Università del Salento
|
|
|
- Teodora Turco
- 10 anni fa
- Visualizzazioni
Transcript
1 Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività decisionali Per gestire e coordinare attività con risorse limitate Al fine di massimizzare un profitto o minimizzare un costo (obiettivo) 1
2 Un po di storia U.K. -Progetto difesa antiaerea Bawdsey Research Station radar localizzazione degli aerei nemici intercettazione rientro a terra degli aerei inglesi ottimizzare la distribuzione delle apparecchiature radar sul territorio 1938 Relazione del soprintendente Rowe Compare per la prima volta l espressione l Operational Research (ricerca operativa) Un po di storia P. M. S. Blackett costituzione di un gruppo di ricerca di scienziati e militari lotta contro i sommergibili tedeschi 1943 USA gruppi di Ricerca Operativa per: guerra antisommergibile dimensionamento dei convogli navali scelta dei bersagli nelle incursioni aeree avvistamento ed intercettazione degli aerei nemici Problemi di tipo civile Localizzazione dei depositi industriali Problemi di produzione, di trasposto in Italia viene fondata l AIROl 2
3 Le fasi di uno studio di ricerca operativa Individuazione del problema Raccolta e analisi dei dati Costruzione del modello Ricerca della soluzione Interpretazione dei risultati Problema di decisione Un azienda automobilistica produce due modelli di auto, uno a benzina B che vende al prezzo di 10 mila euro e uno diesel D che vende a 12 mila euro. Ogni autovettura è realizzata da due robot R1 e R2. I tempi di lavorazione dei robot in ore per realizzare le auto sono: B D R1 2 3 R2 2 1 La disponibilità al giorno di R1 è di 24 ore, mentre quella di R2 è di 10 ore. 3
4 Problema di decisione L azienda ha effettuato un indagine di mercato con i seguenti esiti: la domanda giornaliera di B è al più il doppio di quella della macchina D la domanda minima giornaliera di auto è di 4. Problema: : determinare le quantità dei due modelli di auto che devono essere prodotte giornalmente in modo da rendere massimo il guadagno. Supponiamo che tutte le auto prodotte siano vendute. Formulazione del modello matematico Definizione delle variabili Formulazione Matematica Definizione della Funzione obiettivo Definizione dei vincoli 4
5 Definizione delle variabili Cosa devo decidere? Si introducono due variabili che rappresentano le quantità prodotte (e vendute) ogni giorno per i due modelli di auto Variabili x: Numero di auto a benzina y: Numero di auto diesel Definizione della funzione obiettivo Cosa voglio massimizzare? Il guadagno giornaliero dipende (è funzione) dalla decisione di quante auto D e B voglio produrre La funzione obiettivo è una funzione lineare! F(x,y)=10 x+12 y 5
6 Definizione dei vincoli Quali sono le restrizioni sulle variabili? Vincoli sul tempo di utilizzo dei robot: 2 x +3 y 24 2 x + y 10 Vincoli conseguenti l indagine di mercato: 2 y x x + y 4 Non si può produrre un numero negativo di auto: x 0, y 0 Formulazione del problema Max F(x,y)=10 x+12 y soggetto a: 2 x +3 y 24 2 x + y 10 2 y x x + y 4 x 0 y 0 6
7 Problema di programmazione lineare I problemi che hanno per modello matematico sistemi di disequazioni (o equazioni) lineari vincoli abbinati ad una funzione lineare da massimizzare o minimizzare funzione obiettivo prendono il nome di problemi di Programmazione Lineare (PL) Problema di programmazione lineare Ma adesso. Qual è la soluzione? Quante auto a benzina e diesel si devono produrre? Qual è il guadagno massimo? Che si faceva con i sistemi di disequazioni? 7
8 Metodo grafico Un problema di PL in due variabili può essere risolto attraverso semplici considerazioni di tipo geometrico, a partire dall individuazione su di un piano cartesiano del poligono ammissibile Regione Ammissibile determinata dai vincoli. y x Metodo grafico Ogni retta f(x,y)= ax + by + c = 0 divide il piano cartesiano in due semipiani rappresentati dalle disequazioni: ax + by + c < 0 ax + by + c > 0 Individuare il semipiano: f(x, y) = ax + by + c > 0 Si sceglie P(x,, y ) y ) non appartenente alla retta Se f(x,, y ) y ) > 0 il semipiano che contiene il punto P è quello cercato; Se f(x,, y ) y ) < 0 il semipiano che non contiene il punto P è quello cercato. 8
9 Metodo grafico Ogni vincolo del mio problema rappresenta un semipiano o una retta e siccome tutti i vincoli devono essere rispettati la soluzione apparterrà alla parte di piano che è intersezione di tutti i semipiani!!! Per trovare la Regione Ammissibile del nostro problema allora cerchiamo dove si intersecano i semipiani ma questo non voleva dire risolvere un sistema di disequazioni??? Regione ammissibile Max F(x,y)=10 x+12 y soggetto a: 2 x +3 y 24 2 x + y 10 2 y x x + y 4 x 0 y 0 9
10 Regione ammissibile Vincoli: x 0, y 0 y x Regione ammissibile Vincolo: 2 x +3 y 24 y 8 12 x 10
11 Regione ammissibile Vincolo: 2x + y y x Regione ammissibile Vincolo: 10 y 8 2y x 5 12 x 11
12 Regione ammissibile Vincolo: x + y 4 y x Dai sistemi lineari alla regione ammissibile La regione ammissibile è una figura convessa Che vuol dire convessa? 12
13 Dai sistemi lineari alla regione ammissibile La soluzione di sistemi di disequazioni lineari in due incognite coincide con la parte di piano comune ai semipiani individuati dalle singole disequazioni. Questa regione può essere limitata o illimitata. Se le disequazioni del sistema non hanno soluzioni comuni (i semipiani non si intersecano) il sistema è detto impossibile. Dai sistemi lineari alla regione ammissibile x x
14 Dai sistemi lineari alla regione ammissibile La regione ammissibile è un poliedro!!! Esempi di Reti Risolvere un problema di PL significa determinare se il problema è: Inammissibile (il sistema di disequazioni è impossibile) Illimitato inferiormente o superiormente Ammette una soluzione ottima che massimizza o minimizza la funzione obiettivo. 14
15 Teorema fondamentale. Se il problema di PL ammette minimo o massimo, allora la funzione obiettivo F(x, y) = ax+by+c assume il suo valore massimo o minimo solo su un VERTICE o su tutti i punti di un LATO della frontiera della regione ammissibile. Metodo enumerativo Ma allora.come si trova una soluzione per il problema delle auto??? Determinata la regione ammissibile: Calcola le coordinate dei vertici del poligono; Calcola il valore della funzione obiettivo su ogni vertice La soluzione è data dalle coordinate del vertice che rende massima o minima la funzione obiettivo 15
16 Metodo enumerativo y A(0,8) B(3/2,7) F(0,8)=10*0+12*8=96 F(3/2,7)=10*3/2+12*7=99 F(4,2)=10*4+12*2=64 F(8/3,4/3)=10*8/3+12*4/3=42,7 F(0,4)=10*0+12*4=48 E(0,4) C(4,2) D(8/3,4/3) x Il metodo del Simplesso Il metodo del simplesso è un algoritmo che permette, attraverso un numero finito di iterazioni, di passare, se il problema ammette soluzione, da un qualsiasi vertice del poliedro al vertice ottimo. L'algoritmo del Simplesso,, ideato dall'americano George Dantzig nel 1947, è un metodo numerico per risolvere problemi di PL 16
17 E per i più pigri: il Lingo LINGO è un pacchetto software che consente di formulare e risolvere problemi di ottimizzazione (Programmazione Lineare e non) anche a grandi dimensioni, e di analizzarne le rispettive soluzioni. Altro esempio: Gestione del Personale Il responsabile della gestione del personale di un azienda manifatturiera ha il compito di organizzare i turni di lavoro ad una catena di montaggio a ciclo continuo. 17
18 Gestione del Personale Sono previste sei fasce orarie per ognuna delle quali è richiesto un numero minimo di unità lavorative, come riassunto dalla seguente tabella: Gestione del Personale A seguito di accordi sindacali sono stati individuati sei turni di lavoro ciascuno dei quali di 8 ore lavorative: 18
19 Gestione del Personale Si vuole determinare il numero di unità lavorative da assegnare ad ogni turno in modo tale da impiegare la minor forza lavoro complessiva. Soluzione: Si indichi con: xi = numero di unità di personale da assegnare al turno i-esimo i (i = 1,, 6). Gestione del Personale E' evidente che la fascia oraria compresa tra le e le sarà coperta dalle unità lavorative del primo e del secondo turno. Dovendo garantire una disponibilità di personale di almeno 6 unità,, si impone il vincolo: x1 + x
20 Gestione del Personale E' evidente che la fascia oraria compresa tra le e le sarà coperta dalle unità lavorative del primo e del secondo turno. Dovendo garantire una disponibilità di personale di almeno 6 unità,, si impone il vincolo: x1 + x2 6. Gestione del Personale Analogamente, per le altre fasce orarie: x2 + x3 9 x3 + x4 14 x4 + x5 9 x5 + x6 11 x6 + x1 8 Obiettivo: minimizzare il numero di unità z impiegate: z = x1 + x2 + x3 + x4 + x5 + x6. 20
21 Gestione del Personale Modello Matematico: Gestione del Personale La soluzione ottimale prevede: per un numero complessivo di unità lavorative utilizzate pari a: z* = 31. Nota: soltanto per la fascia oraria compresa tra le e le saranno utilizzate unità di personale in un numero superiore rispetto al minimo richiesto. 21
22 Modello dello zaino Decisione: Quali materie preparare: avendo a disposizione un totale di 27 giorni volendo massimizzare il profitto? Materia Giorni prep. Profitto Italiano 10 20,00 Latino 12 22,50 Greco 15 25,00 Inglese 9 15,00 Fisica 7 12,50 Scienze 6 12,50 Storia 6 12,00 Geografia 6 12,00 Disegno 4 7,50 Modello dello zaino Strategia (algoritmo) massimo profitto: scelgo le materie più remunerative (rispettando il vincolo di 27 giorni) Materia Giorni prep. Profitto Italiano 10 20,00 Latino 12 22,50 Greco 15 25,00 Inglese 9 15,00 Fisica 7 12,50 Scienze 6 12,50 Storia 6 12,00 Geografia 6 12,00 Disegno 4 7,50 tempo: : 27 giorni profitto: 47,50 22
23 Modello dello zaino Strategie minimo tempo: scelgo le materie che richiedono meno tempo di preparazione Materia Giorni prep. Profitto Italiano 10 20,00 Latino 12 22,50 Greco 15 25,00 Inglese 9 15,00 Fisica 7 12,50 Scienze 6 12,50 Storia 6 12,00 Geografia 6 12,00 Disegno 4 7,50 tempo: : 22 giorni profitto: 44, 00 Modello dello zaino Altre Strategie? Materia Giorni prep. Profitto Italiano 10 20,00 Latino 12 22,50 Greco 15 25,00 Inglese 9 15,00 Fisica 7 12,50 Scienze 6 12,50 Storia 6 12,00 Geografia 6 12,00 Disegno 4 7,50 tempo: : 26 giorni profitto: 52 23
24 Modello dello zaino Risolvo un problema di PL con 9 variabili all ottimo Materia Giorni prep. Profitto Italiano 10 20,00 Latino 12 22,50 Greco 15 25,00 Inglese 9 15,00 Fisica 7 12,50 Scienze 6 12,50 Storia 6 12,00 Geografia 6 12,00 Disegno 4 7,50 tempo: : 27 giorni profitto: 52, 50 Compiti: Problema di Trasporto Un azienda possiede due centri di distribuzione e tre punti vendita dislocati sul territorio. Di un prodotto sono disponibili al più 250 unità presso il primo centro di distribuzione e al più 400 presso il secondo. Alla direzione centrale risulta una richiesta di rifornimento dai tre punti vendita pari ad almeno 120, 270, 130 unità rispettivamente. Presso tali centri ciascuna unità di prodotto viene venduta a Euro 14, 17 e
25 Compiti: Problema di Trasporto I costi unitari di trasporto, legati alla distanza tra i centri di distribuzione e i punti vendita, sono così riassumibili: Obiettivo: : massimizzare il profitto ipotizzando che sia possibile vendere tutto il quantitativo di prodotto disponibile presso i punti vendita. Compiti: Problema di Trasporto Suggerimento: Indicare con: xij = quantitativo di prodotto inviato dal centro di distribuzione i (i = 1, 2) al punto di vendita j (j = 1, 2, 3). 25
n. 6 giugno 2011 Ricerca Operativa, un problema di tutti i giorni Ivano Capozza Marianna Miola Quaderni del Liceo Ferraris
n. 6 giugno 2011 Quaderni del Liceo Ferraris Ricerca Operativa, un problema di tutti i giorni Ivano Capozza Marianna Miola Quaderni del Liceo Ferraris numero 6 - giugno 2011 Capozza Ivano Miola Marianna
Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari
Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Esercizio n.1 Un azienda intende incrementare il proprio organico per ricoprire alcuni compiti scoperti. I dati relativi ai compiti
Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE
PRGRMMZIN LINR Problemi di P.L. in due variabili metodo grafico efinizione: la programmazione lineare serve per determinare l allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare
PROGRAMMAZIONE LINEARE IN DUE VARIABILI
1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell
Ricerca operativa. prof. Mario Sandri [email protected]
Ricerca operativa prof. Mario Sandri [email protected] Ricerca operativa La ricerca operativa (nota anche come teoria delle decisioni, scienza della gestione o, in inglese, operations research ("Operational
PROGRAMMAZIONE LINEARE:
PROGRAMMAZIONE LINEARE: Definizione:la programmazione lineare serve per determinare l'allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare il raggiungimento di un obiettivo
Modelli di Programmazione Lineare Intera
8 Modelli di Programmazione Lineare Intera 8.1 MODELLI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 8.1.1 Una compagnia petrolifera dispone di 5 pozzi (P1, P2, P3, P4, P5) dai quali può estrarre petrolio.
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno
SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE
Management Sanitario. Modulo di Ricerca Operativa
Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di
mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000
1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 All inizio
Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari
Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque
Programmazione lineare
Programmazione lineare Un modello matematico per un problema di programmazione lineare Problema 1. Un reparto di un azienda di elettrodomestici può produrre giornalmente non più di 6 lavatrici, delle quali
RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007
RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se
Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli
Ricerca Operativa 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi (come
Ricerca Operativa A.A. 2008/2009
Ricerca Operativa A.A. 08/09 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi
PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione
1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti
Paperone e Rockerduck: a cosa serve l antitrust?
Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano
Ottimizzazione Multi Obiettivo
Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali
Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine:
1.1 Pianificazione degli investimenti. Una banca deve investire C milioni di Euro, e dispone di due tipi di investimento: (a) con interesse annuo del 15%; (b) con interesse annuo del 25%. Almeno 1 di C
La Programmazione Lineare
4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi
La Minimizzazione dei costi
La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione
PROGRAMMAZIONE LINEARE IN DUE VARIABILI
1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell
MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.
MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un
Ricerca Operativa Prima Parte
1 2 fasi Prima Parte 2 Testi didattici S. Martello, M.G. Speranza, Ricerca Operativa per l Economia e l Impresa, Ed. Esculapio, 2012. F.S. Hillier, G.J. Lieberman, Ricerca operativa - Fondamenti, 9/ed,
Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007)
Nome... Cognome... 1 Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Si consideri la funzione f(x) = 4x 2 1 + 6x 4 2 2x 2 1x 2. Si applichi per un iterazione il metodo del gradiente a partire dai
RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:
RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni
Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani
Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.
Modelli di Ottimizzazione
Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Introduzione La Ricerca Operativa La Ricerca Operativa è una disciplina relativamente recente. Il termine Ricerca Operativa è stato coniato
Modelli di Programmazione Lineare e Programmazione Lineare Intera
Modelli di Programmazione Lineare e Programmazione Lineare Intera 1 Azienda Dolciaria Un azienda di cioccolatini deve pianificare la produzione per i prossimi m mesi. In ogni mese l azienda ha a disposizione
Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare
Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista
Capitolo 13: L offerta dell impresa e il surplus del produttore
Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:
1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.
. Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,
CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica
CAPITOLO I. - PROGRAMMAZIONE DINAMICA La programmazione dinamica è una parte della programmazione matematica che si occupa della soluzione di problemi di ottimizzazione di tipo particolare, mediante una
Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4
Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università
ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI
ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato
REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE
REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE Nella Sezione 16.5 abbiamo visto come un regolatore che voglia fissare il prezzo del monopolista in modo da minimizzare la
FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:
FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente
MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A
MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando
Fondamenti di Economia Aziendale ed Impiantistica Industriale
Politecnico di Milano IV Facoltà di Ingegneria Fondamenti di Economia Aziendale ed Impiantistica Industriale Impiego della programmazione lineare nella progettazione degli impianti Cosa significa progettare
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria
SISTEMI DI CONDOTTE: Il dimensionamento idraulico
SISTEMI DI CONDOTTE: Il dimensionamento idraulico Carlo Ciaponi Università degli Studi di Pavia Dipartimento di Ingegneria Idraulica e Ambientale Posizione del del problema Rete da progettare di cui è
Teoria dei Giochi. Anna Torre
Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: [email protected] sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)
Università degli Studi di Milano / Bicocca Facoltà di Economia. Prova scritta del 12 luglio 2011 SOLUZIONI
Università degli Studi di Milano / Bicocca Facoltà di Economia MATEMATICA FINANZIARIA EcoCom A-Le / Li-Z Prova scritta del luglio SOLUZIONI Per gli studenti immatricolati entro il 7/8 (45cfu): L operazione
Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano
Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso
LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ
LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ In questa Appendice mostreremo come trovare la tariffa in due parti che massimizza i profitti di Clearvoice,
Ricerca Operativa e Logistica
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 20/202 Lezione 6-8 Rappresentazione di funzioni non lineari: - Costi fissi - Funzioni lineari a tratti Funzioni obiettivo non lineari:
Modelli per la gestione delle scorte
Modelli per la gestione delle scorte Claudio Arbib Università di L Aquila Seconda Parte Sommario Sui problemi di gestione aperiodica equazioni di stato Funzioni di costo Un modello convesso formulazione
(3,4) (1,3) (2,2) (0,2) (3,4) (2,4) t (2,3) (3,5) (2,4) (3,5) (6,8) (3,4) (1,2) 1 (1,3)
Prova Scritta di RICERCA OPERATIVA èinformaticiè 2èè98 - Esame æ Cognome: æ Nome:. Una compagnia petrolifera possiede 3 depositi dai quali puço prelevare benzina e trasportarla ai 5 impianti di distribuzione.
Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:
1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale
Un modello matematico di investimento ottimale
Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente
I Esonero di Metodi di Ottimizzazione (Laurea in Ingegneria Gestionale-Corso B) Traccia A
I Esonero di Metodi di Ottimizzazione Traccia A 1. Uno stabilimento deve varare un piano di assunzioni di dirigenti, impiegati ed operai. L assunzione di un dirigente può avvenire attraverso un concorso
TECNICHE DI SIMULAZIONE
TECNICHE DI SIMULAZIONE INTRODUZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Introduzione alla simulazione Una simulazione è l imitazione
CORSO DI LAUREA IN INGEGNERIA.
CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i
1. Considerazioni preliminari
1. Considerazioni preliminari Uno dei principali aspetti decisionali della gestione logistica è decidere dove localizzare nuove facility, come impianti, magazzini, rivenditori. Ad esempio, consideriamo
VC-dimension: Esempio
VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio
Logistica - Il problema del trasporto
Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni
Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo
Modelli di PL: allocazione ottima di risorse Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Allocazione ottima di robot Un azienda automobilistica produce tre
I PROBLEMI ALGEBRICI
I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e
Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano
Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità
Esempi di modelli di programmazione lineare (intera) 2014
Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:
Chi non risolve esercizi non impara la matematica.
96 matematica per l economia Esercizio 65. Consideriamo ancora il problema 63 dell azienda vinicola, aggiungendo la condizione che l azienda non può produrre più di 200 bottiglie al mese. Soluzione. La
Ottimizazione vincolata
Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l
Algoritmi e Strutture Dati
Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema La CMC produce automobili in uno stabilimento
MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).
MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica
Ricerca Operativa Esercizio 1
E1 Esercizio 1 La fonderia ESSELLE deve produrre esattamente 1000 pezzi del peso di un chilogrammo ciascuno. Il ferro con cui questi pezzi saranno fatti deve contenere manganese e silicio nelle seguenti
Il modello generale di commercio internazionale
Capitolo 6 Il modello generale di commercio internazionale [a.a. 2013/14] adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) 6-1 Struttura della presentazione Domanda e
Capitolo 6. Offerta in concorrenza perfetta: il lato dei costi
Capitolo 6 Offerta in concorrenza perfetta: il lato dei costi Costo opportunità Adalberto può guadagnare 6 all ora come cameriere; in alternativa può effettuare raccolta per riciclaggio al prezzo di 2
CAPITOLO 10 I SINDACATI
CAPITOLO 10 I SINDACATI 10-1. Fate l ipotesi che la curva di domanda di lavoro di una impresa sia data da: 20 0,01 E, dove è il salario orario e E il livello di occupazione. Ipotizzate inoltre che la funzione
ALGORITMO DEL SIMPLESSO
ALGORITMO DEL SIMPLESSO ESERCITAZIONI DI RICERCA OPERATIVA 1 ESERCIZIO 1. Risolvere il seguente programma lineare (a) con il metodo del simplesso e (b) con il metodo grafico. (1) min x 1 x () (3) (4) (5)
ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia.
ESEMPI DI DOMANDE per la prova scritta dell esame di Istituzioni di Economia. La prova scritta consta di dodici domande, formulate come test a risposta multipla. Una sola delle cinque risposte fornite
Matematica 1 - Corso di Laurea in Ingegneria Meccanica
Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva
RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI
RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI DI SCELTA) Il termine RICERCA OPERATIVA sembra sia stato usato per la prima volta nel 1939, ma già precedentemente alcuni scienziati si erano occupati di problemi
Ogni azienda ha la necessità di conoscere il proprio sistema dei costi sia per controllare la situazione esistente che per verificare il
Ogni azienda ha la necessità di conoscere il proprio sistema dei costi sia per controllare la situazione esistente che per verificare il raggiungimento degli obiettivi avendo come fine il mantenimento
Luigi De Giovanni Esercizi di modellazione matematica Ricerca Operativa
Piani di investimento Un finanziere ha due piani di investimento A e B disponibili all inizio di ciascuno dei prossimi cinque anni. Ogni euro investito in A all inizio di ogni anno garantisce, due anni
IL PROBLEMA DELLE SCORTE
IL PROBLEMA DELLE SCORTE Un problema di Ricerca Operativa, di notevole interesse pratico, è il problema della gestione delle scorte, detto anche di controllo delle giacenze di magazzino. Esso riguarda
Università Ca Foscari Venezia
Università Ca Foscari Venezia Dipartimento di Scienze Ambientali, Informatica e Statistica Giovanni Fasano 2 Problemi di Costo Fisso & Vincoli Disgiuntivi (con esercizi ) November 12, 2015 2 Università
ECONOMIA DEL LAVORO. Lezioni di maggio (testo: BORJAS) L offerta di lavoro
ECONOMIA DEL LAVORO Lezioni di maggio (testo: BORJAS) L offerta di lavoro Offerta di lavoro - Le preferenze del lavoratore Il luogo delle combinazioni di C e L che generano lo stesso livello di U (e.g.
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Il modello matematico 2: Funzioni obiettivo: ma.min, Min-ma Tipologie di Vincoli Funzione obiettivo ma-min: Esempio Scommesse Il signor
Massimi e minimi vincolati di funzioni in due variabili
Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente
Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio
MODELLISTICA E SIMULAZIONE febbraio 007 a prova Cognome e Nome:... Autorizzo Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio Non autorizzo la pubblicazione su
Dato il Mercato, è possibile individuare il valore e la duration del portafoglio:
TEORIA DELL IMMUNIZZAZIONE FINANZIARIA Con il termine immunizzazione finanziaria si intende una metodologia matematica finalizzata a neutralizzare gli effetti della variazione del tasso di valutazione
Produzione e forza lavoro
Produzione e forza lavoro Testo Un azienda produce i modelli I, II e III di un certo prodotto a partire dai materiali grezzi A e B, di cui sono disponibili 4000 e 6000 unità, rispettivamente. In particolare,
Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R
Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.
ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo
ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo INPUT: dati iniziali INPUT: x,y,z AZIONI esempio: Somma x ed y
Fallimenti del mercato: Il monopolio
Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Fallimenti del mercato: Il monopolio Facoltà di Scienze della Comunicazione Università di Teramo Concorrenza imperfetta La concorrenza
CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA
Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
LA RICERCA OPERATIVA
LA RICERCA OPERATIVA Il termine Ricerca Operativa, dall inglese Operations Research, letteralmente ricerca delle operazioni, fu coniato per esprimere il significato di determinazione delle attività da
PIANO CARTESIANO: un problema di programmazione lineare
PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora.
Scelte in condizioni di rischio e incertezza
CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni
MINIMI QUADRATI. REGRESSIONE LINEARE
MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione
Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa
Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia
LA RETTA. Retta per l'origine, rette orizzontali e verticali
Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia
Le funzioni di due variabili
Le funzioni di due variabili 1)DEFINIZIONE Se consideriamo una coppia di numeri reali X,Y e ad essi facciamo corrispondere un altro numero reale Z, allora abbiamo determinato una funzione reale di due
La gestione delle scorte
La gestione delle scorte Controllo delle scorte Sist. prod. / Fornitore ordini domanda I Magazzino R Lead Time T La gestione delle scorte Problema: uando ordinare uanto ordinare Obiettivi: Basso livello
Ricerca Operativa Dualità e programmazione lineare
Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del
