Introduzione. Introduzione Prof. Ing. Marina Mistretta

Documenti analoghi
TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

Capitolo 1 Misure e grandezze

Capitolo 1 Misure e grandezze

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Dipartimento di Scienze Chimiche. Ambiente. Sistema

Lezione 9. Statica dei fluidi

Esploriamo la chimica

IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo

TERMOLOGIA & TERMODINAMICA I

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

SISTEMA INTERNAZIONALE (S.I.) Le grandezze che si possono misurare sono dette grandezze fisiche.

Introduzione alla Chimica. Paolo Mazza

Termodinamica classica

Il I principio della termodinamica. Calore, lavoro ed energia interna

Calorimetria. Principio zero Trasformazioni termodinamiche Lavoro termodinamico

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA


Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Le dimensioni rappresentano il concetto di misura fondamentali: lunghezza, tempo, massa, temperatura,

Principi della Termodinamica

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente.

Lo stato gassoso e le sue proprietà

Stati della materia. Esempio. Fusione e solidificazione. Esempio. Stati di aggregazione della materia

Per un sistema isolato la somma di energia potenziale ed energia cinetica si mantiene costante.

Semplice introduzione ai principi della termodinamica. prof. Carlucci Vincenzo ITIS Einstein Potenza

Fisica per scienze ed ingegneria

Programma svolto a.s. 2015/2016. Materia: fisica

Brady Senese Pignocchino Chimica.blu Zanichelli 2013 Soluzione degli esercizi Capitolo 2

Lezione 9 Termodinamica

Test Esame di Fisica

FERRARI LUCI MARIANI PELISSETTO FISICA MECCANICA E TERMODINAMICA IDELSON-GNOCCHI

TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la

La Termodinamica è la disciplina che si occupa dello studio degli scambi di energia e di materia nei processi fisici e chimici

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

Fisica per scienze ed ingegneria

Lezione 10. Cenni di Termodinamica. Temperatura e calore Definizione e misura della temperatura Calore Principi della Termodinamica

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Densita. FLUIDI : liquidi o gas. macroscop.:

Test Esame di Fisica

PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI)

Termodinamica dell atmosfera

Temperatura, calore e prima legge termodinamica

Fondamenti di Meteorologia e Climatologia

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv

2) Primo principio della Termodinamica

Termodinamica: introduzione

TERMODINAMICA. Il sistema è il corpo o l insieme dei corpi sotto esame.

Un problema di grande interesse è la possibilità di prevedere se due o più sostanze poste a contatto sono in grado di reagire.

IPSSAR P. ARTUSI - Forlimpopoli (Fc) 1 ANNO MODULO: ACCOGLIENZA

Lezione n. 4. Lavoro e calore Misura di lavoro e calore Energia interna. 04/03/2008 Antonino Polimeno 1

IL PRIMO PRINCIPIO DELLA TERMODINAMICA

PIANO DI STUDIO D ISTITUTO

10. LA MISURA DELLA TEMPERATURA

Il primo principio della termodinamica

TEMPERATURA E CALORE. DOWNLOAD Il pdf di questa lezione (0511.pdf) è scaricabile dal sito calvini/biot/ 11/05/2017

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

NOZIONI DI FISICA E TERMODINAMICA

Fisica per Medicina. Lezione 9 - Termodinamica. Dr. Cristiano Fontana

Densità e volume specifico

[E] l energia occorrente per innalzare di 1 K la temperatura di 1 Mol di sostanza.

Corso di MECCANICA DEL VOLO Modulo Prestazioni. INTRO- Il Velivolo. Prof. D. P. Coiro

i tre stati di aggregazione

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Termodinamica e termochimica

PIANO DI LAVORO DEL DOCENTE prof. Rossi Manuela A.S. 2015/2016 CLASSE: 1ALL MATERIA: Scienze Naturali

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto

CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010

Istituto Professionale di Stato Maffeo Pantaleoni di Frascati SCHEDA PROGRAMMAZIONE DIDATTICA DISCIPLINARE

Fabio Peron. Termodinamica classica. Elementi di termodinamica. Sistemi termodinamici. Sistemi termodinamici. l universo.

Gradi di libertà negli sta/ di aggregazione della materia

SCALA TERMOMETRICA CELSIUS

Programma: a che punto siamo? Sistema, equilibrio e fase Tre concetti fondamentali. Definizione di sistema in termodinamica

Statica ed equilibrio dei corpi

VARIABILI DI INTERESSE

1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5.

L ENERGIA CINETICA DELLE MOLECOLE DI UN GAS E LA TEMPERATURA Ogni molecola ha in media un'energia cinetica

LICEO SCIENTIFICO G. GALILEI - Verona Anno Scolastico

PRIMO PRINCIPIO DELLA TERMODINAMICA SISTEMA

Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore

Esercizi per il recupero

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

La temperatura. La materia può trovarsi in tre stati diversi di aggregazione diversi: solido, liquido e gassoso

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene:

FISICA CLASSE 4ASU. CAPITOLO 10 Legge di conservazione della : se su un sistema non agiscono forze, la quantità di moto totale del sistema

Temperatura Calore Trasformazioni termodinamiche

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello del 12 settembre 2008

CHIMICA GENERALE ED INORGANICA

La misura della temperatura

PSICROMETRIA PROPRIETÀ TERMODINAMICHE DEI GAS PERFETTI

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento

G. Caboto G A E T A M A C C H I N E

14. Transizioni di Fase_a.a. 2009/2010 TRANSIZIONI DI FASE

A.S. 2016/2017 PROGRAMMA SVOLTO E INDICAZIONI PER IL RECUPERO ESTIVO. Del prof. Gabriele Giovanardi (nome e cognome in stampatello) docente di Fisica

Università degli studi di Trento Corso di Laurea in Enologia e Viticoltura. Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica

Università degli Studi di Pavia Facoltà di Medicina e Chirurgia

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lezione 13. Termologia

Applicazioni del primo principio della termodinamica ed utilizzo delle tabelle del vapore: Esercizi svolti

Temperatura. Temperatura

Transcript:

Introduzione Introduzione Prof. Ing. Marina Mistretta

Cos è la Fisica Tecnica Studio degli scambi di energia e di materia tra i sistemi e l ambiente circostante. Il calore si disperde nel verso delle temperature decrescenti Introduzione Prof. Ing. Marina Mistretta

Obiettivi del corso - Principi fondamentali della termodinamica applicata e in particolare dei bilanci di massa e di energia per i sistemi chiusi e aperti che sono rappresentativi di applicazioni reali riguardanti il comportamento del sistema edificio-impianto. - Caratteristiche e Comportamento termico dei componenti dell involucro edilizio, attraverso l acquisizione delle leggi che governano i meccanismi di scambio termico in regime stazionario. - Metodologie di valutazione qualitativa e quantitativa per la determinazione degli scambi energetici attraverso i componenti edilizi, in vista dei successivi moduli di insegnamento dell area impiantistica Introduzione Prof. Ing. Marina Mistretta

Tematiche principali del corso 1. Elementi di Termodinamica 2. Aria Umida 2. Trasmissione del calore 3. Illuminotecnica Introduzione Prof. Ing. Marina Mistretta

Sistemi e volumi di controllo Sistema: Quantità di materia di materia o una regione di spazio scelto per lo studio. Ambiente: Massa o regione al di fuori del sistema Confine: Superficie reale o immaginaria che separa il sistema dall ambiente. Il confine di un sistema può essere fisso o movibile. I sistemi possono essere chiusi o aperti. Sistema chiuso (Massa di controllo): Una quantità invariabile di massa. Non c è attraversamento di massa attraverso il confine.

Sistema aperto (volume di controllo): Porzione di spazio in cui sia la massa che l energia possono attraverso il confine del volume. Superficie di controllo: È la superficie che racchiude il volume V.C. Un sistema aperto con un ingresso e un uscita

L edificio è un sistema aperto che scambia con l ambiente massa ed energia: - energia termica (calore) - massa d aria

Proprietà di un sistema Proprietà: Una caratteristica di un sistema. Alcune sono la pressione P, temperatura T, volume V, e la massa m. Le propietà possono essere intensive or estensive. Proprietà intensive: Quelle che sono indipendenti dalla massa di un sistema, come la temperatura, la pressione e la densità. Proprietà estensive: Quelle i cui valori dipendono dalla misura o dall estensione del sistema. Criterio per differenziare le proprietà intensive e quelle estensive.

Proprietà di un sistema V tot = 300 litri m tot = 3 kg T = 25 C V 1 = 100 litri m 1 = 1 kg T 1 = 25 C V 2 = 100 litri m 2 = 1 kg T 2 = 25 C V 3 = 100 litri m 3 = 1 kg T 3 = 25 C Si può scrivere: V tot =V 1 + V 2 + V 3 m tot =m 1 + m 2 + m 3 T 1 = T 2 = T 3 Allora volume e massa dipendono dall estensione del sistema

Proprietà di un sistema Massa e volume sono proprietà estensive e ad esse è applicabile la proprietà additiva. La temperatura non è estensiva, ma è intensiva e resta costante al variare della massa del sistema Proprietà specifiche: Proprietà estensive per unità di massa. Infatti se si divide una proprietà estensiva per la massa considerata essa non gode più della proprietà additiva e soddisfa la definizione di proprietà intensiva Esempio: volume specifico v = Volume/massa= V/m peso specifico γ = Peso/ massa = P/m

Proprietà interne ed esterne Proprietà esterne: Proprietà che dipendono dal moto del sistema o dalla sua posizione in un campo di forze e vengono misurate rispetto ad un sistema di riferimento esterno al sistema Esempio: velocità, energia cinetica, energia potenziale. Proprietà interne: Proprietà che sono suscettibili di misura all interno dei confini del sistema Esempio: pressione, temperatura, volume specifico

DENSITÀ Densità Volume specific Peso specifico Il peso di un volume unitario di sostanza Densità è massa per unità di volume Il volume specifico è volume per unità di massa

STATO TERMODINAMICO Per stato termodinamico si intende la condizione di un sistema defnita dai valori delle proprietà che lo caratterizzano (p, v, T) Si dice che un sistema è in equilibrio termodinamico se tali proprietà non variano nel tempotato di bilancio. Non ci sono cambiamenti del sistema. Equilibrio termico: Se la temperatura è la stessa all interno di tutto il sistema. Equilibrio meccanico: Se non ci sono cambiamenti di pressione in nessun punto del sistema. Equilibrio di fase: Se non ci sono cambiamenti di fase all interno del sistema. Equilibrio chimico: Se non avvengono reazioni chimiche all interno del sistema. Un sistema chiuso che raggiunge l equilibrio termico.

Un sistema a due differenti stati. Quando un sistema passa da uno stato di equilibrio a un altro, si dice che esso subisce una trasformazione. Ciò avviene se esiste qualche interazione tra ambiente e sistema di tipo energetico

Trasformazione o processo: Cambiamento del sistema, in virtù del quale un sistema passa da uno stato di equilibrio a un altro. Percorso: La serie di stati attraverso cui un sistema passa durante una trasformazione. Per descrivere un processo completamente, si devono conoscere gli stati iniziale e finale il percorso e le interazioni con l ambiente.

Le trasformazioni si possono descrivere attraverso i diagrammi di stato le cui coordinate sono le proprietà termodinamiche: temperatura T, pressione P e volume V (o volume specifico v). Il prefisso iso- è spesso impiegato per individuare un processo in cui una certa proprietà rimane costante. Trasformazione isotermico: Process in cui la T rimane costante. Trasformazione isobarica: Process in cui la P rimane costante. Trasformazione isocora: Process in cui v rimane costante. Ciclo: Processo in cui lo stato iniziale coincide con lo stato finale. Il diagramma P-V di un processo di compressione.

Unità di misura Qualunque proprietà fisica possiede una dimensione. La grandezza assegnata ad una dimensione si chiama unità. Dimesioni di base: - massa m, lunghezza L, tempo t, e temperatura T chiamate grandezze primarie o dimensioni fondamentali - velocita v, energia E, and volume V sono espresse in funzione di dimensioni primarie e sono chiamate dimensioni secondarie o derivate. Sistema Metrico SI : Sistema semplice e logico basato su una relazione decimale tra le varie unità.

Unità di misura Massa [M] kg Lunghezza [L] m (spazio, spostamento) Tempo [T] s [Velocità] = [spazio]/[tempo] = [L]/[T]= m/s

Alcune unità di misura

[Energia, lavoro] =[forza]x[spostamento]= [massa]x[accelerazione]x[spostamento]= [M]x[L]/[T -2 ]x[l]=[m]x[l 2 ]/[T -2 ] Nota: l equazione dimensionale si ricava l unità di misura kg m 2 /s 2 = Nxm = J (joule) Lavoro = Forza Distanza 1 J = 1 N m 1 cal = 4.1868 J

W peso m massa g accelerazione di gravità Un corpo che pesa 60 kgf sulla Terra pesa solo 10 kgf sulla luna.

Pressione Pressione: Forza esercitata ortogonalmente ad una superficie per unità di superficie stessa 68 kg 136 kg A feet =300cm 2 0.23 kgf/cm 2 0.46 kgf/cm 2 P=68/300=0.23 kgf/cm 2 La pressione sul piede di una persona robusta è maggiore di quella esercitata sul piede di una magra. Pressione: p=peso/superficie= mg/s=ρvg/s=ρshg/s = ρgh

In un volume riempito con gas, la variazione di pressione al variare dell altezza è trascurabile In un liquido in quiete la pressione aumenta linearmente all aumentare della distanza dalla superficie. Pressione: p=peso/superficie= mg/s=ρvg/s=ρshg/s = ρgh

BAROMETRO PRESSIONE ATMOSFERICA Il barometro misura la pressione atmosferica. Pressione in atmosfera standard, che è definita come la pressione prodotta da una colonna di mercurio di 760 mm in altezza a 0 C (ρ Hg = 13 595 kg/m 3 ) per effetto dell accelerazione di gravità standard (g = 9,807 m/s 2 ). L ampiezza della sezione trasversale non ha effetto sulla lunghezza della colonna di mercurio Non c è capillarità (tensione superciale) Barometro

TEMPERATURA E IL PRINCIPIO ZERO DELLA TERMODINAMICA Principio zero: Se due corpi sono in equilibrio termico con un terzo, essi sono pure in equilibrio termico l uno con l altro. Sostituendo il terzo corpo con un termometro, il principio zero si può riformulare come due corpi sono in equilibrio termico se entrambi hanno la stessa temperatura anche se non sono in contatto. Due corpi che raggiungono l equilibrio termico dopo essere stati messi in contatto in un contenitore isolato

Scale di Temperatura Tutte le scale di temperatura sono basate su alcuni stati fisici facilmente riproducibili, come il punto di ebollizione e di congelamento dell acqua: ice point e steam point Ice point (punto di congelamento): Miscela di ghiaccio e acqua che è in equilibrio con vapore alla pressione di 1 atm (T = 0 C). Steam point (punto di vaporizzazione): Miscela di acqua liquida e acqua allo stato di vapore che è in equilibrio alla pressione di 1 atm (100 C). 26

Confronto tra le scale di temperature La temperatura di riferimento nella scala Kelvin è quella al punto di congelamento (ice point), 273.15 K, che è anche la temperatura alla quale l acqua fonde (melt point).

Unità di misura della temperatura Le unità di misura accettate per la temperatura sono il kelvin (simbolo K) e il grado Celsius (simbolo C) Le due unità di misura sono dimensionalmente omogenee e pertanto nel SI la temperatura si può esprimere sia in K che in C. La relazione tra la temperatura in gradi Celsius e quella in kelvin è la seguente: T ( C) = T (K)-273.15 T( C) = T(K)

Energia L energia è una proprietà estensiva di un sistema e può variare secondo tre diverse modalità: a) Modalità calore b) Modalità lavoro c) A seguito di trasferimento di massa non realizzabile in un sistema chiuso (confini impermeabili alla massa). 1. Si parla di energia trasmessa sotto forma di calore se la causa è una differenza di temperatura 2. Si parla di energia trasmessa sotto forma di lavoro se la causa è l azione di una forza (pressione) risultante diversa da zero

Energia Né lavoro, né calore sono proprietà di stato del sistema, bensì grandezze in transito tra sistema e ambiente o tra due sistemi ed esistono quando c è scambio di energia e quindi varia il contenuto di energia del sistema. L energia è invece una proprietà del sistema. Si utilizza in genere la seguente convenzione: Il lavoro si considera positivo se compiuto dal sistema sull ambiente, negativo nel caso contrario Il calore si assume positivo se è entrante nel sistema, negativo nel caso contrario Q<0 L<0 Q>0 L>0

Caratteristiche dei confini di un sistema rispetto agli scambi di energia Confine adiabatico: confine che non consente gli scambi di calore tra il sistema e l ambiente Confine rigido: confine che non consente scambi energetici sotto forma di lavoro di variazione di volume Confine mobile: confine che consente scambi energetici sotto forma di lavoro di variazione di volume Un sistema si dice isolato se attraverso il suo confine non avviene nessuna modalità di scambio energetico