Fluidi. Tensione superficiale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fluidi. Tensione superficiale"

Transcript

1 Fluidi Tensione superficiale

2 I fluidi Fluide sono tu4e quelle sostanze che non sopportano uno sforzo di taglio. Su scala atomica la dis=nzione tra fluidi e solidi è la lunghezza dell interazione molecolare. Nei solidi c è un re=colo che gode di proprietà collebve inesisten= nei fluidi. iuttosto che di massa e forza, nei fluidi bisogna parlare di densità (massa volumica) e pressione. La densità e la pressione sono definite come: ρ = Δm/ΔV e = ΔF/ΔA o più semplicemente ρ = m/v = F/A

3 Valori =pici della ρ e della (tanto per avere una idea di cosa s=amo parlando) Materiale olistirolo espanso,3 Ghiaccio,9 Acqua ( C - 5 bar) 1 Acqua di mare 1,3 Alluminio,7 Terra 5,5 Ferro 7,8 Ottone 8,6 Mercurio 13,6 Densità ρ 1 3 (kg/m 3 ) H SO 4 /bso 4 1,3/1,15 Condizione di rivelazione di ressione al centro della terra Massima pressione in laboratorio (Anvil cell) ressione (a, ascal) 4x1 11 1,5 x 1 1 Fossa delle Marianne 1,1 x 1 8 neumatici automobilistici x1 5 Al livello del mare 1x1 5 ressione sanguigna 1,6x1 4 Minima pressione in laboratorio (vuoto) 1-1

4 Forze di coesione Sono chiamate forze di coesione quelle forze che agiscono fra le molecole di uno stato aggregato. Nel caso dei solidi, le forze di coesione fra le molecole sono molto forti, tanto da permettere solo piccole oscillazioni attorno ai propri siti. Il solido ha un volume ed una forma propria. Nel caso dei liquidi le forze di coesione sono ancora abbastanza forti da tenere le molecole abbastanza vicine, tanto da avere un volume proprio. I liquidi non hanno una forma propria. Nel caso delle sostanze gassose le forze molecolari sono debolissime, tanto da permettere alle singole molecole di muoversi, dopo gli urti, di moto rettilineo. Le sostanze gassose non hanno ne una forma propria ne un volume proprio.

5 ressione dell acqua Ipo=zziamo una soble lastra di acqua di lato Δy immersa in acqua (legge di Stevino), il suo peso sarà ΔF = Δm g = (rδv) g ΔF = r(δya) g er la a legge di Newton le forze agen= sulla lastra saranno: A ( + Δ)A = ΔF e quindi: 1 = - ρ(y - y 1 ) g 1 + ρy 1 g = + ρy g = 3 dove - ΔA = ρ(δya) g - 1 = - ρy g + ρy 1 g = - ρg y pa (p+δp)a (ρaδy) g quindi la pressione aumenta con la profondità - y Inoltre se in un recipiente aperto assumiamo che è la pressione al livello del mare a, e h la profondità avremo (h) = a + ρgh. Si no= che la pressione dipende solo dalla profondità h

6 ressione in fluidi a riposo (km) 8 (m) p = p e 1 ay = + ρgh Livello del mare (atms) La pressione in un liquido a riposo dipende linearmente dalla profondità e questo è legato alla loro incompressibilità. Infatti siccome ρ non dipende da y l integrazione di d = ρg dy da come risultato: = + ρgh Si vede che la pressione è lineare con la profondità ed è rappresentata in un grafico profondità da un tratto lineare. In particolare ogni 1 metri diventa circa il doppio

7 ressione dell atmosfera (km) 8 (m) = e 1 ay = + ρgh Se invece il fluido non è incompressibile, caso dei gas, la densità ρ dipende da y. InfaB l atmosfera diventa più rarefa4a salendo in quota : = ρg( y y ) d = ρgdy Livello del mare (atms) d dy d = 1 = gρ e o g( ρ gρo = p ) y y dy 1 ρ = ρ = ρ ρ La dipendenza della pressione con l altezza si otterrà integrando dp = -ρ(y)gdy d gρo = = e ln ay dy gρo = y

8 rincipio di ascal ( ) La pressione esercitata sulla superficie chiusa di un fluido si trasmette in ogni porzione del fluido e sulle pareti del recipiente f F p = = a A A F = f a

9 Misurazione della pressione er misurare la pressione basta un tubo ad U contenente del liquido. Quando un estremo è in conta4o con un recipiente so4o pressione la differenza dei due livelli del liquido è la misura della pressione rela=va. Torricelli ( ) + ρgy 1 = a + ρgy - a = ρg (y y 1 ) = ρgh Applicando la stessa equazione Torricelli misura la pressione atmosferica che valuta essere pari alla pressione di 76 mmhg Se Torricelli avesse usato acqua, invece del Hg, il tubo sarebbe dovuto essere alto 9.88 metri, cioè 13 volte di più del tubo con Hg

10 ressione sanguigna Il cuore è una pompa e quindi il sangue è soggetto ad una pressione variabile: dalla pressione sistolica a quella diastolica. Il sistema di misurazione prevede di applicare una altissima pressione al braccio ( mmhg) e di ridurla lentamente. I primi battiti che si sentono indicano che si è scesi sotto la pressione sistolica. Quando, continuando a ridurre la pressione, non si sentono più battiti vuol dire che si è scesi sotto la pressione diastolica. ESEMIO: A quale altezza deve essere sistemata una flebo se si deve iniettare una soluzione salina di densità ρ = 1 3 kg/ m 3 nel braccio di un paziente che ha la pressione di 8,4 x1 3 a 3 h soluzione = ρgh 8,4 1 ρg 3 a = 8,4 1 = 1 3 8,4 1 kg a m 3 3 a 9,8 m s,86m

11 Fa4ori di conversione della pressione Le unità di misura della pressione sono molto diversi per ragioni tradizionali, per l uso che se ne fa e ragioni di comodità. La pressione atmosferica si misura in bar, le gomme della macchina in atm, la pressione del sangue in mmhg Unità di pressione e fa4ori di conversione a bar (dan/cm ) Ma (N/mm ) kgf/m at (kgf/cm ) atm torr (mmhg) a ,1, ,87 1 6,75 bar 1 5 1,1 1 1,, Ma , 1 5 1, 9, kgf/m 9,81 9, , , ,736 at 98 1,981, , atm ,13, , torr (mmhg) 133,133 1, ,6,136,13 1

12 rincipio di Archimede Un corpo immerso in un fluido riceve una spinta ver=cale, dal basso verso l alto, pari al peso del liquido spostato. Δ = ρgδy ΔF = ρgδya F A se ρ o F g > ρ = Δmg a F g > F A F A F A F g = ρgδv F g = V ( ρ F A o = Vρ g o ρ ) g a Esempio: quale è la percentuale del volume emergente di un icesberg? Soluzione: il peso dell icesberg è i = ρ i V i g il peso dell acqua di mare è m = ρ m V m g er l equilibrio m = i ρ i / ρ m = V m / V i =,9/1,3 89% è il volume dell acqua di mare spostata, quindi la parte di iceberg che emerge è solo 11%

13 Come pesare la spinta di Archimede Un recipiente pieno d acqua è posto su una bilancia che indica un peso W. Una pietra che pesa w, agganciata ad una corda, viene immersa nell acqua senza toccare il fondo. La pietra sospesa ad un filo e immersa nell acqua deve rispettare la II legge di Newton e pertanto Σ F x = e le forze presenti sono: la forza peso W, la tensione del filo T e la forza di galleggiamento B, quindi T + B = w (*). Quando mettiamo il sistema isolato sulla bilancia, la molla eserciterà sul sistema una forza S così che la II legge di Newton darà W + w = S + T e tenendo conto della relazione (*) avremo: W + (T + B) = S + T à S = W + B B = ρ g V spinta di Archimede la bilancia segnerà la forza peso dell acqua più la spinta di Archimede

14 Tensione superficiale γ er sollevare l anello dal liquido serve una forza maggiore del suo peso, questa extra-forza è la tensione superficiale. La tensione superficiale è dovuta allo stato di stress esistente alla superficie di un liquido. La forza necessaria a sollevare l anello è F = l γ dove l è la circonferenza dell anello o della barra di scorrimento. γ si misura in Nm -1 x 1-3. Questo ci permette di dire che la tensione superficiale si esprime in Energia/m [Nm/m ] liquido T [ C] γ [1-3 N/m] Acqua 7,8 Acqua 1 58,6 Sapone 5 Glicerina 63,1 Olio di oliva 3 Mercurio 465 γl F F =γl

15 Menisco n L incurvamento prossimo alla interfaccia di un solido è de4o menisco e determina il fenomeno della capillarità. Nel caso di menisco posi=vo, in un capillare di raggio r la forza dovuta alla tensione superficiale (γ πr) sarà F = π rγ LV cos θ e sapendo che la forza peso del liquido è w = mg = ρ(πr y)g si avrà: ρπ r y g = π r γ LV cosθ y = ( γ LV cosθ)/ρgr θ è l angolo fra la parete e il menisco. Se è acuto (cioè minore di 9 ) il cosθ è posi=vo e quindi il liquido cresce, viceversa se θ è o4uso il cosθ è nega=vo e il liquido è più basso del livello del liquido libero.

16 Capillarità e tensione superficiale n E possibile definire tre dis=nte tensioni superficiali, anche se in realtà sono stress da interfaccia. Quindi γ SL, γ SV, γ LV n Se γ SV > γ SL il liquido bagna il solido. n Se γ SV < γ SL il liquido si ritrae dal solido. Nel punto di contatto di incontro oltre ai 3 stress ci sarà anche la forza di adesione A e il liquido sarà in equilibrio lungo l asse x e l asse y ΣF x = τ LV sen θ A = Σ F y = τ SV - τ SL - τ LV cos θ = ovvero A = τ LV sen θ e τ SV - τ SL = τ LV cos θ dalla 1, conoscendo 3 valori di τ si possono ricavare l adesione A e θ. Qualsiasi impurezza o corpo estraneo modifica anche considerevolmente questo equilibrio. > 9 Hg < 9 Ioduro di metile

17 EffeB di r sulla capillarità r ESEMIO: Quale sarà l altezza del liquido di densità ρ in capillari di differente diametro. h Soluzione er l equilibrio la forza peso del liquido deve essere uguale alla componente della forza adesiva della tensione superficiale. La forza peso è F p = ρ gv = ρ g(hπ r ) La forza che spinge in alto il liquido sarà F u = π r γ cos θ. Quindi dovendo essere F p = F u ρ ghπ r = π r γ cosθ h = γ cosθ rρ g E si vede che l altezza dipende da r ovvero dal raggio del capillare

18 Equazione di con=nuità Supponiamo di studiare un liquido vincolato a scorrere in un tubo di flusso in cui, durante il moto, le particelle non possono ne entrare ne uscire. E supponiamo che il moto sia: 1. Stazionario,. Irrotazionale, 3. Incompressibile, 4. non viscoso. Definizione dell equazione di continuità: in un tubo di flusso a sezione variabile per ogni fissato intervallo di tempo, la quantità di materia che entra è uguale alla quantità di materia che esce. ΔV 1 = ΔV = AΔx = AvΔt à A 1 v 1 = A v ovvero R v = Av = costante

19 Equazione di Bernoulli Supponiamo un tubo di flusso che abbia l ingresso e l uscita a due diverse quote. er l equazione di continuità i volumi di entrata e di uscita devono essere uguali, quindi possiamo, il più generalmente possibile, dire che : p p ρv 1 + ρv 1 + ρgy 1 + ρgy = = p + cost 1 ρv + ρgy Questa equazione ha interessanti implicazioni: 1. Se il fluido è a riposo v 1 = v ovvero v = p 1 - p = ρg (y y 1 ). Se il flusso è orizzontale y 1 = y p 1 p = ½ρ (v v 1 ) Si può notare che l equazione di Bernoulli non ha le dimensioni dell energia, ma si deriva da questa e vedremo come.

20 Equazione di Bernoulli: dimostrazione In un certo intervallo di tempo Δt ai due estremi del tubo le superfici che si spostano sono Δs 1 e Δs e per il principio di continuità dovrà essere: ΔV = Δs 1 A 1 = Δs A. Il lavoro fatto sarà A s y p w = p 1 A 1 Δs 1 - p A Δs = w = (p 1 -p ) ΔV. (In s la pressione è opposta alla pressione in s 1, quindi segno in s ) Il lavoro fajo corrisponde alla variazione dell energia meccanica. w = E+U ½ mv = ½ ρ ΔV v 1 è l E k (s 1 ) di una massa m che entra in s 1 nel tubo di flusso e nello stesso Δt la stessa massa dovrà lasciare il tubo da s portandosi dietro una energia cinevca E k (s ) tale che ΔE k = E k (s ) E k1 (s 1 ) = ½ ρ ΔV (v - v 1 ) L energia potenziale della massa m entrante in s 1 sarà Δmgy 1 = ρ ΔVgy 1 e quella uscente in s nello stesso Δt sarà Δmgy = ρ ΔVgy à ΔU = ρδv g(y y 1 ) er il teorema del Lavoro e dell Energia (p 1 - p ) ΔV =½ ρ ΔV (v - v 1 ) + ρδv g(y y 1 ) o più semplicemente p + ½ ρv + ρgy = cost [M - 1 KS - ] y 1 A 1 p 1 s 1

21 Esempio classico Trovare la velocità dell acqua che esce dal foro? 1. Bisogna pensare ad un tubo con diametro del serbatoio. Quindi per l equazione della continuità Av = av v = (a/a) v. p + ½ ρ v + ρ gh = p + ½ ρ v + ρ g() e per v <<v v = (gh) ½ (velocità di un grave)

Idrodinamica. Equazione di con0nuità Equazione di Bernoulli

Idrodinamica. Equazione di con0nuità Equazione di Bernoulli Idrodinamica Equazione di con0nuità Equazione di Bernoulli Fluidi Ideali Lo studio del moto di un fluido reale sarebbe troppo complesso ed è ancora oggetto di molti studi. Limitiamoci a studiare un liquido

Dettagli

Fluidi. Tensione superficiale

Fluidi. Tensione superficiale Fluidi Tensione suerficiale I fluidi Fluide sono tu4e quelle sostanze che non soortano uno sforzo di taglio. Su scala atomica la dis=nzione tra fluidi e solidi è la lunghezza dell interazione molecolare.

Dettagli

Fluidi. Tensione superficiale

Fluidi. Tensione superficiale luidi Tensione suerficiale I fluidi Un luido e uno stato aggregato della materia che non man8ene la roria forma e che non sos8ene lo sforzo di taglio. Su scala atomica la dis8nzione tra fluidi e solidi

Dettagli

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi La lezione di oggi La densità La pressione L equazione di continuità Il teorema di Bernoulli Stenosi e aneurismi ! Densità, pressione! La portata di un condotto! Il teorema di Bernoulli! Applicazioni dell

Dettagli

MECCANICA DEI FLUIDI

MECCANICA DEI FLUIDI MECCANICA DEI FLUIDI Un fluido è un corpo che non ha una forma propria. La sua forma dipende da altri corpi che lo contengono (per esempio un recipiente, una condotta, ). Un fluido è composto da molte

Dettagli

Lezione 9. Statica dei fluidi

Lezione 9. Statica dei fluidi Lezione 9 Statica dei fluidi Meccanica dei fluidi Un fluido e un corpo che non ha una forma definita, ma che, se e contenuto da un contenitore solido, tende a occupare (riempire) una parte o tutto il volume

Dettagli

Densita. FLUIDI : liquidi o gas. macroscop.:

Densita. FLUIDI : liquidi o gas. macroscop.: 6-SBAC Fisica 1/10 FLUIDI : liquidi o gas macroscop.: microscop.: sostanza che prende la forma del contenitore che la occupa insieme di molecole tenute insieme da deboli forze di coesione (primi vicini)

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica Fluidi I Stati della materia Densità e pressione Idrostatica Idrodinamica Stati della materia 1. Solido: indeformabile e incomprimibile 2. Liquido: deformabile e incomprimibile 3. Gassoso: deformabile

Dettagli

Meccanica dei fluidi. Ø definizioni; Ø statica dei fluidi (principio di Archimede); Ø dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei fluidi. Ø definizioni; Ø statica dei fluidi (principio di Archimede); Ø dinamica dei fluidi (teorema di Bernoulli). Meccanica dei fluidi Ø definizioni; Ø statica dei fluidi (principio di Archimede); Ø dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]

Dettagli

V in A? V in B? V in C?

V in A? V in B? V in C? V in A? V in B? V in C? K + U 0 K + U K + U i i f f 1 e se c è attrito? (forze dissipative) L NC K + U F d att K + U F att d N Riassunto Grandezze vettoriali e scalari Le grandezze del moto Le cause del

Dettagli

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica Fluidi I Stati della materia Densità e pressione Idrostatica Idrodinamica Stati della materia 1. Solido: indeformabile e incomprimibile 2. Liquido: deformabile e incomprimibile 3. Gassoso: deformabile

Dettagli

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica Fluidi I Stati della materia Densità e pressione Idrostatica Idrodinamica Stati della materia 1. Solido: indeformabile e incomprimibile 2. Liquido: deformabile e incomprimibile 3. Gassoso: deformabile

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, è poco comprimibile e molto denso (ha un elevata densità, o massa volumica,

Dettagli

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI Meccanica dei fluidi La meccanica dei fluidi si occupa sia della statica (idrostatica) sia del movimento (idrodinamica) dei fluidi. Per fluidi si intendono

Dettagli

Meccanica dei Fluidi

Meccanica dei Fluidi Meccanica dei Fluidi F.Fabrizi e P. Pennestrì Liceo Scientifico I. Newton - Roma Classe III D 15 marzo 2013 1 Definizione di Fluido Un fluido è un insieme di particelle che interagiscono tra loro con una

Dettagli

Un corpo di forma cubica (lato L = 10 cm) e densità ρ = 800 kg/m 3 è immerso in acqua (densità ρ 0

Un corpo di forma cubica (lato L = 10 cm) e densità ρ = 800 kg/m 3 è immerso in acqua (densità ρ 0 Un corpo di forma cubica (lato L = 10 cm) e densità ρ = 800 kg/m 3 è immerso in acqua (densità ρ 0 = 1000 kg/m 3 ). Il corpo è tenuto immerso da un filo attaccato al fondo del recipiente. Calcolare: a)la

Dettagli

Eq. bilancio quantità di moto

Eq. bilancio quantità di moto Eq. bilancio quantità di moto Contributo relativo alle superfici permeabili, ovvero interessate da flussi di massa (nullo, dato che il fluido è macroscopicamente in quiete) Integrale degli sforzi superficiali

Dettagli

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 1 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli). Meccanica dei fluidi! definizioni;! statica dei fluidi (principio di Archimede);! dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]

Dettagli

Fisica Applicata, Area Infermieristica, M. Ruspa MECCANICA DEI FLUIDI. Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto

Fisica Applicata, Area Infermieristica, M. Ruspa MECCANICA DEI FLUIDI. Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto MECCANICA DEI FLUIDI Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto I diversi stati di aggregazione della materia dipendono dalle forze di legame interatomiche o intermolecolari. SOLIDI

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Un fluido è un insieme di molecole tenute insieme da deboli forze di coesione e da forze esercitate dalla parete del contenitore (possono essere sia

Dettagli

I fluidi Approfondimento I

I fluidi Approfondimento I I fluidi Approfondimento I statica dei fluidi Legge di Stevino, Principio di Pascal, Principio di Archimede e applicazioni dinamica dei fluidi ideali Flusso di un fluido e continuità Equazione di Bernoulli

Dettagli

Alcuni valori della densita'

Alcuni valori della densita' Fluidi Comprendono liquidi e gas La distanza tra le particelle non è fissata Il liquido non è facilmente comprimibile Il gas si può comprimere facilmente e non ha forma propria Solidi, liquidi e gas sono

Dettagli

Stati di aggregazione della materia:

Stati di aggregazione della materia: Stati di aggregazione della materia: Stato solido: tendono a conservare la loro forma. Fluidi non mantengono la loro forma. Liquidi Gas - scorrono e prendono la forma del contenitore; - sono incomprimibili.

Dettagli

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido.

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. UNITÀ 8 LA MECCANICA DEI FLUIDI 1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. 3. La pressione atmosferica. 4. La legge di Stevino. 5. La legge di Pascal. 6. La forza di Archimede.

Dettagli

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore Meccanica dei luidi stati di aggregazione della materia: solidi liquidi gas fluidi assumono la forma del contenitore Caratteristiche di un fluido LUIDO sostanza senza forma propria (assume la forma del

Dettagli

Stati di aggregazione della materia:

Stati di aggregazione della materia: .d.l. Scienze orestali e Ambientali, A.A. 2012/2013, isica Stati di aggregazione della materia: Stato solido: tendono a conservare la loro forma. luidi non mantengono la loro forma. Liquidi Gas - scorrono

Dettagli

Cap Fluidi

Cap Fluidi N.Giglietto A.A. 2005/06-15.4 - Legge di Stevino, fluidi a riposo - 1 Cap 15.1-15.2 - Fluidi Un fluido è una sostanza in grado di scorrere: i fluidi prendono la forma dei contenitori nei quali sono confinati.

Dettagli

y h=10m v 1 A 1 v 2 0 p A 2 p 1 =1, Pa p 2

y h=10m v 1 A 1 v 2 0 p A 2 p 1 =1, Pa p 2 HLLIDY - capitolo 4 problema 33 In un tubo di sezione =4.0 cm scorre acqua con velocità v =5.0 m/s. Il tubo poi scende lentamente di 0 m mentre l area della sua sezione diventa pian piano di 8.0 cm. )

Dettagli

Meccanica dei fluidi (1) Statica dei fluidi Lezione 10, 6/11/2018, JW

Meccanica dei fluidi (1) Statica dei fluidi Lezione 10, 6/11/2018, JW Meccanica dei fluidi (1) Statica dei fluidi Lezione 10, 6/11/2018, JW 14.1-14.5 1 Fluidi Sostanza che può scorrere Prende la forma del contenitore nel quale è confinata non sempre immediatamente, e.g.

Dettagli

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Legge di Stevino La pressione in un liquido a densità costante cresce linearmente con la profondità Il principio di

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia 1 Principi di idraulica Definizioni MECCANICA DEI FLUIDI È il ramo della fisica che studia le proprietà dei fluidi, cioè liquidi, vapori e gas. Idrostatica Studia i fluidi in quiete Idrodinamica Studia

Dettagli

PRESSIONE IN UN FLUIDO IN QUIETE

PRESSIONE IN UN FLUIDO IN QUIETE PRESSIONE IN UN FLUIDO IN QUIETE P p 0 Quali e quante pressioni in P? 1) pressione esterna (tipicamente pressione atmosferica) 2) pressione idrostatica Pressione totale = p 0 + dgh LEGGE di STEVINO 156

Dettagli

Fluidodinamica. Q=V/Δt=costante

Fluidodinamica. Q=V/Δt=costante Liquido perfetto o ideale: Fluidodinamica Incomprimibile (densità costante sia nel tempo che nello spazio) Assenza di attrito interno (in un liquido reale si conserva la caratteristica dell incompressibilità

Dettagli

PRESSIONE ATMOSFERICA

PRESSIONE ATMOSFERICA PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 197 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Meccanica dei fluidi Si definiscono fluidi I sistemi che si deformano continuamente sotto l'azione di una forza tangenziale, tendente a far scorrere uno strato del sistema sull'altro, indipendentemente

Dettagli

STATICA E DINAMICA DEI FLUIDI

STATICA E DINAMICA DEI FLUIDI STATICA E DINAMICA DEI FLUIDI Pressione Principio di Pascal Legge di Stevino Spinta di Archimede Conservazione della portata Teorema di Bernoulli Legge di Hagen-Poiseuille Moto laminare e turbolento Stati

Dettagli

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) In un fluido Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) le molecole non sono vincolate a posizioni fisse a differenza di quello che avviene nei solidi ed in particolare nei cristalli Il numero di molecole

Dettagli

Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido.

Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. Fluidi Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. In base a tale definizione, sia i gas che i liquidi

Dettagli

Meccanica dei Fluidi. Fisica con Elementi di Matematica 1

Meccanica dei Fluidi. Fisica con Elementi di Matematica 1 Meccanica dei Fluidi Fisica con Elementi di Matematica 1 Alcuni concetti di base: Vi sono fenomeni fisici per i quali una descrizione in termini di forza, massa ed accelerazione non è la più adeguata.

Dettagli

Dotto Formazione a tutto tondo. Corso di Fisica

Dotto Formazione a tutto tondo. Corso di Fisica Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 8 Fluidi 2 La densità La densità è il rapporto tra la massa m di una porzione di fluido e il volume V da essa occupato: ρ =

Dettagli

Lez 12 09/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 12 09/11/2016. Lezioni in   didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 09//06 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis67/ E. Fiandrini Fis Sper e Appl Did 67 Fluidi in moto Un fluido puo essere messo in movimento (es. acqua che scorre,

Dettagli

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta INTRODUZIONE ALLA TERMODINAMICA Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta in un recipiente, ad esempio 5g di ossigeno. Dato l elevato numero di molecole

Dettagli

Meccanica Dinamica dei fluidi

Meccanica Dinamica dei fluidi Meccanica 6-7 Dinamica dei fluidi Proprietà meccaniche dei fluidi olidi Liquidi Gas orma propria Pressione acqua Assumono la forma dell ambiente che li contiene Volume proprio Incompressibile ρ kg/m 3

Dettagli

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio IL MOTO DEI FLUIDI con applicazione al sistema circolatorio Portata Pressione Moto stazionario: equazione di continuità Applicazione al sistema circolatorio: pressione e velocità del sangue Moto laminare

Dettagli

La lezione di oggi. Le interazioni tra molecole alla superficie di un liquido generano fenomeni come: tensione superficiale capillarità

La lezione di oggi. Le interazioni tra molecole alla superficie di un liquido generano fenomeni come: tensione superficiale capillarità 1 La lezione di oggi Le interazioni tra molecole alla superficie di un liquido generano fenomeni come: tensione superficiale capillarità In medicina: Equilibrio alveolare 2 ! La tensione superficiale!

Dettagli

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica 1 La lezione di oggi I fluidi reali La viscosità Flussi laminare e turbolento La resistenza idrodinamica 2 La lezione di oggi Forze di trascinamento nei fluidi La legge di Stokes La centrifuga 3 ! Viscosità!

Dettagli

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati Esercitazione 5 Dr. Monica Casale Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a. 2010-2011 Emanuele Biolcati Ringraziamenti speciali a Monica Casale per la preparazione delle slides Fluidi

Dettagli

La meccanica dei fluidi

La meccanica dei fluidi a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 La meccanica dei fluidi 7/3/2006 Stati della materia Esistono tre stati della materia Il solido ha volume e forma definita La forma

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Programma Parte I Meccanica dei Fluidi Proprietà generali dei Fluidi; Il Principio di Pascal; La legge di Stevino per i liquidi pesanti; Il Principio di Archimede; Il moto dei fluidi; Legge di Bernoulli;

Dettagli

Fisica applicata Lezione 7

Fisica applicata Lezione 7 Fisica applicata Lezione 7 Maurizio Tomasi maurizio.tomasi@unimi.it Dipartimento di Fisica Università degli studi di Milano 14 Novembre 2016 Parte I Fluidostatica (conclusione) Il tubo di Torricelli Un

Dettagli

F > mg Il cubo galleggia

F > mg Il cubo galleggia LA LEGGE DI ARCHIMEDE Un corpo immerso in un liquido riceve una spinta dal basso verso l'alto pari al peso del liquido spostato Cubo di legno di pioppo V = 1 dm³ mg = 5N (forza peso) Legge di Archimede:

Dettagli

MECCANICA dei FLUIDI nei SISTEMI BIOLOGICI

MECCANICA dei FLUIDI nei SISTEMI BIOLOGICI MECCANICA dei FLUIDI nei SISTEMI BIOLOGICI parte II a parte I! - EQUAZIONE DI CONTINUITA - PRESSIONE IDROSTATICA Lucidi del Prof. D. Scannicchio MASSA, PESO, DENSITA' m kg massa g massa p = m g kg peso

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Meccanica dei fluidi FLUIDI LIQUIDI Hanno volume proprio Sono incomprimibili GAS Non hanno volume proprio Sono facilmente comprimibili CARATTERISTICHE COMUNI Non sostengono gli sforzi di taglio (non hanno

Dettagli

è completamente immerso in acqua. La sua

è completamente immerso in acqua. La sua In un tubo scorre in regime stazionario un liquido ideale con densità 1.00 10 3 kg/m 3 ; in un punto A il tubo ha raggio R A = 2.00 cm, la velocità di scorrimento è v A = 5.00 m/se la pressione è P A =

Dettagli

Lezione n. 4. La superficie liquida

Lezione n. 4. La superficie liquida Lezione n. 4 La superficie liquida Limiti di fase Diagramma di stato: rappresentazione delle regioni di pressione e temperatura in cui le fasi sono stabili da un punto di vista termodinamico. Confini di

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione:

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione: Solidi, liquidi e gas 0 In natura le sostanze possono trovarsi in tre stati di aggregazione: Caratteristiche di un fluido FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene)

Dettagli

Meccanica dei Fluidi 1

Meccanica dei Fluidi 1 Meccanica dei Fluidi 1 Solidi, liquidi e gas In natura le sostanze possono trovarsi in tre stati di aggregazione: Caratteristiche di un fluido fluido: insieme di molecole sistemate casualmente e legate

Dettagli

I FLUIDI. Archimede Pascal Stevino Torricelli

I FLUIDI. Archimede Pascal Stevino Torricelli I FLUIDI Archimede Pascal Stevino Torricelli Galleggiamento F = g V A fluido i La forza di Archimede deve essere uguale al peso del corpo immerso nel fluido. Archimede Spinta di Archimede in aria e in

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

ESCLUSIVO USO DIDATTICO INTERNO - CENNI DI DINAMICA DEI FLUIDI Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica

ESCLUSIVO USO DIDATTICO INTERNO - CENNI DI DINAMICA DEI FLUIDI Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via Bassi 6, 700 Pavia, Italy - tel. 038/98.7905 girolett@unipv.it - www.unipv.it/webgiro 004 elio giroletti dinamica dei fluidi RISCHI FISICI,

Dettagli

1 La legge di Stevino.

1 La legge di Stevino. 1 La legge di Stevino. Ricordiamo la definizione di pressione come la forza per unita di superficie. P = F A (1) La Figura 1 mostra un contenitore con del liquido dove e segnato un immaginario parallelepipedo

Dettagli

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato Applicazioni Legge di Archimede. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato Prima del posizionamento del corpo: volume

Dettagli

Meccanica Meccanica dei fluidi

Meccanica Meccanica dei fluidi Meccanica 8-9 Meccanica dei fluidi olidi Liquidi Gas orma propria Pressione acqua Assumono la forma dell ambiente che li contiene Volume proprio Incomprimibile kg/m 3 3 p Riempie tutto il volume Comprimibile.3

Dettagli

Meccanica dei FLUIDI

Meccanica dei FLUIDI Meccanica dei FLUIDI Densità Portata Pressione Moto stazionario: equazione di continuità Legge di Stevino Pressione idrostatica Spinta di Archimede Teorema di Bernoulli Viscosità Moto laminare: equazione

Dettagli

La corrente di un fluido

La corrente di un fluido La corrente di un fluido 0 La corrente di un fluido è il movimento ordinato di un liquido o di un gas. 0 La portata q è il rapporto tra il volume di fluido V che attraversa una sezione in un tempo t ed

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 2018/2019 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (16 ore): Matteo Avolio Lezione del 15 /04/2019 2 h (13:30-15:30, Aula G10, Golgi) - SOLUZIONI ESERCITAZIONI

Dettagli

Caratteristiche energetiche di un onda

Caratteristiche energetiche di un onda Caratteristiche energetiche di un onda Potenza P di una sorgente [W] È l energia emessa da una sorgente nell unità di tempo. Intensità di un onda I [W/m 2 ] Rappresenta l'energia trasportata dall onda

Dettagli

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 4 Fisica dei fluidi Stati della materia 2 Condizione di riposo di un liquido 3 La pressione idrostatica. 4 Principio di Pascal. 5 Esercizio 7 Variazione di pressione con la profondità..

Dettagli

Meccanica dei Fluidi - Fluidostatica -

Meccanica dei Fluidi - Fluidostatica - Meccanica dei Fluidi - Fluidostatica - STATI DI AGGREGAZIONE DELLA MATERIA Stato Solido: La sostanza ha volume e forma ben definiti. Stato Liquido: La sostanza ha volume ben definito, ma assume la forma

Dettagli

Idraulica e Idrologia: Lezione 12 Agenda del giorno

Idraulica e Idrologia: Lezione 12 Agenda del giorno Idraulica e Idrologia: Lezione genda del giorno Idrostatica: fluidi in quiete - Unità di misura er la ressione di un fluido - Pressione e rofondità - Princiio di rchimede: cori in un fluido Pg Fluido Cosa

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 018/019 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (16 ore): Matteo Avolio Lezione del 08/05/019 h (13:30-15:30, Aula G10, Golgi) ESERCITAZIONI FLUIDI Esercizio

Dettagli

Riassunto. Familiarizzare con i concetti fisici

Riassunto. Familiarizzare con i concetti fisici Riassunto Grandezze vettoriali e scalari Le grandezze del moto Le cause del moto: Leggi di newton! Moto in iù dimensioni Lavoro Energia e sua conservazione Quantità di moto e sua conservazione amiliarizzare

Dettagli

PORTATA DI UN CONDOTTO. Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. V v t. = t

PORTATA DI UN CONDOTTO. Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. V v t. = t PORTATA DI UN CONDOTTO Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. A vt V A v t Q = = = A v t t 1 MOTO STAZIONARIO Un moto si dice stazionario quando le principali

Dettagli

1. Statica dei fluidi

1. Statica dei fluidi Di cosa parleremo Statica dei fluidi In questo capitolo ci occuperemo della statica dei fluidi (idrostatica) e nel capitolo successivo della dinamica dei fluidi (idrodinamica) e tratteremo principalmente

Dettagli

EQUILIBRIO DEI FLUIDI

EQUILIBRIO DEI FLUIDI EQUILIBRIO DEI FLUIDI Pressione atmosferica, spinta di Archimede 1 Pressione atmosferica Bicchiere e cartoncino Cannuccia Uova Ventosa Emisferi di Magdeburgo 1 Emisferi di Magdeburgo 2 Unità D-Lez.2 Par

Dettagli

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1 Dinamica del fluidi A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi A. Stefanel - Fluidodinamica 1 Per descrivere il moto di un fluido ci sono due formalismi equivalenti: Lagrange: si descrive il moto

Dettagli

STATICA DEI FLUIDI G. ROBERTI

STATICA DEI FLUIDI G. ROBERTI STATICA DEI FLUIDI G. ROBERTI FLUIDI G. Roberti Definizione:sostanze che assumono la forma dei recipienti che le contengono oppure Definizione: sostanze che si deformano senza che si compia lavoro ΔV /

Dettagli

Equilibrio dei corpi rigidi e dei fluidi 1

Equilibrio dei corpi rigidi e dei fluidi 1 Equilibrio dei corpi rigidi e dei fluidi 1 2 Modulo 4 Modulo 4 Equilibrio dei corpi rigidi e dei fluidi 4.1. Momento di una forza 4.2. Equilibrio dei corpi rigidi 4.3. La pressione 4.4. Equilibrio dei

Dettagli

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento IDROSTATICA leggi dell'equilibrio IDRODINAMICA leggi del movimento La materia esite in tre stati: SOLIDO volume e forma propri LIQUIDO volume proprio ma non una forma propria (forma del contenitore) AERIFORME

Dettagli

Lez E. Fiandrini Fis. Sper. e App. Did. 1516

Lez E. Fiandrini Fis. Sper. e App. Did. 1516 Lez 3 5 App. Did. 56 Il principio di Archimede Un oggetto immerso in un fluido riceve una spinta diretta verso l'alto pari alla forza-peso del fluido spostato L acqua che circonda la cavità esercita forze

Dettagli

DINAMICA DEI FLUIDI con applicazioni al sistema circolatorio

DINAMICA DEI FLUIDI con applicazioni al sistema circolatorio CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE DINAMICA DEI FLUIDI con applicazioni al sistema circolatorio PORTATA PRESSIONE MOTO STAZIONARIO APPLICAZIONI AL SISTEMA CIRCOLATORIO

Dettagli

Problematiche. 1 ) Esercizi. «Fissiamo poco le formule e facciamo tutto in maniera sperimentale»

Problematiche. 1 ) Esercizi. «Fissiamo poco le formule e facciamo tutto in maniera sperimentale» Problematiche ) Esercizi «issiamo poco le formule e facciamo tutto in maniera sperimentale» «Gli esercizi, non riuscire ad applicare la teoria e la conoscenza degli argomenti a una situazione di esercizi»

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

ESERCIZI FISICA I Lezione

ESERCIZI FISICA I Lezione ESERCIZI FISICA I Lezione 10 2018-06-04 Tutor: Alessandro Ursi alessandro.ursi@iaps.inaf.it ESERCIZIO 1 Due corpi di forme e volumi uguali, ma di sostanze diverse, sono disposti come in figura. La densità

Dettagli

Fisica Medica Soluzione Esercizi

Fisica Medica Soluzione Esercizi Fisica Medica Soluzione Esercizi Roberto Guerra roberto.guerra@unimi.it Dipartimento di Fisica Università degli studi di Milano (1) a) x = P V (t/l) b) x = kg () Nelle somme e differenze, bisogna arrotondare

Dettagli

Fisica per Medicina. Lezione 7 - Statica e dinamica dei fluidi. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 7 - Statica e dinamica dei fluidi. Dr. Cristiano Fontana Fisica per Medicina Lezione 7 - Statica e dinamica dei fluidi Dr. Cristiano Fontana Dipartimento di Fisica ed stronomia Galileo Galilei Università degli Studi di Padova 3 novembre 2017 Indice Fluidi Statica

Dettagli

Fluidodinamica applicata Esercizi Proposti (Da Risolvere)

Fluidodinamica applicata Esercizi Proposti (Da Risolvere) MARTEDÌ 1..000 ESERCIZI PROPOSTI 1) una parete verticale separa due invasi pieni d acqua. Noti i livelli dell acqua nei due invasi 1 ed, con 1 < e la densità ρ dell acqua, calcolare la forza per unità

Dettagli

ENERGIA DI PRESSIONE TEOREMA DI BERNOULLI PRESSIONE IDROSTATICA SPINTA DI ARCHIMEDE

ENERGIA DI PRESSIONE TEOREMA DI BERNOULLI PRESSIONE IDROSTATICA SPINTA DI ARCHIMEDE CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE L ENERGIA NEI FLUIDI ENERGIA DI PRESSIONE TEOREMA DI BERNOULLI PRESSIONE IDROSTATICA SPINTA DI ARCHIMEDE A. A. 014-015 Fabrizio

Dettagli

Legge di Stevino ( d.c.)

Legge di Stevino ( d.c.) Legge di Stevino (1548-1620 d.c.) PA =F A /A= (Ah)g/A= hg conosciuta come legge di Stevino che quindi afferma che la pressione esercitata dal liquido su una superficie interna e' proporzionale alla densita'

Dettagli

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone.

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone. IL PRINCIPIO DI PASCAL Consideriamo un fluido incomprimibile come in figura contenuto in un cilindro chiuso superiormente da un pistone. Applicando al pistone una forza esterna, si esercita una pressione

Dettagli

I fluidi. 2 La densità di un olio è 0,08 g/cm 3. L altezza h della colonna di olio nella figura è: A 2 cm. B 4,6 cm. C 8 cm. D 10 cm. E 11,8.

I fluidi. 2 La densità di un olio è 0,08 g/cm 3. L altezza h della colonna di olio nella figura è: A 2 cm. B 4,6 cm. C 8 cm. D 10 cm. E 11,8. I fluidi 1 Per misurare pressioni relativamente basse, in un barometro anziché mercurio è utilizzato olio di densità 8,5 10 2 kg/m 3. Un cambiamento di pressione di 1,0 Pa produce una variazione nell altezza

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 7 Fluidostatica e Fluidodinamica

Main training FISICA. Lorenzo Manganaro. Lezione 7 Fluidostatica e Fluidodinamica Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 7 Fluidostatica e Fluidodinamica 1. Fluidostatica Pressione e Principio di Pascal Legge di Stevino Legge di Archimede 2. Fluidodinamica Portata

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica Dall idrostatica alla idrodinamica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo il valore della pressione atmosferica

Dettagli