Università del Salento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università del Salento"

Transcript

1 Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività decisionali Per gestire e coordinare attività con risorse limitate Al fine di massimizzare un profitto o minimizzare un costo (obiettivo) 1

2 Un po di storia U.K. -Progetto difesa antiaerea Bawdsey Research Station radar localizzazione degli aerei nemici intercettazione rientro a terra degli aerei inglesi ottimizzare la distribuzione delle apparecchiature radar sul territorio 1938 Relazione del soprintendente Rowe Compare per la prima volta l espressione l Operational Research (ricerca operativa) Un po di storia P. M. S. Blackett costituzione di un gruppo di ricerca di scienziati e militari lotta contro i sommergibili tedeschi 1943 USA gruppi di Ricerca Operativa per: guerra antisommergibile dimensionamento dei convogli navali scelta dei bersagli nelle incursioni aeree avvistamento ed intercettazione degli aerei nemici Problemi di tipo civile Localizzazione dei depositi industriali Problemi di produzione, di trasposto in Italia viene fondata l AIROl 2

3 Le fasi di uno studio di ricerca operativa Individuazione del problema Raccolta e analisi dei dati Costruzione del modello Ricerca della soluzione Interpretazione dei risultati Problema di decisione Un azienda automobilistica produce due modelli di auto, uno a benzina B che vende al prezzo di 10 mila euro e uno diesel D che vende a 12 mila euro. Ogni autovettura è realizzata da due robot R1 e R2. I tempi di lavorazione dei robot in ore per realizzare le auto sono: B D R1 2 3 R2 2 1 La disponibilità al giorno di R1 è di 24 ore, mentre quella di R2 è di 10 ore. 3

4 Problema di decisione L azienda ha effettuato un indagine di mercato con i seguenti esiti: la domanda giornaliera di B è al più il doppio di quella della macchina D la domanda minima giornaliera di auto è di 4. Problema: : determinare le quantità dei due modelli di auto che devono essere prodotte giornalmente in modo da rendere massimo il guadagno. Supponiamo che tutte le auto prodotte siano vendute. Formulazione del modello matematico Definizione delle variabili Formulazione Matematica Definizione della Funzione obiettivo Definizione dei vincoli 4

5 Definizione delle variabili Cosa devo decidere? Si introducono due variabili che rappresentano le quantità prodotte (e vendute) ogni giorno per i due modelli di auto Variabili x: Numero di auto a benzina y: Numero di auto diesel Definizione della funzione obiettivo Cosa voglio massimizzare? Il guadagno giornaliero dipende (è funzione) dalla decisione di quante auto D e B voglio produrre La funzione obiettivo è una funzione lineare! F(x,y)=10 x+12 y 5

6 Definizione dei vincoli Quali sono le restrizioni sulle variabili? Vincoli sul tempo di utilizzo dei robot: 2 x +3 y 24 2 x + y 10 Vincoli conseguenti l indagine di mercato: 2 y x x + y 4 Non si può produrre un numero negativo di auto: x 0, y 0 Formulazione del problema Max F(x,y)=10 x+12 y soggetto a: 2 x +3 y 24 2 x + y 10 2 y x x + y 4 x 0 y 0 6

7 Problema di programmazione lineare I problemi che hanno per modello matematico sistemi di disequazioni (o equazioni) lineari vincoli abbinati ad una funzione lineare da massimizzare o minimizzare funzione obiettivo prendono il nome di problemi di Programmazione Lineare (PL) Problema di programmazione lineare Ma adesso. Qual è la soluzione? Quante auto a benzina e diesel si devono produrre? Qual è il guadagno massimo? Che si faceva con i sistemi di disequazioni? 7

8 Metodo grafico Un problema di PL in due variabili può essere risolto attraverso semplici considerazioni di tipo geometrico, a partire dall individuazione su di un piano cartesiano del poligono ammissibile Regione Ammissibile determinata dai vincoli. y x Metodo grafico Ogni retta f(x,y)= ax + by + c = 0 divide il piano cartesiano in due semipiani rappresentati dalle disequazioni: ax + by + c < 0 ax + by + c > 0 Individuare il semipiano: f(x, y) = ax + by + c > 0 Si sceglie P(x,, y ) y ) non appartenente alla retta Se f(x,, y ) y ) > 0 il semipiano che contiene il punto P è quello cercato; Se f(x,, y ) y ) < 0 il semipiano che non contiene il punto P è quello cercato. 8

9 Metodo grafico Ogni vincolo del mio problema rappresenta un semipiano o una retta e siccome tutti i vincoli devono essere rispettati la soluzione apparterrà alla parte di piano che è intersezione di tutti i semipiani!!! Per trovare la Regione Ammissibile del nostro problema allora cerchiamo dove si intersecano i semipiani ma questo non voleva dire risolvere un sistema di disequazioni??? Regione ammissibile Max F(x,y)=10 x+12 y soggetto a: 2 x +3 y 24 2 x + y 10 2 y x x + y 4 x 0 y 0 9

10 Regione ammissibile Vincoli: x 0, y 0 y x Regione ammissibile Vincolo: 2 x +3 y 24 y 8 12 x 10

11 Regione ammissibile Vincolo: 2x + y y x Regione ammissibile Vincolo: 10 y 8 2y x 5 12 x 11

12 Regione ammissibile Vincolo: x + y 4 y x Dai sistemi lineari alla regione ammissibile La regione ammissibile è una figura convessa Che vuol dire convessa? 12

13 Dai sistemi lineari alla regione ammissibile La soluzione di sistemi di disequazioni lineari in due incognite coincide con la parte di piano comune ai semipiani individuati dalle singole disequazioni. Questa regione può essere limitata o illimitata. Se le disequazioni del sistema non hanno soluzioni comuni (i semipiani non si intersecano) il sistema è detto impossibile. Dai sistemi lineari alla regione ammissibile x x

14 Dai sistemi lineari alla regione ammissibile La regione ammissibile è un poliedro!!! Esempi di Reti Risolvere un problema di PL significa determinare se il problema è: Inammissibile (il sistema di disequazioni è impossibile) Illimitato inferiormente o superiormente Ammette una soluzione ottima che massimizza o minimizza la funzione obiettivo. 14

15 Teorema fondamentale. Se il problema di PL ammette minimo o massimo, allora la funzione obiettivo F(x, y) = ax+by+c assume il suo valore massimo o minimo solo su un VERTICE o su tutti i punti di un LATO della frontiera della regione ammissibile. Metodo enumerativo Ma allora.come si trova una soluzione per il problema delle auto??? Determinata la regione ammissibile: Calcola le coordinate dei vertici del poligono; Calcola il valore della funzione obiettivo su ogni vertice La soluzione è data dalle coordinate del vertice che rende massima o minima la funzione obiettivo 15

16 Metodo enumerativo y A(0,8) B(3/2,7) F(0,8)=10*0+12*8=96 F(3/2,7)=10*3/2+12*7=99 F(4,2)=10*4+12*2=64 F(8/3,4/3)=10*8/3+12*4/3=42,7 F(0,4)=10*0+12*4=48 E(0,4) C(4,2) D(8/3,4/3) x Il metodo del Simplesso Il metodo del simplesso è un algoritmo che permette, attraverso un numero finito di iterazioni, di passare, se il problema ammette soluzione, da un qualsiasi vertice del poliedro al vertice ottimo. L'algoritmo del Simplesso,, ideato dall'americano George Dantzig nel 1947, è un metodo numerico per risolvere problemi di PL 16

17 E per i più pigri: il Lingo LINGO è un pacchetto software che consente di formulare e risolvere problemi di ottimizzazione (Programmazione Lineare e non) anche a grandi dimensioni, e di analizzarne le rispettive soluzioni. Altro esempio: Gestione del Personale Il responsabile della gestione del personale di un azienda manifatturiera ha il compito di organizzare i turni di lavoro ad una catena di montaggio a ciclo continuo. 17

18 Gestione del Personale Sono previste sei fasce orarie per ognuna delle quali è richiesto un numero minimo di unità lavorative, come riassunto dalla seguente tabella: Gestione del Personale A seguito di accordi sindacali sono stati individuati sei turni di lavoro ciascuno dei quali di 8 ore lavorative: 18

19 Gestione del Personale Si vuole determinare il numero di unità lavorative da assegnare ad ogni turno in modo tale da impiegare la minor forza lavoro complessiva. Soluzione: Si indichi con: xi = numero di unità di personale da assegnare al turno i-esimo i (i = 1,, 6). Gestione del Personale E' evidente che la fascia oraria compresa tra le e le sarà coperta dalle unità lavorative del primo e del secondo turno. Dovendo garantire una disponibilità di personale di almeno 6 unità,, si impone il vincolo: x1 + x

20 Gestione del Personale E' evidente che la fascia oraria compresa tra le e le sarà coperta dalle unità lavorative del primo e del secondo turno. Dovendo garantire una disponibilità di personale di almeno 6 unità,, si impone il vincolo: x1 + x2 6. Gestione del Personale Analogamente, per le altre fasce orarie: x2 + x3 9 x3 + x4 14 x4 + x5 9 x5 + x6 11 x6 + x1 8 Obiettivo: minimizzare il numero di unità z impiegate: z = x1 + x2 + x3 + x4 + x5 + x6. 20

21 Gestione del Personale Modello Matematico: Gestione del Personale La soluzione ottimale prevede: per un numero complessivo di unità lavorative utilizzate pari a: z* = 31. Nota: soltanto per la fascia oraria compresa tra le e le saranno utilizzate unità di personale in un numero superiore rispetto al minimo richiesto. 21

22 Modello dello zaino Decisione: Quali materie preparare: avendo a disposizione un totale di 27 giorni volendo massimizzare il profitto? Materia Giorni prep. Profitto Italiano 10 20,00 Latino 12 22,50 Greco 15 25,00 Inglese 9 15,00 Fisica 7 12,50 Scienze 6 12,50 Storia 6 12,00 Geografia 6 12,00 Disegno 4 7,50 Modello dello zaino Strategia (algoritmo) massimo profitto: scelgo le materie più remunerative (rispettando il vincolo di 27 giorni) Materia Giorni prep. Profitto Italiano 10 20,00 Latino 12 22,50 Greco 15 25,00 Inglese 9 15,00 Fisica 7 12,50 Scienze 6 12,50 Storia 6 12,00 Geografia 6 12,00 Disegno 4 7,50 tempo: : 27 giorni profitto: 47,50 22

23 Modello dello zaino Strategie minimo tempo: scelgo le materie che richiedono meno tempo di preparazione Materia Giorni prep. Profitto Italiano 10 20,00 Latino 12 22,50 Greco 15 25,00 Inglese 9 15,00 Fisica 7 12,50 Scienze 6 12,50 Storia 6 12,00 Geografia 6 12,00 Disegno 4 7,50 tempo: : 22 giorni profitto: 44, 00 Modello dello zaino Altre Strategie? Materia Giorni prep. Profitto Italiano 10 20,00 Latino 12 22,50 Greco 15 25,00 Inglese 9 15,00 Fisica 7 12,50 Scienze 6 12,50 Storia 6 12,00 Geografia 6 12,00 Disegno 4 7,50 tempo: : 26 giorni profitto: 52 23

24 Modello dello zaino Risolvo un problema di PL con 9 variabili all ottimo Materia Giorni prep. Profitto Italiano 10 20,00 Latino 12 22,50 Greco 15 25,00 Inglese 9 15,00 Fisica 7 12,50 Scienze 6 12,50 Storia 6 12,00 Geografia 6 12,00 Disegno 4 7,50 tempo: : 27 giorni profitto: 52, 50 Compiti: Problema di Trasporto Un azienda possiede due centri di distribuzione e tre punti vendita dislocati sul territorio. Di un prodotto sono disponibili al più 250 unità presso il primo centro di distribuzione e al più 400 presso il secondo. Alla direzione centrale risulta una richiesta di rifornimento dai tre punti vendita pari ad almeno 120, 270, 130 unità rispettivamente. Presso tali centri ciascuna unità di prodotto viene venduta a Euro 14, 17 e

25 Compiti: Problema di Trasporto I costi unitari di trasporto, legati alla distanza tra i centri di distribuzione e i punti vendita, sono così riassumibili: Obiettivo: : massimizzare il profitto ipotizzando che sia possibile vendere tutto il quantitativo di prodotto disponibile presso i punti vendita. Compiti: Problema di Trasporto Suggerimento: Indicare con: xij = quantitativo di prodotto inviato dal centro di distribuzione i (i = 1, 2) al punto di vendita j (j = 1, 2, 3). 25

n. 6 giugno 2011 Ricerca Operativa, un problema di tutti i giorni Ivano Capozza Marianna Miola Quaderni del Liceo Ferraris

n. 6 giugno 2011 Ricerca Operativa, un problema di tutti i giorni Ivano Capozza Marianna Miola Quaderni del Liceo Ferraris n. 6 giugno 2011 Quaderni del Liceo Ferraris Ricerca Operativa, un problema di tutti i giorni Ivano Capozza Marianna Miola Quaderni del Liceo Ferraris numero 6 - giugno 2011 Capozza Ivano Miola Marianna

Dettagli

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Esercizio n.1 Un azienda intende incrementare il proprio organico per ricoprire alcuni compiti scoperti. I dati relativi ai compiti

Dettagli

Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE

Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE PRGRMMZIN LINR Problemi di P.L. in due variabili metodo grafico efinizione: la programmazione lineare serve per determinare l allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Ricerca operativa. prof. Mario Sandri [email protected]

Ricerca operativa. prof. Mario Sandri mario.sandri@gmail.it Ricerca operativa prof. Mario Sandri [email protected] Ricerca operativa La ricerca operativa (nota anche come teoria delle decisioni, scienza della gestione o, in inglese, operations research ("Operational

Dettagli

PROGRAMMAZIONE LINEARE:

PROGRAMMAZIONE LINEARE: PROGRAMMAZIONE LINEARE: Definizione:la programmazione lineare serve per determinare l'allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare il raggiungimento di un obiettivo

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera 8.1 MODELLI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 8.1.1 Una compagnia petrolifera dispone di 5 pozzi (P1, P2, P3, P4, P5) dai quali può estrarre petrolio.

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 All inizio

Dettagli

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque

Dettagli

Programmazione lineare

Programmazione lineare Programmazione lineare Un modello matematico per un problema di programmazione lineare Problema 1. Un reparto di un azienda di elettrodomestici può produrre giornalmente non più di 6 lavatrici, delle quali

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se

Dettagli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Ricerca Operativa 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi (come

Dettagli

Ricerca Operativa A.A. 2008/2009

Ricerca Operativa A.A. 2008/2009 Ricerca Operativa A.A. 08/09 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Paperone e Rockerduck: a cosa serve l antitrust?

Paperone e Rockerduck: a cosa serve l antitrust? Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine:

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine: 1.1 Pianificazione degli investimenti. Una banca deve investire C milioni di Euro, e dispone di due tipi di investimento: (a) con interesse annuo del 15%; (b) con interesse annuo del 25%. Almeno 1 di C

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Ricerca Operativa Prima Parte

Ricerca Operativa Prima Parte 1 2 fasi Prima Parte 2 Testi didattici S. Martello, M.G. Speranza, Ricerca Operativa per l Economia e l Impresa, Ed. Esculapio, 2012. F.S. Hillier, G.J. Lieberman, Ricerca operativa - Fondamenti, 9/ed,

Dettagli

Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007)

Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Nome... Cognome... 1 Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Si consideri la funzione f(x) = 4x 2 1 + 6x 4 2 2x 2 1x 2. Si applichi per un iterazione il metodo del gradiente a partire dai

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Introduzione La Ricerca Operativa La Ricerca Operativa è una disciplina relativamente recente. Il termine Ricerca Operativa è stato coniato

Dettagli

Modelli di Programmazione Lineare e Programmazione Lineare Intera

Modelli di Programmazione Lineare e Programmazione Lineare Intera Modelli di Programmazione Lineare e Programmazione Lineare Intera 1 Azienda Dolciaria Un azienda di cioccolatini deve pianificare la produzione per i prossimi m mesi. In ogni mese l azienda ha a disposizione

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica CAPITOLO I. - PROGRAMMAZIONE DINAMICA La programmazione dinamica è una parte della programmazione matematica che si occupa della soluzione di problemi di ottimizzazione di tipo particolare, mediante una

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE Nella Sezione 16.5 abbiamo visto come un regolatore che voglia fissare il prezzo del monopolista in modo da minimizzare la

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando

Dettagli

Fondamenti di Economia Aziendale ed Impiantistica Industriale

Fondamenti di Economia Aziendale ed Impiantistica Industriale Politecnico di Milano IV Facoltà di Ingegneria Fondamenti di Economia Aziendale ed Impiantistica Industriale Impiego della programmazione lineare nella progettazione degli impianti Cosa significa progettare

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria

Dettagli

SISTEMI DI CONDOTTE: Il dimensionamento idraulico

SISTEMI DI CONDOTTE: Il dimensionamento idraulico SISTEMI DI CONDOTTE: Il dimensionamento idraulico Carlo Ciaponi Università degli Studi di Pavia Dipartimento di Ingegneria Idraulica e Ambientale Posizione del del problema Rete da progettare di cui è

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: [email protected] sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)

Dettagli

Università degli Studi di Milano / Bicocca Facoltà di Economia. Prova scritta del 12 luglio 2011 SOLUZIONI

Università degli Studi di Milano / Bicocca Facoltà di Economia. Prova scritta del 12 luglio 2011 SOLUZIONI Università degli Studi di Milano / Bicocca Facoltà di Economia MATEMATICA FINANZIARIA EcoCom A-Le / Li-Z Prova scritta del luglio SOLUZIONI Per gli studenti immatricolati entro il 7/8 (45cfu): L operazione

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ In questa Appendice mostreremo come trovare la tariffa in due parti che massimizza i profitti di Clearvoice,

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 20/202 Lezione 6-8 Rappresentazione di funzioni non lineari: - Costi fissi - Funzioni lineari a tratti Funzioni obiettivo non lineari:

Dettagli

Modelli per la gestione delle scorte

Modelli per la gestione delle scorte Modelli per la gestione delle scorte Claudio Arbib Università di L Aquila Seconda Parte Sommario Sui problemi di gestione aperiodica equazioni di stato Funzioni di costo Un modello convesso formulazione

Dettagli

(3,4) (1,3) (2,2) (0,2) (3,4) (2,4) t (2,3) (3,5) (2,4) (3,5) (6,8) (3,4) (1,2) 1 (1,3)

(3,4) (1,3) (2,2) (0,2) (3,4) (2,4) t (2,3) (3,5) (2,4) (3,5) (6,8) (3,4) (1,2) 1 (1,3) Prova Scritta di RICERCA OPERATIVA èinformaticiè 2èè98 - Esame æ Cognome: æ Nome:. Una compagnia petrolifera possiede 3 depositi dai quali puço prelevare benzina e trasportarla ai 5 impianti di distribuzione.

Dettagli

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione: 1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente

Dettagli

I Esonero di Metodi di Ottimizzazione (Laurea in Ingegneria Gestionale-Corso B) Traccia A

I Esonero di Metodi di Ottimizzazione (Laurea in Ingegneria Gestionale-Corso B) Traccia A I Esonero di Metodi di Ottimizzazione Traccia A 1. Uno stabilimento deve varare un piano di assunzioni di dirigenti, impiegati ed operai. L assunzione di un dirigente può avvenire attraverso un concorso

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE INTRODUZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Introduzione alla simulazione Una simulazione è l imitazione

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

1. Considerazioni preliminari

1. Considerazioni preliminari 1. Considerazioni preliminari Uno dei principali aspetti decisionali della gestione logistica è decidere dove localizzare nuove facility, come impianti, magazzini, rivenditori. Ad esempio, consideriamo

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo

Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Modelli di PL: allocazione ottima di risorse Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Allocazione ottima di robot Un azienda automobilistica produce tre

Dettagli

I PROBLEMI ALGEBRICI

I PROBLEMI ALGEBRICI I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e

Dettagli

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 96 matematica per l economia Esercizio 65. Consideriamo ancora il problema 63 dell azienda vinicola, aggiungendo la condizione che l azienda non può produrre più di 200 bottiglie al mese. Soluzione. La

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema La CMC produce automobili in uno stabilimento

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Ricerca Operativa Esercizio 1

Ricerca Operativa Esercizio 1 E1 Esercizio 1 La fonderia ESSELLE deve produrre esattamente 1000 pezzi del peso di un chilogrammo ciascuno. Il ferro con cui questi pezzi saranno fatti deve contenere manganese e silicio nelle seguenti

Dettagli

Il modello generale di commercio internazionale

Il modello generale di commercio internazionale Capitolo 6 Il modello generale di commercio internazionale [a.a. 2013/14] adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) 6-1 Struttura della presentazione Domanda e

Dettagli

Capitolo 6. Offerta in concorrenza perfetta: il lato dei costi

Capitolo 6. Offerta in concorrenza perfetta: il lato dei costi Capitolo 6 Offerta in concorrenza perfetta: il lato dei costi Costo opportunità Adalberto può guadagnare 6 all ora come cameriere; in alternativa può effettuare raccolta per riciclaggio al prezzo di 2

Dettagli

CAPITOLO 10 I SINDACATI

CAPITOLO 10 I SINDACATI CAPITOLO 10 I SINDACATI 10-1. Fate l ipotesi che la curva di domanda di lavoro di una impresa sia data da: 20 0,01 E, dove è il salario orario e E il livello di occupazione. Ipotizzate inoltre che la funzione

Dettagli

ALGORITMO DEL SIMPLESSO

ALGORITMO DEL SIMPLESSO ALGORITMO DEL SIMPLESSO ESERCITAZIONI DI RICERCA OPERATIVA 1 ESERCIZIO 1. Risolvere il seguente programma lineare (a) con il metodo del simplesso e (b) con il metodo grafico. (1) min x 1 x () (3) (4) (5)

Dettagli

ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia.

ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia. ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia. La prova scritta consta di dodici domande, formulate come test a risposta multipla. Una sola delle cinque risposte fornite

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI

RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI DI SCELTA) Il termine RICERCA OPERATIVA sembra sia stato usato per la prima volta nel 1939, ma già precedentemente alcuni scienziati si erano occupati di problemi

Dettagli

Ogni azienda ha la necessità di conoscere il proprio sistema dei costi sia per controllare la situazione esistente che per verificare il

Ogni azienda ha la necessità di conoscere il proprio sistema dei costi sia per controllare la situazione esistente che per verificare il Ogni azienda ha la necessità di conoscere il proprio sistema dei costi sia per controllare la situazione esistente che per verificare il raggiungimento degli obiettivi avendo come fine il mantenimento

Dettagli

Luigi De Giovanni Esercizi di modellazione matematica Ricerca Operativa

Luigi De Giovanni Esercizi di modellazione matematica Ricerca Operativa Piani di investimento Un finanziere ha due piani di investimento A e B disponibili all inizio di ciascuno dei prossimi cinque anni. Ogni euro investito in A all inizio di ogni anno garantisce, due anni

Dettagli

IL PROBLEMA DELLE SCORTE

IL PROBLEMA DELLE SCORTE IL PROBLEMA DELLE SCORTE Un problema di Ricerca Operativa, di notevole interesse pratico, è il problema della gestione delle scorte, detto anche di controllo delle giacenze di magazzino. Esso riguarda

Dettagli

Università Ca Foscari Venezia

Università Ca Foscari Venezia Università Ca Foscari Venezia Dipartimento di Scienze Ambientali, Informatica e Statistica Giovanni Fasano 2 Problemi di Costo Fisso & Vincoli Disgiuntivi (con esercizi ) November 12, 2015 2 Università

Dettagli

ECONOMIA DEL LAVORO. Lezioni di maggio (testo: BORJAS) L offerta di lavoro

ECONOMIA DEL LAVORO. Lezioni di maggio (testo: BORJAS) L offerta di lavoro ECONOMIA DEL LAVORO Lezioni di maggio (testo: BORJAS) L offerta di lavoro Offerta di lavoro - Le preferenze del lavoratore Il luogo delle combinazioni di C e L che generano lo stesso livello di U (e.g.

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Il modello matematico 2: Funzioni obiettivo: ma.min, Min-ma Tipologie di Vincoli Funzione obiettivo ma-min: Esempio Scommesse Il signor

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio MODELLISTICA E SIMULAZIONE febbraio 007 a prova Cognome e Nome:... Autorizzo Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio Non autorizzo la pubblicazione su

Dettagli

Dato il Mercato, è possibile individuare il valore e la duration del portafoglio:

Dato il Mercato, è possibile individuare il valore e la duration del portafoglio: TEORIA DELL IMMUNIZZAZIONE FINANZIARIA Con il termine immunizzazione finanziaria si intende una metodologia matematica finalizzata a neutralizzare gli effetti della variazione del tasso di valutazione

Dettagli

Produzione e forza lavoro

Produzione e forza lavoro Produzione e forza lavoro Testo Un azienda produce i modelli I, II e III di un certo prodotto a partire dai materiali grezzi A e B, di cui sono disponibili 4000 e 6000 unità, rispettivamente. In particolare,

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo

ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo INPUT: dati iniziali INPUT: x,y,z AZIONI esempio: Somma x ed y

Dettagli

Fallimenti del mercato: Il monopolio

Fallimenti del mercato: Il monopolio Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Fallimenti del mercato: Il monopolio Facoltà di Scienze della Comunicazione Università di Teramo Concorrenza imperfetta La concorrenza

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

LA RICERCA OPERATIVA

LA RICERCA OPERATIVA LA RICERCA OPERATIVA Il termine Ricerca Operativa, dall inglese Operations Research, letteralmente ricerca delle operazioni, fu coniato per esprimere il significato di determinazione delle attività da

Dettagli

PIANO CARTESIANO: un problema di programmazione lineare

PIANO CARTESIANO: un problema di programmazione lineare PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora.

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

LA RETTA. Retta per l'origine, rette orizzontali e verticali

LA RETTA. Retta per l'origine, rette orizzontali e verticali Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia

Dettagli

Le funzioni di due variabili

Le funzioni di due variabili Le funzioni di due variabili 1)DEFINIZIONE Se consideriamo una coppia di numeri reali X,Y e ad essi facciamo corrispondere un altro numero reale Z, allora abbiamo determinato una funzione reale di due

Dettagli

La gestione delle scorte

La gestione delle scorte La gestione delle scorte Controllo delle scorte Sist. prod. / Fornitore ordini domanda I Magazzino R Lead Time T La gestione delle scorte Problema: uando ordinare uanto ordinare Obiettivi: Basso livello

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli