggi e gli svantaggi sono principalmente legati ai modelli solidi (elementi TET). Parametri di qualità: - Pulizia delle superfici - Mesh zone transizione - Posizione nodo intermedio 29

REALIZZAZIONE MESH ANALISI DI CONVERGENZA Ø Tipo di elemento Ø Disposizione elementi Ø Dimensione elementi Errori nel calcolo dei gradienti Errori di modellazione geometrica Coarse mesh 14 elementi Normal mesh 112 elementi Fine mesh 448 elementi Very fine mesh 1792 elementi RISULTATI 30

REALIZZAZIONE MESH Tipo di elemento Dimensione elementi Disposizione elementi Warnings o Errori legati alla distorsione degli elementi Errori legati al calcolo delle grandezze caratteristiche 31

MESH DESIGN Densità mesh dipende dalla complessità della distribuzione degli sforzi In presenza di elevati gradienti di sforzo localizzati è consigliato l utilizzo di discretizzazioni con densità di elementi differenti Mesh ottimizzata richiede un processo iterativo N iterazioni Abilità dell analista Mesh iniziale accurata 32

MESH DESIGN Alcuni software commerciali prevedono l utilizzo di schemi iterativi pressoché automatici h-type: si aumenta il numero di elementi, suddividendo gli elementi esistenti r-type: i nodi sono ricollocati per ridurre la dimensione degli elementi p-type: si aumenta l ordine delle funzioni di forma degli elementi Tali metodi generalmente richiedono che la mesh sia generata con un modellatore geometrico Tali metodi possono essere utilizzati nei processi di meshatura manuale o mappata ad eccetto del p-type per il quale è necessario aggiungere nodi interni agli spigoli per aumentare la funzione di forma (elementi usuali hanno al massimo funzioni di forma del 2 ordine) P-ELEMENTS Elementi speciali nei quali l ordine del polinomio viene aumentato senza nodi addizionali Es. PRO-MECHANICA 33

TECNICHE DI MODELLAZIONE SUB-STRUCTURING TECNICA CON LA QUALE DIFFERENTI PARTI DI UNA STRUTTURA SONO ANALIZZATE SEPARATAMENTE E POI ASSEMBLATE PER FORMARE LA STRUTTURA COMPLETA TECNICA CON LA QUALE SI ANALIZZA UNA PICCOLA ZONA DELLA STRUTTURA A PARTIRE DAGLI SPOSTAMENTI CALCOLATI MEDIANTE UN MODELLO GLOBALE 34

MESH DESIGN REALIZZARE MESH CON DIFFERENTI DENSITA DI ELEMENTI TIPICHE TRANSIZIONI PER RIDURRE IL NUMERO DI ELEMENTI 35

CONDIZIONI AL CONTORNO VINCOLI/CONSTRAINTS (BOUNDARY CONDITIONS) constraints impongono valori definiti alle variabili nodali CARICHI/LOADS molteplicità di carichi e coppie concentrate e distribuite 36

CONDIZIONI AL CONTORNO VINCOLI/CONSTRAINTS I vincoli devono essere sufficienti per eliminare i moti di corpi rigidi y x Schema di calcolo della trave esistono solo reazioni vincolari in direzione Y Elementi finiti è necessario definire un supporto in direzione X 37

VINCOLI/CONSTRAINTS spostamenti e/o rotazioni impedite derivanti dal struttura al contesto circostante vincoli di simmetria multi-point constraints elementi spring/molla elementi gap elementi rigidi collegamento della 38

VINCOLI/CONSTRAINTS y Spostamenti u, v, w e/o rotazioni impedite ω, φ, µ (sistema di coordinate cartesiane globale x, y, z) z x Il n di g.d.l dipende dal tipo di elemento Ø ASTA 2 g.d.l. o 3 g.d.l. u,v,w = 0 Ø 2D SP/DP 2 g.d.l. u,v = 0 2D Axy 2 g.d.l. a, r = 0 39

VINCOLI/CONSTRAINTS Il n di g.d.l dipende dal tipo di elemento Ø BEAM 6 g.d.l. u,v,w, ω, φ, µ = 0 Ø SHELL 6 g.d.l. u,v,w, ω, φ, µ = 0 Ø SOLIDI 3 g.d.l. u,v,w = 0 40

VINCOLI/CONSTRAINTS VINCOLI DI SIMMETRIA SIMMETRIA PIANO XY w, ω, φ = 0 z y x z y x SIMMETRIA PIANO YZ u, φ, µ = 0 SIMMETRIA PIANO XZ v, ω, µ = 0 z y x VINCOLI DI ANTISIMMETRIA z y ANTISIMMETRIA PIANO XZ u, w, φ = 0 x z y x ANTISIMMETRIA PIANO YZ v, w, ω = 0 ANTISIMMETRIA PIANO XY u, v, µ = 0 z y x 41

VINCOLI/CONSTRAINTS CONSTRAINT EQUATION or MULTI POINT CONSTRAINTS SLAVE u i = C 1 + C 2 u j + C 3 v k + C 4 w l MASTER dove u n, v n e w n sono gli spostamenti del nodo n nelle direzioni x, y, z e C i è una costante. Anche le rotazioni possono essere inserite, in questo caso i coefficienti avranno una dimensione Es. faccia PIANA 42

VINCOLI/CONSTRAINTS CONSTRAINT EQUATION or MULTI POINT CONSTRAINTS LINEARE è un metodo standard per introdurre transizioni di mesh per elementi con funzioni di forma del primo ordine Ogni DOF al nodo p è interpolato linearmente a partire dai corrispondenti DOF dei nodi a e b 43

VINCOLI/CONSTRAINTS CONSTRAINT EQUATION or MULTI POINT CONSTRAINTS QUADRATICO è un metodo standard per introdurre transizioni di mesh per elementi del secondo ordine Ogni DOF al nodo p è interpolato quadraticamente a partire dai corrispondenti DOF dei nodi a e b 44

VINCOLI/CONSTRAINTS CONSTRAINT EQUATION or MULTI POINT CONSTRAINTS CYCLIC SYMMETRY introduce vincoli per imporre simmetrie cicliche uguagliando gli spostamenti radiali, circonferenziali e assiali ai nodi a e b a b SETTORE ANALIZZATO 45

VINCOLI/CONSTRAINTS CONSTRAINT EQUATION or MULTI POINT CONSTRAINTS PIN schematizza una cerniera tra due nodi; spostamenti rotazioni libere TIE tutti i gradi di libertà uguali tra i nodi SLIDER utilizzato per schematizzare il passaggio tra elementi differenti, E necessario in presenza di DOF attivi differenti introdurre dei vincoli cinematici es. beam-shell, beam-solid, shell-solid uguali ai nodi e 46

VINCOLI/CONSTRAINTS ü ü ELEMENTI SPRING/MOLLA ü elemento monodimensionale accoppia una forza con relativo spostamento accoppia un momento con relativa rotazione ü può essere lineare o non lineare ü ELEMENTI GAP utile per simulare appoggio monolatero ü ü ELEMENTI RIGIDI ü elemento monodimensionale nessuna richiesta relativa alla geometria elemento di collegamento rigido tra due nodi 47

CARICHI/LOADS DA RICORDARE ANALISI LINEARE SFORZI E DEFORMAZIONI SONO DIRETTAMENTE PROPORZIONALI AI CARICHI APPLICATI CARICHI MECCANICI DEVONO ESSERE CONVERTITI IN CARICHI NODALI 48

CARICHI/LOADS ANALISI LINEARE applicare carichi unitari e determinare i risultati tramite semplici moltiplicazioni di fattori noti Es. analisi di un recipienti in pressione da verificare sia in prova idraulica sia in condizioni di progetto 49

CARICHI/LOADS CARICO NODALE elevata deformazione ed elevato sforzo nel nodo di applicazione rispetto ai nodi circostanti valore locale dello sforzo calcolato al nodo non ha significato reale CARICHI DISTRIBUITI infinito numero di combinazioni di carichi discreti nodali staticamente equivalenti al carico distribuito (in accordo con St. Venant) devono essere trasformati in carichi nodali F i [K] {u} = {F} stesso effetto remoto lontano dal punto di applicazione dei carichi 50

CARICHI/LOADS MODALITA DI APPLICAZIONE DEL CARICO P TOT applicato alla curva P TOT / n nodi = P i 51

CARICHI NODALI CARICHI/LOADS CARICO DISTRIBUITO PIATTO SOLLECITATO A TRAZIONE 52

CARICHI/LOADS Mesh regolare caratterizzata da medesima lunghezza elementi P tot = 1000 N P tot /n elementi = P el 100 N 200 N 200 N 200 N 200 N 100 N 200 N 200 N 200 N 200 N 200 N 53

CARICHI/LOADS MESH CON LUNGHEZZA ELEMENTI DIFFERENTI A B C D E L A = 382.40 mm L B = 255.730 mm L C = 171.170 mm L D = 114.366 mm L E = 76.481 mm q = P tot /L tot = 50 N/mm q L i = P i APPLICATO NELLA MEZZERIA DELL ELEMENTO COMPETE PER ½ AL NODO DI SX E PER ½ AL NODO DI DX 54

CARICHI/LOADS ANALOGO RISULTATO 55

CARICHI/LOADS Come ricavare la distribuzione di forze equivalente cinematicamente? analisi con spostamento imposto e si ricavano le reazioni vincolari ai nodi ovvero i carichi da applicare TEORICO Tipo di elemento e funzione di forma distribuzioni dei carichi equivalenti cinematicamente ü carichi sulle curve e sui contorni per elementi 2D ü pressioni su shell e solidi 3D PRATICO Software commerciali 56

CARICHI/LOADS ü SPOSTAMENTI ü VELOCITA ü ACCELERAZIONI ü CARICHI TERMICI APPLICATI AI NODI 57

CARICHI/LOADS Nelle analisi con differenti componenti di carico PUO ESSERE UTILE 1) utilizzare carichi unitari 2) analizzare i risultati relativi alle differenti componenti di carico per interpretare come la struttura lavora soggetta ai vari carichi (in analisi lineari elastiche vale il principio di sovrapposizione degli effetti) Es. analisi di strutture in ambito civile in presenza di differenti componenti: neve, sisma, vento, peso proprio ecc. 58

ANALISI DEFINITI INPUT UTENTE MODELLO GEOMETRICO DISCRETIZZAZIONE TIPO DI ELEMENTI DIMENSIONI DEGLI ELEMENTI CONDIZIONI AL CONTORNO } TIPO DI ANALISI ANALISI STATICA ANALISI DINAMICA TRASMISSIONE DEL CALORE BUCKLING ECC. COMPUTER ANALISI [K] {u} = {F} [M] {ü}+ [C] {u} + [K]. {u} = {F(t)} [C] {T}+ [K] {T} = {Q} 59

ANALISI STATICA PROCEDURE DI CONTROLLO Ø PRIMA DELL ANALISI - controllo delle informazioni inserite dall utente da parte del programma - controllo da parte dell utente della consistenza di informazioni introdotte nel caso di utilizzo di software differenti (modellatore e solutore) Ø DURANTE L ANALISI controlli eseguiti dal software possono riportare due tipi di errore, fatali o warning Ø DOPO L ANALISI interpretazione dei risultati da parte dell utente 60

ANALISI STATICA [K] {u} = {F} [K] è la matrice di rigidezza della struttura {u} è il vettore degli spostamenti nodali {F} è il vettore delle forze nodali ANALISI RISOLUZIONE DI UN SISTEMA DI N EQUAZIONI LINEARI IN N INCOGNITE (ALGEBRA MATRICIALE) SERIE DI PASSI DEFINITI 61

ANALISI STATICA RISOLUZIONE DI UN SISTEMA DI N EQUAZIONI LINEARI IN N INCOGNITE (ALGEBRA MATRICIALE) k 11 u 1 + k 12 u 2 + k 13 u 3 = F 1 k 21 u 1 + k 22 u 2 + k 23 u 3 = F 2 k 31 u 1 + k 32 u 2 + k 33 u 3 = F 3 [K] {u} = {F} ALGORITMO DI ELIMINAZIONE GAUSSIANA 1ª FASE: trasformare il sistema di equazioni in un sistema con matrice dei coefficienti triangolare superiore 2ª FASE: determinazione delle incognite per sostituzione 62

ANALISI STATICA 1ª FASE dell algoritmo di eliminazione Gaussiana Manipolazione delle equazioni per trasformare la matrice k 11 u 1 + k 12 u 2 + k 13 u 3 = F 1 k 21 u 1 + k 22 u 2 + k 23 u 3 = F 2 k 31 u 1 + k 32 u 2 + k 33 u 3 = F 3 1ª eq. 2ª eq. 3ª eq. Normalizzo la 1ª equazione (rendere il primo coefficiente unitario) 1ª eq. u 1 + (k 12 / k 11 ) u 2 + (k 13 / k 11 ) u 3 = (1 / k 11 ) F 1 2ª eq. k 21 u 1 + k 22 u 2 + k 23 u 3 = F 2 3ª I passi eq. di un analisi FEM k 31 u 1 + k 32 u 2 + k 33 u 3 = F 3 63

ANALISI STATICA Moltiplico la 1ª eq. Per k 21 1ª eq k 21 u 1 + (k 21 k 12 / k 11 ) u 2 + (k 21 k 13 / k 11 ) u 3 = (k 21 / k 11 ) F 1 2ª eq k 21 u 1 + k 22 u 2 + k 23 u 3 = F 2 3ª eq k 31 u 1 + k 32 u 2 + k 33 u 3 = F 3 2ª eq - 1ª eq (k 22 - k 21 k 12 / k 11 ) u 2 + (k 23 - k 21 k 13 / k 11 ) u 3 = F 2 - (k 21 / k 11 ) F 1 k I 22 u 2 + ki 23 u 3 = FI 2 64

ANALISI STATICA Dopo la manipolazione delle equazioni ottengo 1ª eq k 11 u 1 + k 12 u 2 + k 13 u 3 = F 1 2ª eq k I 22 u 2 + ki 23 u 3 = FI 2 3ª eq k I 33 u 3 = FI 3 PIVOT [ k 11 k 12 k 13 ] { k I 12 k I 13 k II 13 { u 1 } u 2 u 3 = F 1 F I 2 F I 3 } Risolvo la 3ª eq e sostituisco nelle altre eq. Ricavo le incognite u 1, u 2 e u 3 65

TIPICA SEQUENZA DELLE OPERAZIONI ESEGUITE DURANTE L ANALISI DEFINIZIONE DELLA MESH FORMAZIONE DEGLI ELEMENTI ASSEMBLAGGIO DEGLI ELEMENTI DEFINIZIONE DEI VINCOLI NATURA MODULARE DEL METODO FE MATRIX FACTORISATION DEFINIZIONE DEI CARICHI CALCOLO DEGLI SPOSTAMENTI UTENTE INTERPRETAZIONE DEI RISULTATI ANALISI STATICA COMPUTER CALCOLO DEGLI SFORZI E DELLE DEFORMAZIONI UTENTE 66

ANALISI STATICA DIAGNOSTICA DEL SOFTWARE AVVISI DI WARNINGS O ERROR ininfluenti indicano alcuni effetti che devono essere presi in considerazione nell interpretazione indicano che l analisi non è valida Sono avvisi di errore che il software rileva prima di ricavare i risultati significativi non impedendone il calcolo; la soluzione arriva al termine WARNINGS ERRORI Sono errori fatali che il software rileva durante la soluzione; non si arriva al termine della soluzione e non si ottengono risultati 67

ANALISI STATICA Es. WARNINGS Carico applicato ad un nodo che non esiste Carico applicato ad un nodo vincolato Zone non connesse nel modello Densità del materiale è stata definita nulla Distorsione dell elemente è elevata Vincolo applicato a DOF non attivo Ecc, 68

ANALISI STATICA ERRORI NELLA GENERAZIONE DEGLI ELEMENTI E PROBLEMI NELL ASSEMBLAGGIO ü distorsione eccessiva degli elementi - dipende dal tipo di elemento; elemento con funzioni di forma più elevate possono accettare distorsioni maggiori - limitare la distorsione nelle zone di interesse o nelle zone con elevati gradienti di sforzo 69

ANALISI STATICA ERRORI NELLA GENERAZIONE DEGLI ELEMENTI E PROBLEMI NELL ASSEMBLAGGIO ü unione non corretta degli elementi (zone non connesse) - verificare la connettività degli elementi; eseguire il merge dei nodi ü unione non corretta di differenti tipi di elementi; introdurre eventuali multi-point constraints 70

ANALISI STATICA ERRORI legati al MAL CONDIZIONAMENTO DELLA MATRICE pivot nullo o pivot negativo sono spesso indici di errori nel modello, es. la struttura non è ben vincolata e sono permessi dei moti di corpo rigido pivot molto piccolo in confronto agli altri, questo causa scarsa o addirittura perdita completa di accuratezza nel calcolo dei risultati MATRICE SINGOLARE CAUSE Vincoli non sufficienti per prevenire i moti di corpo rigido Vincoli non sufficienti dovuti alla mancanza di connettività degli elementi, possibili moti di corpo rigido Differenza molto elevata nella rigidezza degli elementi 71

ANALISI STATICA Es. ERRORI legato al mal condizionamento del sistema Elevata differenza di rigidezza tra parti dello stesso modello ü Elementi 2D O 3D con rapidi cambiamenti di dimensioni ü Elementi beam o shell hanno rigidezza flessionale proporzionale al cubo della lunghezza; facilmente si possono ottenere rigidezze molto diverse tra loro ü Scelta delle proprietà degli elementi rigidi di collegamento 72

ANALISI STATICA Es. ERROR The element has a high aspect ratio so that the lenght of one or more sides is very much greater than the lenght of the shortest side Es. ERROR Il volume dell elemento è definito negativo Es. ERROR Equation 717 Node 125-z PIVOT = 1E-09 Calcolo è sequenziale, di consequenza l errore che si commette è comulativo; maggiore è il numero degli elementi, maggiore è il numero dei DOF e minore sarà l accuratezza nei risultati 73

FINE 74