Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti Sapienza Università di Roma - Via Ariosto 25 https://groups.google.com/a/dis.uniroma1.it/d/forum/ricerca operativa medicina
Cosa è un modello Il termine modello è usato per definire una rappresentazione di un oggetto o di un fenomeno, che corrisponde alla cosa modellata per il fatto di riprodurne alcune caratteristiche o comportamenti fondamentali (wikipedia), di solito usato per evidenziare proprietà specifiche di oggetti reali. modelli concreti: ad esempio i prototipi (di aerei o automobili),
Cosa è un modello Il termine modello è usato per definire una rappresentazione di un oggetto o di un fenomeno, che corrisponde alla cosa modellata per il fatto di riprodurne alcune caratteristiche o comportamenti fondamentali (wikipedia), di solito usato per evidenziare proprietà specifiche di oggetti reali. modelli concreti: ad esempio i prototipi (di aerei o automobili), modelli matematici costruiti usando il linguaggio e gli strumenti della matematica.
In alcuni casi le situazioni in esame sono talmente complesse e le dimensioni talmente elevate da rendere difficile o troppo costoso l uso di modelli analitici. modello di simulazione utilizzo di un calcolatore per costruire un modello che permetta di replicare le caratteristiche del problema reale in esame. Questi modelli hanno la differenza fondamentale rispetto ai modelli analitici di utilizzare il calcolatore non solo come strumento di calcolo, ma anche come strumento per rappresentare le realtà. Non li tratteremo in questo corso.
I modelli matematici Rappresentano la realtà attraverso variabili e relazioni logico - matematiche e descrivono in modo semplificato, ma rigoroso, i fenomeni del mondo reale che si vogliono considerare. Perché un modello matematico? obbligo ad un analisi per cogliere gli aspetti essenziali e significativi di un problema deduzione analitica di proprietà strutturali possibilità effettuare un analisi di tipo What if...? e quindi di valutare fuori linea leffetto delle scelte possibilità di individuare la miglior soluzione anche quando le possibili scelte sono molte
Programmazione Matematica Tra i modelli base più comunemente usati ci sono i problemi di Programmazione Matematica.
Programmazione Matematica Tra i modelli base più comunemente usati ci sono i problemi di Programmazione Matematica. In questo contesto il termine programmazione non deve essere inteso nel senso di di costruzione di programmi per il calcolatore, seppur il calcolatore elettronico sia uno strumento indispensabile per risolvere problemi di Programmazione Matematica.
Programmazione Matematica Tra i modelli base più comunemente usati ci sono i problemi di Programmazione Matematica. In questo contesto il termine programmazione non deve essere inteso nel senso di di costruzione di programmi per il calcolatore, seppur il calcolatore elettronico sia uno strumento indispensabile per risolvere problemi di Programmazione Matematica. I problemi di Programmazione Matematica rappresentano problemi decisionali con un solo decisore, un solo criterio di scelta deterministici.
Programmazione matematica Sono modelli con una struttura di questo tipo Ottimizza obiettivo restrizione 1 restrizione 2. restrizione m in cui obiettivo e restrizione-i sono rappresentati mediante relazioni matematiche che legano i parametri del problema con le possibili scelte decisionali. Ottimizza significa individuare la scelta che definisce il valore massimo o minimo dell obiettivo (funzione obiettivo).
Ma algoritmo che vuol dire? Una volta ottenuto un modello matematico, la RO si dedica alla definizione di metodi matematici efficienti (algoritmi di soluzione) per determinare una soluzione. Un insieme di istruzioni elementari che eseguite (su calcolatore) consentono di determinare la soluzione di un problema in un tempo finito Il più famoso nella RO è il metodo del simplesso che consente di determinare la soluzione ottima di un problema di programmazione lineare.
Approccio modellistico ai problemi di decisione Descrizione e Analisi del problema Costruzione del modello Analisi del modello Selezione di buone soluzioni Validazione del modello
Approccio modellistico ai problemi di decisione Descrizione e Analisi del problema individuare i parametri di controllo, i legami logico-funzionali e gli obiettivi Costruzione del modello Analisi del modello Selezione di buone soluzioni Validazione del modello
Approccio modellistico ai problemi di decisione Descrizione e Analisi del problema individuare i parametri di controllo, i legami logico-funzionali e gli obiettivi Costruzione del modello descrizione formalizzata del problema: individuazione di una corrispondenza tra relazioni del mondo reale (relazioni tecnologiche, leggi fisiche, vincoli di mercato, etc.) e relazioni matematiche (equazioni, disequazioni, dipendenze logiche, etc.) Analisi del modello Selezione di buone soluzioni Validazione del modello
Approccio modellistico ai problemi di decisione Descrizione e Analisi del problema individuare i parametri di controllo, i legami logico-funzionali e gli obiettivi Costruzione del modello descrizione formalizzata del problema: individuazione di una corrispondenza tra relazioni del mondo reale (relazioni tecnologiche, leggi fisiche, vincoli di mercato, etc.) e relazioni matematiche (equazioni, disequazioni, dipendenze logiche, etc.) Analisi del modello deduzione per via analitica di alcune importanti proprietà, quali esistenza, unicità, stabilità ecc. Selezione di buone soluzioni Validazione del modello
Approccio modellistico ai problemi di decisione Descrizione e Analisi del problema individuare i parametri di controllo, i legami logico-funzionali e gli obiettivi Costruzione del modello descrizione formalizzata del problema: individuazione di una corrispondenza tra relazioni del mondo reale (relazioni tecnologiche, leggi fisiche, vincoli di mercato, etc.) e relazioni matematiche (equazioni, disequazioni, dipendenze logiche, etc.) Analisi del modello deduzione per via analitica di alcune importanti proprietà, quali esistenza, unicità, stabilità ecc. Selezione di buone soluzioni (ottimizzazione e/o simulazione) Validazione del modello
Approccio modellistico ai problemi di decisione Descrizione e Analisi del problema individuare i parametri di controllo, i legami logico-funzionali e gli obiettivi Costruzione del modello descrizione formalizzata del problema: individuazione di una corrispondenza tra relazioni del mondo reale (relazioni tecnologiche, leggi fisiche, vincoli di mercato, etc.) e relazioni matematiche (equazioni, disequazioni, dipendenze logiche, etc.) Analisi del modello deduzione per via analitica di alcune importanti proprietà, quali esistenza, unicità, stabilità ecc. Selezione di buone soluzioni (ottimizzazione e/o simulazione) Validazione del modello verifica che i risultati ottenuti siano congruenti con il problema
Assegnamento: definizione del problema Un azienda deve decidere come assegnare i suoi 3 dipendenti a 3 differenti attività da svolgere.
Assegnamento: definizione del problema Un azienda deve decidere come assegnare i suoi 3 dipendenti a 3 differenti attività da svolgere. Ciascun dipendente può esprimere una preferenza dipendenti att 1 att 2 att 3 dip 1 0,9 0,8 1 dip 2 0,7 0,5 1 dip 3 0,8 0,4 1 ciascun dipendente deve essere assegnato ad un sola attività ; ciascuna attività deve essere svolta esattamente da un dipendente. Supponiamo che l azienda voglia massimizzare il soddisfacimento medio.
Assegnamento dipendenti - attività dipendente #1 dipendente #2 dipendente #3 attività #1 attività #2 attività #3
Analisi del problema un numero n = 3 di dipendenti/attività. un insieme D di dipendenti {1, 2,..., n}, un insieme A di attività {1, 2,..., n}, ad ogni coppia (dipendente i, attività j) è associato un valore V ij ; Le preferenze dunque sono rappresentate da una tabella dipendenti att 1 att 2 att 3 dip 1 V 11 V 12 V 13 dip 2 V 21 V 22 V 23 dip 3 V 31 V 32 V 33
Enumeriamo tutte le possibilità Elenchiamo tutte le possibiltà che soddisfano le restrizioni e calcoliamo il valore di ogni scelta.
Enumeriamo tutte le possibilità Elenchiamo tutte le possibiltà che soddisfano le restrizioni e calcoliamo il valore di ogni scelta. {(1, 1), (2, 2), (3, 3)}, V 11 + V 22 + V 33 = 0, 9 + 0, 5 + 1 = 2, 4
Enumeriamo tutte le possibilità Elenchiamo tutte le possibiltà che soddisfano le restrizioni e calcoliamo il valore di ogni scelta. {(1, 1), (2, 2), (3, 3)}, V 11 + V 22 + V 33 = 0, 9 + 0, 5 + 1 = 2, 4 {(1, 1), (2, 3), (3, 2)}, V 11 + V 23 + V 32 = 0, 9 + 1 + 0, 4 = 2, 3
Enumeriamo tutte le possibilità Elenchiamo tutte le possibiltà che soddisfano le restrizioni e calcoliamo il valore di ogni scelta. {(1, 1), (2, 2), (3, 3)}, V 11 + V 22 + V 33 = 0, 9 + 0, 5 + 1 = 2, 4 {(1, 1), (2, 3), (3, 2)}, V 11 + V 23 + V 32 = 0, 9 + 1 + 0, 4 = 2, 3 {(1, 2), (2, 1), (3, 3)}, V 12 + V 21 + V 33 = 2, 5
Enumeriamo tutte le possibilità Elenchiamo tutte le possibiltà che soddisfano le restrizioni e calcoliamo il valore di ogni scelta. {(1, 1), (2, 2), (3, 3)}, V 11 + V 22 + V 33 = 0, 9 + 0, 5 + 1 = 2, 4 {(1, 1), (2, 3), (3, 2)}, V 11 + V 23 + V 32 = 0, 9 + 1 + 0, 4 = 2, 3 {(1, 2), (2, 1), (3, 3)}, V 12 + V 21 + V 33 = 2, 5 {(1, 2), (2, 3), (3, 1)}, V 12 + V 23 + V 31 = 2, 6
Enumeriamo tutte le possibilità Elenchiamo tutte le possibiltà che soddisfano le restrizioni e calcoliamo il valore di ogni scelta. {(1, 1), (2, 2), (3, 3)}, V 11 + V 22 + V 33 = 0, 9 + 0, 5 + 1 = 2, 4 {(1, 1), (2, 3), (3, 2)}, V 11 + V 23 + V 32 = 0, 9 + 1 + 0, 4 = 2, 3 {(1, 2), (2, 1), (3, 3)}, V 12 + V 21 + V 33 = 2, 5 {(1, 2), (2, 3), (3, 1)}, V 12 + V 23 + V 31 = 2, 6 {(1, 3), (2, 2), (3, 1)}, V 13 + V 22 + V 31 = 2, 4
Enumeriamo tutte le possibilità Elenchiamo tutte le possibiltà che soddisfano le restrizioni e calcoliamo il valore di ogni scelta. {(1, 1), (2, 2), (3, 3)}, V 11 + V 22 + V 33 = 0, 9 + 0, 5 + 1 = 2, 4 {(1, 1), (2, 3), (3, 2)}, V 11 + V 23 + V 32 = 0, 9 + 1 + 0, 4 = 2, 3 {(1, 2), (2, 1), (3, 3)}, V 12 + V 21 + V 33 = 2, 5 {(1, 2), (2, 3), (3, 1)}, V 12 + V 23 + V 31 = 2, 6 {(1, 3), (2, 2), (3, 1)}, V 13 + V 22 + V 31 = 2, 4 {(1, 3), (2, 1), (3, 2)}, V 13 + V 21 + V 32 = 2, 3
Enumeriamo tutte le possibilità Elenchiamo tutte le possibiltà che soddisfano le restrizioni e calcoliamo il valore di ogni scelta. {(1, 1), (2, 2), (3, 3)}, V 11 + V 22 + V 33 = 0, 9 + 0, 5 + 1 = 2, 4 {(1, 1), (2, 3), (3, 2)}, V 11 + V 23 + V 32 = 0, 9 + 1 + 0, 4 = 2, 3 {(1, 2), (2, 1), (3, 3)}, V 12 + V 21 + V 33 = 2, 5 {(1, 2), (2, 3), (3, 1)}, V 12 + V 23 + V 31 = 2, 6 {(1, 3), (2, 2), (3, 1)}, V 13 + V 22 + V 31 = 2, 4 {(1, 3), (2, 1), (3, 2)}, V 13 + V 21 + V 32 = 2, 3 La scelta migliore corrisponde a {(1, 2), (2, 3), (3, 1)}, dipendente #1 attività #1 dipendente #2 attività #2 dipendente #3 attività #3
Un modello sbagliato? è esaustivo; dunque si può definire solo per valori di n piccoli è dipendente dai valori: se cambiano devo ricalcolare
Un modello di programmazione matematica Formalizzazione matematica del problema di assegnamento Individuiamo le scelte decisionali=variabili di decisione dip i assegnato alla att j = { { VERO FALSO = = { 1 0 Dunque una scelta decisionale può essere rappresentata come dipendenti att 1 att 2 att 3 dip 1 1 0 0 dip 2 0 1 0 dip 3 0 0 1
Variabili di decisione Per semplificare la scrittura indichiamo le variabili di decisione come x ij (ma si tratta di un nome!) che può assumere solo due valori {0, 1} e sono n 2 = 9 dipendenti att 1 att 2 att 3 dip 1 x 11 x 12 x 13 dip 2 x 21 x 22 x 23 dip 3 x 31 x 32 x 33
La funzione obiettivo dipendenti att 1 att 2 att 3 dip 1 x 11 x 12 x 13 dip 2 x 21 x 22 x 23 dip 3 x 31 x 32 x 33 dipendenti att 1 att 2 att 3 dip 1 V 11 V 12 V 13 dip 2 V 21 V 22 V 23 dip 3 V 31 V 32 V 33 {(1, 1), (2, 2), (3, 3)}, V 11 x 11 + V 22 x 22 + V 33 x 33 = 0, 9 + 0, 5 + 1 = 2, 4 n i=1 j=1 n V ij x ij
Le restrizioni Le restrizioni=vincoli richiedono che ciascun dipendente deve essere assegnato ad un sola attività ; dipendenti att 1 att 2 att 3 dip 1 1 0 0 dip 2 0 1 0 dip 3 0 0 1
Le restrizioni Le restrizioni=vincoli richiedono che ciascun dipendente deve essere assegnato ad un sola attività ; dipendenti att 1 att 2 att 3 dip 1 1 0 0 dip 2 0 1 0 x 21 + x 22 + x 23 = 1 dip 3 0 0 1
Le restrizioni Le restrizioni=vincoli richiedono che ciascun dipendente deve essere assegnato ad un sola attività ; ciascuna attività deve essere svolta esattamente da un dipendente. dipendenti att 1 att 2 att 3 dip 1 1 0 0 dip 2 0 1 0 dip 3 0 0 1 x 12 + x 22 + x 32 = 1
I vincoli x 11 + x 12 + x 13 = 1 x 21 + x 22 + x 23 = 1 x 31 + x 32 + x 33 = 1 x 11 + x 21 + x 31 = 1 x 12 + x 22 + x 32 = 1 x 13 + x 23 + x 33 = 1 Sono 2 n = 6 dipendente 1 assegnato esattamente ad una attività attività 1 assegnata esattamente ad un dipendente
Un modello di programmazione matematica max n n V ij x ij i=1 j=1 n x ij = 1 i=1 n x ij = 1 j=1 x ij {0, 1} per ogni j = 1,..., n per ogni i = 1,..., n i = 1,..., n j = 1,..., n
Alcuni esempi applicativi economico gestionali pianificazione della produzione: determinare i livelli di produzione e/o lutilizzazione di risorse; ad es. allocazione ottima di risorse = distribuzione di risorse limitate tra alternative concorrenti in modo da minimizzare il costo o massimizzare il guadagno 1. allocazione di letti ai reparti per specializzazione
Alcuni esempi applicativi economico gestionali pianificazione della produzione: determinare i livelli di produzione e/o lutilizzazione di risorse; ad es. allocazione ottima di risorse = distribuzione di risorse limitate tra alternative concorrenti in modo da minimizzare il costo o massimizzare il guadagno 1. allocazione di letti ai reparti per specializzazione gestione ottima delle scorte: decidere quando e quanto, durante un processo produttivo, si devono immagazzinare prodotti in modo da rispettare le consegne minimizzando i costi. 1. gestione dell acquisizione di farmaci ospedalieri
Alcuni esempi applicativi economico gestionali pianificazione della produzione: determinare i livelli di produzione e/o lutilizzazione di risorse; ad es. allocazione ottima di risorse = distribuzione di risorse limitate tra alternative concorrenti in modo da minimizzare il costo o massimizzare il guadagno 1. allocazione di letti ai reparti per specializzazione gestione ottima delle scorte: decidere quando e quanto, durante un processo produttivo, si devono immagazzinare prodotti in modo da rispettare le consegne minimizzando i costi. 1. gestione dell acquisizione di farmaci ospedalieri localizzazione e dimensionamento di impianti: decidere dove installare impianti di produzione in modo da rifornire in modo ottimale aree distribuite su un territorio
progettazione di reti e loro gestione: definire i collegamenti e dimensionare le capacità di una rete stradale, di telecomunicazione, di trasmissione dati, di circuiti, in modo da garantire il traffico tra le varie origini e destinazioni e minimizzare il costo complessivo; 1. Nurse path
progettazione di reti e loro gestione: definire i collegamenti e dimensionare le capacità di una rete stradale, di telecomunicazione, di trasmissione dati, di circuiti, in modo da garantire il traffico tra le varie origini e destinazioni e minimizzare il costo complessivo; 1. Nurse path determinazione dei turni del personale: coprire una serie di servizi rispettando i vincoli di contratto aziendale e minimizzando i costi
progettazione di reti e loro gestione: definire i collegamenti e dimensionare le capacità di una rete stradale, di telecomunicazione, di trasmissione dati, di circuiti, in modo da garantire il traffico tra le varie origini e destinazioni e minimizzare il costo complessivo; 1. Nurse path determinazione dei turni del personale: coprire una serie di servizi rispettando i vincoli di contratto aziendale e minimizzando i costi manutenzione di beni: decidere quando e se effettuare la manutenzione di alcuni oggetti soggetti ad usura, in modo da minimizzare il costo complessivo.
instradamento di veicoli: decidere quali percorsi devono seguire i veicoli di un flotta (ad esempio di automezzi adibiti alla raccolta dei rifiuti o alla distribuzioni di prodotti ad una rete di negozi) in modo da minimizzare la distanza complessiva percorsa; 1. trasporti sanitari: la definizione dei percorsi degli automezzi che prelevano i pazienti che devono subire dei trattamenti medici
instradamento di veicoli: decidere quali percorsi devono seguire i veicoli di un flotta (ad esempio di automezzi adibiti alla raccolta dei rifiuti o alla distribuzioni di prodotti ad una rete di negozi) in modo da minimizzare la distanza complessiva percorsa; 1. trasporti sanitari: la definizione dei percorsi degli automezzi che prelevano i pazienti che devono subire dei trattamenti medici project planning: decidere come gestire le risorse e come sequenziare le molteplici attività di un progetto. 1. programmazione delle sale chirurgiche
Problemi di economia e finanza scelta di investimenti: scegliere fra un vasto numero di possibilità di investimento rispettando i vincoli imposti da un budget finanziario e massimizzando il guadagno;
Problemi di economia e finanza scelta di investimenti: scegliere fra un vasto numero di possibilità di investimento rispettando i vincoli imposti da un budget finanziario e massimizzando il guadagno; composizione di un portafoglio: decidere quali titoli e con quali quote investire capitali in modo da massimizzare il ricavo o minimizzare il rischio;
Problemi di economia e finanza scelta di investimenti: scegliere fra un vasto numero di possibilità di investimento rispettando i vincoli imposti da un budget finanziario e massimizzando il guadagno; composizione di un portafoglio: decidere quali titoli e con quali quote investire capitali in modo da massimizzare il ricavo o minimizzare il rischio; Problemi di revenue management (lett. Gestione del ritorno economico ) 1. in una azienda caratterizzata da varietà di servizi e di prezzi, domanda variabile nel tempo, stabilire quanti e quali servizi vendere avendo incertezza sulla domanda futura, allo scopo di massimizzare il profitto globale. 2. compagnie di trasporto aereo, ferroviario, marittimo, catene alberghiere e di noleggio auto.