Introduzione storica

Documenti analoghi
MATEMATICA. a.a. 2014/ LIMITI (I parte): Definizione, proprietà e calcolo. Limiti di funzioni, continuità e asintoti.

I Limiti di una funzione ANNO ACCADEMICO

Insiemi numerici. Definizioni

I LIMITI DI FUNZIONI - TEORIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

~ Copyright Ripetizionando - All rights reserved ~ I LIMITI

LIMITI. 1. Definizione di limite.

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

ISTITUTO ISTRUZIONE SUPERIORE

Complementi di Analisi Matematica Ia. Carlo Bardaro

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

Serie Borlini Alex

Definizione di limite

Insiemi di numeri reali

Diario del Corso Analisi Matematica I

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A

06 - Continuitá e discontinuitá

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Corso di Analisi Matematica Limiti di funzioni

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa

Lezioni di Matematica 1 - I modulo

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Analisi Matematica II

Funzioni di più variabli: dominio, limiti, continuità

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

DIARIO DELLE LEZIONI DI ANALISI PER FISICA (Pb-Z) a.a. 2016/2017

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

FUNZIONI REALI DI UNA VARIABILE REALE

LIMITI E DERIVATE DI UNA FUNZIONE

Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1

A.A. 2016/17 - Analisi Matematica 1

3. Generalità sulle funzioni

Analisi Matematica 1

I NUMERI REALI SONO ASTRATTI

Completezza e compattezza

10 - Applicazioni del calcolo differenziale

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

Registro di Meccanica /13 - F. Demontis 2

Linguaggio della Matematica

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

INTRODUZIONE ALLA TEORIA DEI LIMITI prof. Danilo Saccoccioni

Numeri complessi, Successioni numeriche, Serie numeriche, Limiti e continuità, Calcolo differenziale: TEOREMI

L INSIEME DEI NUMERI REALI. DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali.

I NUMERI. Si dice "radice quadrata" di un numero positivo a, quel numero positivo b che elevato al quadrato dà come risultato a.

A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre

Prefazione LUCIANO ROMANO

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Programma di MATEMATICA

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Linguaggio della Matematica

Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico.

Alcuni Teoremi sulle funzioni continue e uniforme continuità

ARGOMENTI NECESSARI DI ANALISI MATEMATICA I

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA

FUNZIONI ALGEBRICHE PARTICOLARI

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

Teoremi fondamentali dell'analisi Matematica versione 1

La continuità di una funzione

1 IL LINGUAGGIO MATEMATICO

Limiti e continuità. Limiti di funzioni

1 Successioni di funzioni

Indice. Prefazione. 3 Spazi Metrici Introduzione Definizione ed esempi Intorni... 53

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Denizione di funzione continua e funzioni continue ed invertibili sui compatti

iv Indice c

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.

Massimi e minimi : TEOREMI. Condizione necessaria del I ordine. Conseguenza del Teorema di Lagrange.

Teoria intuitiva degli insiemi

Classe III Aritmetica e Algebra Dati e previsioni Geometria Geometria

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

Nozioni introduttive e notazioni

Primi passi tra gli integrali NSA

2. Che cosa significa che due insiemi sono uguali? La parola uguale e il simbolo = hanno un unico significato in matematica? 13

Infiniti e Infinitesimi

I LIMITI. non è definita per valori della x uguali a + 5 e 5. In questo caso l insieme di variabilità della variabile x, che si chiama dominio, è

Corso di Analisi Matematica Successioni e loro limiti

2. I numeri reali e le funzioni di variabile reale

Transcript:

Introduzione storica Uno dei periodi più importanti della storia della matematica è stata quello che comprende i secoli durante i quali si sono gettate le basi del calcolo infinitesimale: dalla fine del 500, con i primi tentativi di proseguire l'opera di Archimede, alla redazione degli scritti indipendenti di Newton e Leibniz (XVII e XVIII sec.). Il concetto di limite si trova già presente, anche se in forma non esplicita, nella matematica greca, poiché molti risultati sui calcoli di aree e di volumi ricavati dai matematici greci (ad esempio Eudosso ed Archimede) erano, in sostanza, basati su un passaggio al limite (si pensi ad esempio, al ben noto Paradosso di Achille).

Introduzione storica Dovevano, però, trascorrere molti secoli prima di giungere con Eulero nel 1755 ad una definizione abbastanza precisa di limite, anche se Eulero non la utilizza e non sviluppa la teoria dei limiti. Anche D'Alembert diede una formulazione del concetto di limite. Nell'articolo "limite", scritto per l'encyclopédie egli chiamava una quantità limite di una seconda quantità (variabile) il valore con cui questa seconda quantità si avvicinava così tanto che la differenza fra le due quantità fosse inferiore a qualsiasi quantità data (senza effettivamente coincidere con essa). L'imprecisione di questa definizione la rese inaccettabile per i suoi contemporanei, infatti gli autori di manuali matematici dell'europa continentale continuarono a usare fino alla fine del XVIII secolo il linguaggio e i concetti di Eulero. Si deve a Cauchy e, soprattutto, alla successiva formalizzazione di Weierstrass, una definizione rigorosa di limite e, mediante essa, una costruzione rigorosa dell'analisi matematica. Cauchy assunse come fondamentale il concetto di limite di D'Alembert, ma gli conferì una maggiore precisione.

Introduzione storica Egli formulò una definizione relativamente precisa di limite: "Quando i valori successivi attribuiti a una variabile si avvicinano indefinitamente a un valore fissato così che finiscono con il differire da questo per una differenza piccola quanto si vuole, quest'ultimo viene detto il limite di tutti gli altri. Così per esempio un numero irrazionale è il limite delle diverse frazioni che ne forniscono i valori sempre più approssimati. In geometria la superficie del cerchio è il limite verso il quale convergono le superfici dei poligoni iscritti, man mano che il numero dei lati cresce." La definizione di Cauchy, come leggiamo, faceva uso di espressioni come "valori successivi" o "avvicinarsi indefinitamente" o "così piccolo quanto si vuole". Per quanto suggestive queste definizioni sono prive di quella precisione che generalmente si esige dalla matematica. Ma su quella definizione Cauchy ha fondato la sua opera analitica, universalmente riconosciuta come basilare per l'analisi moderna. E' solamente con Weierstrass, però, che si arriva al concetto di limite nella forma ancora oggi ritenuta valida. La prima pubblicazione ufficiale avviene ad opera di Heine, un allievo dello stesso Weierstrass, in "Elemente", nel 1872, dove si assiste alla nascita delle formulazioni in termini di intorni, con gli ε e i δ, di Weierstrass e della sua scuola.

Nozioni di Topologia della retta La nozione di intorno di un punto traduce il concetto intuitivo di zona circostante ad un punto. Più formalmente possiamo dare la seguente DEF. 1 Sia x 0 un punto della retta numerica R, un qualunque intervallo aperto e limitato di centro x 0 del tipo x 0 δ, x 0 + δ si dice intorno del punto x 0. Il numero reale positivo δ si chiama semidimensione dell intorno e x 0 centro dell intorno. DEF. 2 Siano x 0 un punto di R e X un sottoinsieme di R. Si dice che x 0 è di accumulazione per l insieme X se ad ogni intorno di x 0 appartengono punti di X diversi da x 0. PROPOSIZIONE Un punto x 0 di R è di accumulazione per l insieme X R (se e) solo se ad ogni intorno di x 0 appartengono infiniti punti di X. Conseguentemente, se esiste un punto di accumulazione per il sottoinsieme X di R, X è necessariamente infinito. L ipotesi di limitatezza dell insieme infinito X è essenziale perché esista almeno un punto di accumulazione. Infatti N, pur essendo infinito, non è dotato di alcun punto di accumulazione Si noti che x 0 può appartenere a X ma può anche non appartenervi.

TEOREMA DI BOLZANO-WEIERSTRASS Ogni sottoinsieme X infinito e limitato della retta numerica è dotato di almeno un punto di accumulazione. DEF. 3 Un punto x 0 X R ma che non sia di accumulazione, si dice punto isolato per X

Limite finito in un punto Se f è una funzione reale definita nel sottoinsieme X di R e x 0 un punto di accumulazione al finito per X, è importante esaminare l andamento dei valori f(x) che la funzione assume in punti x x 0 presi via via sempre più vicini a x 0. La possibilità di considerare tali punti è garantita dal fatto che x 0 è di accumulazione per X. DEF. 4 Si dice che il numero reale l è il limite della funzione f in x 0 o anche che f(x) converge a l o che tende a l in x 0 e si scrive: lim f x = l x x 0 quando, comunque si consideri un numero reale ε>0 esiste un numero reale δ>0 tale che si abbia: f x l < ε o, ciò che è lo stesso, l ε < f x < l + ε x X t. c. 0 < x x 0 < δ

Limite finito in un punto significato geometrico

Limite infinito DEF. 5 Si dice che + è il limite della funzione f in x 0 o anche che f(x) diverge positivamente o che tende a + in x 0 e si scrive: se lim f x = + x x 0 M > 0 I x0 t. c. f x > M DEF. 6 Si dice che è il limite della funzione f in x 0 o anche che f(x) diverge negativamente o che tende a e si scrive: se lim f x x x 0 = M > 0 I x0 t. c. f x < M

Dire che lim f x = + significa dire che, considerando numeri reali x di X x x0 sempre più vicini a x 0, i punti del diagramma di f (x; f(x)) hanno ordinata via via più grande o anche che, comunque si consideri una retta orizzontale y=m con M>0, esiste un intorno I tali che i punti (x; f(x)) sono al di sopra di tale retta non appena x appartiene all intorno. Si dice che la retta x=x 0 è un asintoto verticale per il diagramma di f.

Il significato geometrico è analogo se il limite è, per x che tende a x0

Limite finito per x che tende a + (risp. - ) DEF. 7 Si dice che il numero reale l è il limite della funzione f in + (risp. in - ) o anche per x che tende a + (risp. - ) e si scrive: lim f x x + = l risp. lim f x = x l quando, comunque si consideri un numero reale ε>0 esiste un numero reale c>0 (risp. c<0) tale che si abbia: f x l < ε o, ciò che è lo stesso, l ε < f x < l + ε non appena x X e x>c (risp. x<c)

Limite finito per x che tende a + - significato geometrico Se il limite per x che tende a + o a lim x + f x = l è uguale a l, in entrambi i casi la retta di equazione y=l è un asintoto orizzontale per il diagramma

Limite infinito per x che tende a + (risp. )

Teorema di unicità del limite Se la funzione f ha nel punto x 0 come limite l (al finito o no) tale limite è unico Dimostrazione: Per assurdo, supponiamo che l non sia unico. Allora esiste un numero reale l diverso da l tale che lim f x = l x x 0 Poiché esiste il limite per x che tende a x 0 e tale limite è l, allora: ε > 0 I x0 t. c. l ε < f x < l + ε Ma anche l è il limite di f(x) per x che tende a x 0. Pertanto: ε > 0 I x 0 t. c. l ε < f x < l + ε x I I Si può supporre ε < l l Dalle due definizioni si ha che: 2. l ε < f x < l + ε l ε < l + ε ε > l l contrariamente alla supposizione iniziale. Dunque l assunto. 2

Nozione di continuità per una funzione reale di una variabile reale DEF. 8 Sia f una funzione reale definita nel sottoinsieme X di R e sia x 0 un punto di accumulazione per X, appartenente a X. Si dice che f è continua in x 0 se lim f x = f(x 0 ) x x 0 ossia se il limite di f in x 0 esiste ed è uguale al valore che la funzione assume in x 0. Dire che tale limite esiste equivale a dire che per ogni numero reale ε > 0 esiste un numero reale δ > 0 tale che, non appena x appartiene a X e x x 0 < δ si ha f x f x 0 < ε. La nozione di funzione continua in un punto x 0 precisa dunque quella intuitiva di funzione per la quale a valori della variabile x via via sempre più vicini a x 0 corrispondono valori f(x) via via sempre più vicini a f(x 0 ). DEF. 9 Una funzione reale f si dice continua in una parte Y del suo insieme di definizione X se è continua in ogni punto di Y.

Punti di discontinuità di una funzione DEF. 10 Siano f una funzione reale di una variabile reale definita nel sottoinsieme X di R, x 0 un punto di X per esso di accumulazione. Se f non è continua in x 0, essa si dice anche discontinua nel punto x 0 oppure che presenta una discontinuità in x 0 e tale punto si dice di discontinuità per f. Discontinuità di I specie o a salto Discontinuità di II specie Discontinuità di III specie o eliminabile