Capitolo 2. non lineari. 2.1 Metodo di Newton per sistemi di equazioni. Consideriamo il sistema di equazioni non lineari. f N (x 1,x 2,...

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 2. non lineari. 2.1 Metodo di Newton per sistemi di equazioni. Consideriamo il sistema di equazioni non lineari. f N (x 1,x 2,..."

Transcript

1 Capitolo ODEs non lineari Metodo di Newton per sistemi di equazioni non lineari Consideriamo il sistema di equazioni non lineari f (x,x,,x N ) = f (x,x,,x N ) = f N (x,x,,x N ) = che può essere riscritto, in forma compatta, f(x) = Dato x (), il metodo di Newton per calcolare x (l+) è ove J (l) è la matrice Jacobiana, definita da J (l) δx (l) = f(x (l) ) x (l+) = x (l) + δx (l) () J (l) ij = f i(x (l) ) x (l) j Il criterio d arresto solitamente usato è δx (l) tol () 9

2 CAPITOLO ODES NON LINEARI function [x iter errest] = newton(fun,fun,x,tol,maxit,varargin) % % [x iter errest] = newton(fun,fun,x,tol,maxit,varargin) % iter = ; errest = -feval(fun,x,varargin{:})\feval(fun,x,varargin{:}); while (norm(errest) > tol) & (iter <= maxit) iter = iter+; x = x+errest; errest = -feval(fun,x,varargin{:})\feval(fun,x,varargin{:}); x = x; end if (iter > maxit) warning( Raggiunto il numero massimo di iterazioni ) end Tabella : Metodo di Newton Metodo di Newton modificato Il metodo di Newton () richiede il calcolo della matrice Jacobiana e la sua inversione ad ogni passo k Questo potrebbe essere troppo oneroso Una strategia per ridurre il costo computazionale è usare sempre la stessa matrice Jacobiana J (), oppure aggiornarla solo dopo un certo numero di iterazioni In tal modo, per esempio, è possibile usare la stessa fattorizzazione L (l) U (l) per più iterazioni successive θ-metodo Consideriamo il sistema di ODEs ẏ (t) = f (y (t),y (t),,y N (t),t) ẏ (t) = f (y (t),y (t),,y N (t),t) ẏ N (t) = f N (y (t),y (t),,y N (t),t)

3 3 METODI DI RUNGE KUTTA EMBEDDED con dato iniziale y (t ) = y y (t ) = y y N (t ) = y N che può essere riscritto, in forma compatta, {ẏ(t) = f(y(t),t) y(t ) = y (3) Notiamo come il sistema non autonomo (3) può essere ricondotto ad uno autonomo ẏ(t) = f(y(t),y N+ (t)) ẏ N+ (t) = (4) y(t ) = y y N+ (t ) = t ponendo y N+ (t) = t Il θ-metodo per il sistema (4) si scrive y n+ y n k = ( θ)f(y n ) + θf(y n+ ) (5) ove t n+ = t n +k e y n y(t n ) Chiaramente, il θ metodo si riduce al metodo di Eulero esplicito per θ =, al metodo di Eulero implicito per θ = e al metodo di Crank Nicolson per θ = / Nel caso implicito (θ ), ad ogni passo si deve risolvere un sistema di equazioni non lineari F(x) =, x = y k+, ove La matrice Jacobiana associata è F(x) = x kθf(x) y n h( θ)f(y n ) J ij (x) = I kθ f i(x) x j 3 Metodi di Runge Kutta embedded Supponiamo di avere un metodo di Runge Kutta esplicito di ordine p il cui tableau è riportato nella Tabella e un altro metodo di Runge Kutta di ordine p il cui tableau è riportato nella Tabella È chiaro che, dopo aver

4 CAPITOLO ODES NON LINEARI c a c 3 a 3 a 3 c s a s a s a s s b b b s b s Figura : Metodo di Runge Kutta di ordine p c a c 3 a 3 a 3 c s a s a s a s s c s+ a s+ a s+ a s+ s a s+ s ˆb ˆb ˆbs ˆbs ˆbs+ Figura : Metodo di Runge Kutta di ordine p c a c 3 a 3 a 3 c s+ a s+ a s+ a s+ s b b b s ˆb ˆb ˆbs ˆbs+ Figura 3: Metodi di Runge Kutta embedded di ordine p e p costruito il primo metodo, con una sola nuova valutazione della funzione f si può costruire il secondo metodo Una tale coppia di metodi si dice embedded e si scrive di solito un unico tableau, come nella Tabella 3 Indicata con y n+ (p ) l approssimazione di y(t n+) con il metodo Runge Kutta di ordine p e con y n+ l approssimazione di y(t n+ ) con il metodo Runge Kutta di ordine p, si ha y n+ y n+ (p ) = y n+ y(t n+ ) + y(t n+ ) y n+ (p ) Ck p, (6) ove k = t n+ t n è il passo di integrazione e Ck p è l errore di troncamento locale del metodo di ordine p Infatti, si sta risolvendo il sistema

5 3 METODI DI RUNGE KUTTA EMBEDDED 3 differenziale { ẏ(t) = f(y(t),t) y(t n ) = y n con entrambi i metodi Se si vuole controllare tale errore con una tolleranza tol, si può allora imporre, ad ogni passo, che y n+ y n+ tol, (p ) rifiutando y n+ nel caso la disuguaglianza non sia soddisfatta e calcolando un nuovo passo di integrazione minore del precedente Siccome p è l ordine del metodo più accurato, ci si aspetta che l errore globale sia controllato dalla stessa tolleranza 3 Passo di integrazione variabile Indicato con k old l attuale passo di integrazione e con k new il nuovo passo d integrazione, usando (6), si ha k new = tol y n+ y n+ (p ) /p k old Per evitare che il passo di integrazione cambi troppo bruscamente, si può adottare una correzione del tipo /p k new = min, max 6, 9 tol y n+ y n+ k old (p ) 3 Ordine dei metodi con passo variabile Supponiamo che l integrazione nell intervallo di tempo [t,t] sia condotta da un metodo di ordine p in n passi di lunghezza media k = (T t )/n, con un errore finale err = Ck p e in n passi di lunghezza media k = (T t )/n, con un errore finale err = Ck p Si ha dunque da cui err err = ( k k ) p, log err log err = p(log k log k ) = p(log n log n )

6 4 CAPITOLO ODES NON LINEARI Dunque, rappresentando in un grafico logaritmico-logaritmico l errore in dipendenza dal numero di passi, la pendenza della retta corrisponde all ordine del metodo, cambiato di segno 4 Esercizi Risolvere il sistema non lineare { f (x,x ) = x + x = f (x,x ) = sin(πx /) + x 3 con il metodo di Newton () Si usi una tolleranza pari a 6, un numero massimo di iterazioni pari a 5 e un vettore iniziale x () = [, ] T Si risolva lo stesso sistema non lineare usando sempre la matrice Jacobiana relativa al primo passo e aggiornando la matrice Jacobiana ogni r iterazioni, ove r è il più piccolo numero di iterazioni che permette di ottenere la soluzione con la tolleranza richiesta calcolando solo due volte la matrice Jacobiana 3 Si risolva lo stesso sistema non lineare usando la function fsolve di GNU Octave 4 Si calcoli y(), ove ẏ(t) = Ay(t), y() = [,,] T, con A data da A = *toeplitz([- zeros(,n-)]), n =, usando il θ-metodo con θ =, /, e diversi passi temporali k = 3, 4,, 8 Si confrontino i risultati con la soluzione di riferimento ottenuta usando θ = / e k =, mettendo in evidenza l ordine del metodo usato Si provi anche il valore θ = /3, discutendo i risultati ottenuti 5 Si risolva il sistema di ODEs A(t) = a(t)a(t) ȧ(t) = A(t) + Ω(t) a(t) Ω(t) = (a(t) + A(t))Ω(t) (7) con dato iniziale A() = 5 a() = Ω() = fino ad un tempo finale T = 5, producendo un grafico della quantità E(t) = (A(t) + a(t) + Ω(t) + )/A(t)

7 4 ESERCIZI 5 6 Si implementi il seguente metodo di Runge Kutta di ordine (chiamato metodo di Eulero Modificato) per un sistema non autonomo (3) con una function y = rk(fun,y,k,time), ove time è un vettore bidimensionale contenente il tempo iniziale e quello finale 7 Si implementi il seguente metodo di Runge Kutta di ordine 3 per un sistema non autonomo (3) con una function y = rk3(fun,y,k,time), ove time è un vettore bidimensionale contenente il tempo iniziale e quello finale 8 Si implementi il metodo RK3, Runge Kutta di ordine 3 con metodo embedded Runge Kutta di ordine, con passo variabile Si risolva il sistema differenziale (7), producendo il grafico della quantità E(t) fino ad un tempo finale T = 5 Si metta in evidenza l ordine del metodo con un grafico logaritmico-logaritmico 9 Si implementi il metodo RK45 il cui tableau è riportato nella Tabella 4 e lo si testi sul sistema differenziale (7)

8 6 CAPITOLO ODES NON LINEARI Figura 4: Metodi di Runge Kutta embedded di ordine 4 e 5 55

Capitolo 2. Equazioni non lineari. 2.1 Metodo di bisezione. 2.2 Ordine dei metodi

Capitolo 2. Equazioni non lineari. 2.1 Metodo di bisezione. 2.2 Ordine dei metodi Capitolo 2 Equazioni non lineari 2.1 Metodo di bisezione Data la successione {x n } n prodotta dal metodo di bisezione convergente alla radice ξ di f(x), il criterio d arresto basato sul residuo (cioè

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

METODI NUMERICI PER IL CONTROLLO

METODI NUMERICI PER IL CONTROLLO METODI NUMERICI PER IL CONTROLLO Relazione 4: Equazioni differenziali ESERCIZIO 1 Risolvere il problema ai valori iniziali 3 x& = 1x + t x(0) = 0 1t + 6t 3 1 nell intervallo [0 1] con passo h=0.1 usando

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

1. Sia data la funzione f(x) = x + log x nel proprio insieme di definizione D.

1. Sia data la funzione f(x) = x + log x nel proprio insieme di definizione D. PROVA PRATICA di CALCOLO NUMERICO per Matematica Applicata e Informatica Multimediale Prof. Stefano De Marchi, Dott. Marco Caliari Verona, 08 luglio 2008 Il candidato dovrà scrivere su ogni foglio o file

Dettagli

Metodi Numerici con Laboratorio di Informatica - A.A Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso

Metodi Numerici con Laboratorio di Informatica - A.A Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso Metodi Numerici con Laboratorio di Informatica - A.A. 2015-2016 Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso Metodi numerici per le equazioni differenziali ordinarie Consideriamo

Dettagli

Dispense del corso di Metodi Numerici per le Equazioni Differenziali

Dispense del corso di Metodi Numerici per le Equazioni Differenziali Dispense del corso di Metodi Numerici per le Equazioni Differenziali Progetto numerico al calcolatore - Parte III Soluzione agli elementi finiti di un problema parabolico Mario Putti Dipartimento di Matematica

Dettagli

Metodi ad un passo espliciti

Metodi ad un passo espliciti Sono metodi della forma { un+1 = u n + h Φ(t n, u n ; h, f ) n = 0,..., N 1 Esempi: u 0 = y 0 metodi di Taylor metodo di Eulero esplicito metodo di Taylor di ordine 2 Φ(t, u; h, f ) = f (t, u) Φ(t, u;

Dettagli

Dispense del corso Laboratorio di Metodi Numerici per le Equazioni Differenziali

Dispense del corso Laboratorio di Metodi Numerici per le Equazioni Differenziali Dispense del corso Laboratorio di Metodi Numerici per le Equazioni Differenziali Dott Marco Caliari aa 2007/08 Questi appunti non hanno nessuna pretesa di completezza Sono solo alcune note ed esercizi

Dettagli

Come fatto finora, presentiamo dapprima alcune utili comandi per manipolare matrici e per risolvere sistemi non lineari. c 1 r 2 r 3... r n.

Come fatto finora, presentiamo dapprima alcune utili comandi per manipolare matrici e per risolvere sistemi non lineari. c 1 r 2 r 3... r n. LABORATORIO DI ANALISI NUMERICA Laurea Magistrale in Statistica e Informatica Esercitazione di algebra lineare numerica Prof. Stefano De Marchi Padova, October 29, 2009 Come fatto finora, presentiamo dapprima

Dettagli

Metodi a più passi. Esempi

Metodi a più passi. Esempi . Esempi Metodo del punto medio y(t n+1 ) = y(t n 1 ) + t n+1 t n 1 f (t, y(t)) dt = y(t n 1 ) + 2hf (t n, y(t n )) + O(h 3 ) u n+1 = u n 1 + 2hf (t n, u n ) Metodo di Simpson y(t n+1 ) = y(t n 1 ) + t

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Laboratorio di Metodi Numerici per le Equazioni Differenziali

Laboratorio di Metodi Numerici per le Equazioni Differenziali Laboratorio di Metodi Numerici per le Equazioni Differenziali Dott. Marco Caliari a.a. 2007/08 Capitolo 1 Metodi semiiterativi per sistemi lineari 1.1 Metodi iterativi I metodi iterativi per la soluzione

Dettagli

Dispense del corso Metodi Numerici per le Equazioni Differenziali

Dispense del corso Metodi Numerici per le Equazioni Differenziali Dispense del corso Metodi Numerici per le Equazioni Differenziali Dott. Marco Caliari a.a. 2010/11 Questi appunti non hanno nessuna pretesa di completezza. Sono solo alcune note ed esercizi che affiancano

Dettagli

Esercitazione 03 Risoluzione numerica di ODE

Esercitazione 03 Risoluzione numerica di ODE 1 Esercitazione 03 Risoluzione numerica di ODE Corso di Strumentazione e Controllo di Impianti Chimici Prof. Davide Manca Tutor: Giuseppe Pesenti Metodi di Eulero Esplicito e implicito 2 yyy(tt) = ff tt,

Dettagli

Lezione n. 2. Introduzione all analisi numerica (metodi diretti ed iterativi per la soluzione di sistemi di equazioni lineari e non lineari)

Lezione n. 2. Introduzione all analisi numerica (metodi diretti ed iterativi per la soluzione di sistemi di equazioni lineari e non lineari) Lezione n. 2 Introduzione all analisi numerica (metodi diretti ed iterativi per la soluzione di sistemi di equazioni lineari e non lineari) R. Albanese, "Metodi numerici Pag. 1 Pag. 2 Metodi diretti per

Dettagli

METODO DI EULERO ESPLICITO

METODO DI EULERO ESPLICITO METODO DI EULERO ESPLICITO { u0 dato u n+1 = u n + hf (t n, u n ) 0 n N h 1 (1) Scrivere una function [tn,un]=eulero esp(odefun,tspan,y0,nh) INPUT: odefun: espressione della f tspan=[t0,t]: vettore di

Dettagli

Calcolo Numerico - Prova Matlab 19 luglio 2013

Calcolo Numerico - Prova Matlab 19 luglio 2013 9 luglio 0 () tempo a disposizione per completare la prova: ora; () lo svolgimento della prova deve essere salvato in file denominati cognomenome#m; () è fatto assoluto divieto di aprire applicazioni diverse

Dettagli

Esercitazioni di Analisi e Simulazione dei Processi Chimici

Esercitazioni di Analisi e Simulazione dei Processi Chimici Esercitazioni di Analisi e Simulazione dei Processi Chimici Metodi numerici per la risoluzione di sistemi di equazioni differenziali ordinarie Antonio Brasiello Email: abrasiel@unina.it Tel. 081 76 82537

Dettagli

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB Calcolo Numerico ed Elementi di Analisi - Allievi AEROSPAZIALI Proff. S. Micheletti, S. Perotto A.A. 20/202, Appello 28 Gennaio 203 NOME... COGNOME... MATRICOLA... DOCENTE... AULA... PC... Ver.A I seguenti

Dettagli

Introduzione. Esercizio n 1. Metodo di Eulero Esplicito. Risolvere il problema ai valori iniziali: 3 2

Introduzione. Esercizio n 1. Metodo di Eulero Esplicito. Risolvere il problema ai valori iniziali: 3 2 Introduzione Nella seguente esercitazione si vogliono risolvere numericamente equazioni differenziali di diverso ordine, utilizzando metodi basati sulla discretizzazione delle stesse, ovvero sull approssimazione

Dettagli

Raccolta di compiti degli appelli precedenti

Raccolta di compiti degli appelli precedenti Ingegneria Informatica e delle Telecomunicazioni Anno accademico 24-25. Docente Costanza Conti Raccolta di compiti degli appelli precedenti Nota: Gli esercizi riportati si riferiscono a compiti dei precendeti

Dettagli

Soluzione di equazioni differenziali ordinarie

Soluzione di equazioni differenziali ordinarie Soluzione di equazioni differenziali ordinarie Come riferimento consideriamo una singola equazione differenziale del primo ordine Considereremo i seguenti metodi: Eulero esplicito Eulero implicito Runge-Kutta

Dettagli

1 Integrazione numerica

1 Integrazione numerica 1 Integrazione numerica ESERCITAZIONE MATLAB 7 1. I metodi dei trapezi e di Simpson compositi per la approssimazione di I(f) = b a f(x)dx (1) sono dati, rispettivamente, da I (N) 1 (f) = h [ ( N 1 ) ]

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Sommario. Parte I: ODEs e functions del MATLAB. Parte II: PDEs e applicazione in un problema alle differenze finite

Sommario. Parte I: ODEs e functions del MATLAB. Parte II: PDEs e applicazione in un problema alle differenze finite Sommario Parte I: ODEs e functions del MATLAB Parte II: PDEs e applicazione in un problema alle differenze finite 1 Parte I: ODEs e functions del MATLAB Consideriamo un problema a valori iniziali per un

Dettagli

ESERCITAZIONE Implementare i metodi di Eulero, di Heun e di Runge-Kutta del quarto ordine per integrare il problema di Cauchy:

ESERCITAZIONE Implementare i metodi di Eulero, di Heun e di Runge-Kutta del quarto ordine per integrare il problema di Cauchy: ESERCITAZIONE 5 1. Implementare i metodi di Eulero, di Heun e di Runge-Kutta del quarto ordine per integrare il problema di Cauchy: { y (x) = f(x, y(x)) y(x 0 ) = y 0 con passo h = x N x 0, ove x N N e

Dettagli

Dinamica e Controllo dei Processi Energetici. AA 2009/2010 Pier Luca Maffettone. Elementi di Matlab

Dinamica e Controllo dei Processi Energetici. AA 2009/2010 Pier Luca Maffettone. Elementi di Matlab Dinamica e Controllo dei Processi Energetici AA 2009/ Pier Luca Maffettone Elementi di Sommario Introduzione Variabili Manipolazione di elementi Creazione di vettori/matrici Operazioni elementari Funzioni

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 Problemi ai Valori Iniziali: metodo di Eulero

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 6 Equazioni differenziali ordinarie: metodi impliciti 3 Novembre 26 Esercizi di implementazione Un equazione differenziale

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali 1 Francesca Mazzia Dipartimento di Matematica Università di Bari Equazioni Differenziali 2 Consideriamo il sistema di equazioni differenziali: con condizione iniziale: y = f(t, y) (6.1) y(t 0 ) = y 0,

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Lezione 7 Equazioni Differenziali Ordinarie.

Lezione 7 Equazioni Differenziali Ordinarie. Lezione 7 Equazioni Differenziali Ordinarie http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Equazioni Differenziali Ordinarie Descrizione dell evolversi spazio-temporale

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10 Complementi di Matematica e Calcolo Numerico A.A. 2014-2015 Laboratorio 10 Convergenza di metodi iterativi per sistemi lineari UnmetodoiterativoperlarisoluzionediunsistemalineareAx = b si scrive in forma

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Esercizi Elaborato (versione )

Esercizi Elaborato (versione ) Esercizi Elaborato (versione 2019-04-15) Nota bene: l elaborato dovrà contenere i codici sviluppati, e questi dovranno essere portati alla discussione su una chiavetta USB. Esercizio 1. Verificare che,

Dettagli

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere

Dettagli

Interpolazione polinomiale. Interpolazione polinomiale

Interpolazione polinomiale. Interpolazione polinomiale 1 Polinomiale Rappresentazione Lagrangiana Polinomio interpolante di Newton Errore nell interpolazione polinomiale 2 Approssimazione ai minimi quadrati nel discreto 1 Polinomiale Rappresentazione Lagrangiana

Dettagli

Fondamenti di Informatica, A.A Compito A

Fondamenti di Informatica, A.A Compito A Fondamenti di Informatica, A.A. 2013-2014 - Compito A 30/07/2014 Prova Pratica L integrale definito di una funzione continua su un intervallo chiuso e limitato può essere calcolato con la regola dei trapezi

Dettagli

Metodi di Ricerca Lineare

Metodi di Ricerca Lineare Metodi di Ricerca Lineare Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Dispense del corso Laboratorio di Metodi Numerici per le Equazioni Differenziali

Dispense del corso Laboratorio di Metodi Numerici per le Equazioni Differenziali Dispense del corso Laboratorio di Metodi Numerici per le Equazioni Differenziali Dott Marco Caliari aa 29/1 aggiornate al 6 ottobre 21 Questi appunti non hanno nessuna pretesa di completezza Sono solo

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.   Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di equazioni differenziali

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Argomenti Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Mirano a costruire la soluzione x di un sistema lineare come limite di una successione di vettori Per matrici piene di ordine n il costo computazionale è dell ordine

Dettagli

con λ -d(f(x,y))/d(y)=12.

con λ -d(f(x,y))/d(y)=12. Quarta relazione Si risolverà il problema prima con il metodo di Eulero esplicito e poi con il metodo di Crank-Nicolson. Per ogni algoritmo si ha xn=x0+h*n 1)Risoluzione con Eulero esplicito Si osserva

Dettagli

Interpolazione polinomiale. Interpolazione polinomiale

Interpolazione polinomiale. Interpolazione polinomiale 1 Polinomiale Rappresentazione Lagrangiana Polinomio interpolante di Newton Errore nell interpolazione polinomiale Outline 1 Polinomiale Rappresentazione Lagrangiana Polinomio interpolante di Newton Errore

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11: testo soluzioni Proff. S. De Marchi e M. R. Russo 12 luglio 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11: testo soluzioni Proff. S. De Marchi e M. R. Russo 12 luglio 2011 Esame di Calcolo Numerico per Informatica A.A. 200/: testo soluzioni Proff. S. De Marchi e M. R. Russo 2 luglio 20 L esame consiste di 4 domande aperte e 0 esercizi a risposta multipla. Per gli esercizi

Dettagli

Laboratorio di Calcolo Numerico A.A Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso

Laboratorio di Calcolo Numerico A.A Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso Laboratorio di Calcolo Numerico A.A. 2007-2008 Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso Esercizio 1. Risoluzione di sistemi non lineari Si consideri il seguente sistema non

Dettagli

Progr. Non Lineare: algoritmi

Progr. Non Lineare: algoritmi Progr. Non Lineare: algoritmi Fabio Schoen schoen@ing.unifi.it http://globopt.dsi.unifi.it/users/schoen A.A. 22-23 Programmazione Non Lineare: Cenni sugli algoritmi di ottimizzazione locale Schema generale

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2013-2014 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il Problema di Cauchy: y (t) = f(t,y(t)) t I, y(t 0 ) = y

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 12: Metodi iterativi per la soluzione di sistemi lineari

Laboratorio di Calcolo Numerico Laboratorio 12: Metodi iterativi per la soluzione di sistemi lineari Laboratorio di Calcolo Numerico Laboratorio 12: Metodi iterativi per la soluzione di sistemi lineari Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 24 Maggio 2017

Dettagli

MATLAB:Metodi Numerici per zeri di funzioni.

MATLAB:Metodi Numerici per zeri di funzioni. 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Metodi Numerici per zeri di funzioni Metodo delle successive bisezioni Sappiamo che la procedura definita dal

Dettagli

Laboratorio 3-30 settembre 2005

Laboratorio 3-30 settembre 2005 Laboratorio 3-30 settembre 2005 Le funzioni in Octave Le funzioni in Octave vengono memorizzate come una stringa di caratteri (tra apici) >> fun= 1/(1+x^2) La semplice valutazione di fun, funzione di una

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Problema e definizioni Metodo di Newton-Raphson Test d arresto Algoritmo ed esercizi

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo Capitolo Esercizi a.a. 206-7 Esercizi Esercizio. Dimostrare che il metodo iterativo x k+ = Φ(x k ), k = 0,,..., se convergente a x, deve verificare la condizione di consistenza x = Φ(x ). Ovvero, la soluzione

Dettagli

Calcolo Numerico (CdS in Matematica) A.A. 2012/13

Calcolo Numerico (CdS in Matematica) A.A. 2012/13 Calcolo Numerico (CdS in Matematica) A.A. 2012/13 Esercitazione di Laboratorio sulla risoluzione di sistemi di equazioni lineari Parte 1. Fattorizzazione di matrici Scrivere una funzione Matlab che implementi

Dettagli

Assoluta stabilità e metodi multipasso. Assoluta stabilità

Assoluta stabilità e metodi multipasso. Assoluta stabilità Assoluta stabilità e metodi multipasso Elena Loli Piccolomini-metodi multipasso p.1/33 Assoluta stabilità La convergenza è un concetto fondamentale: non avrebbe senso un metodo non convergente. la convergenza

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari Equazioni differenziali lineari Un equazione del tipo y (x = f(x, y(x è un equazione differenziale del primo ordine e può essere risolta numericamente con una formula di ricorrenza. Il metodo più semplice

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte II. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte II. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte II E. Amaldi DEI, Politecnico di Milano 3.3 Metodi basati su direzioni di ricerca Problema di ottimizzazione non vincolata: min x R n f(x) con f : R n R di

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 31 agosto 2011 Testo e soluzioni

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 31 agosto 2011 Testo e soluzioni Esame di Calcolo Numerico per Informatica A.A. 21/11 Proff. S. De Marchi e M. R. Russo 31 agosto 211 Testo e soluzioni L esame consiste di 4 domande aperte e 1 esercizi a risposta multipla. Per gli esercizi

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

n (x i x j ), det V = i>j

n (x i x j ), det V = i>j Capitolo 4 Approssimazione 4.1 Richiami di teoria Prerequisiti: nozioni elementari di calcolo differenziale e integrale. Interpolazione Il problema dell interpolazione è un caso particolare del vasto settore

Dettagli

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2017/2018 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2017 1. Mercoledì 27/09/2017,

Dettagli

Equazioni di Evoluzione

Equazioni di Evoluzione Equazioni di Evoluzione Le equazioni di evoluzione descrivono fenomeni che variano in funzione del tempo, tra gli altri per esempio fenomeni di onde, termodinamici, di dinamica delle popolazioni. Le equazioni

Dettagli

Programmare con MATLAB c Parte 5 Cicli: for e while

Programmare con MATLAB c Parte 5 Cicli: for e while Programmare con MATLAB c Parte 5 Cicli: for e while Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 La notazione due punti 2 Ciclo: for 3 Ciclo con controllo: while

Dettagli

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A. 2017-18 1. Scrivere la function Matlab myfun.m che calcoli la funzione e la sua derivata. La function deve ricevere

Dettagli

1. Lunedì 26/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Lunedì 26/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 13 dicembre 2016 1. Lunedì 26/09/2016, 11 13. ore:

Dettagli

Algebra Lineare Numerica A.A Lab.6

Algebra Lineare Numerica A.A Lab.6 Algebra Lineare Numerica A.A. 2005-2006 - Lab.6 Stabilità di algoritmi per la risoluzione di problemi ai minimi quadrati Si considerino la seguente matrice A e il seguente vettore b 1 1 2 A = 1 1.0001,

Dettagli

Implementazione degli algoritmi.

Implementazione degli algoritmi. Implementazione degli algoritmi. 4.1. Introduzione. In questo capitolo sarà discussa l implementazione software per l ambiente MATLAB 6.1 che è stata fatta degli algoritmi di identificazione presentati

Dettagli

Esame di Calcolo Numerico per Informatica Prof. S. De Marchi Padova, 2 settembre 2013

Esame di Calcolo Numerico per Informatica Prof. S. De Marchi Padova, 2 settembre 2013 Esame di Calcolo Numerico per Informatica Prof. S. De Marchi Padova, 2 settembre 2013 1 Domande aperte 1. Ogni matrice quadrata (di ordine n) strettamente definita positiva è invertibile. Perchè? Risposta.

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

2. Costruire un M function file di Matlab che calcola il valore del

2. Costruire un M function file di Matlab che calcola il valore del Esercizi. 1. Costruire un M function file di Matlab che calcola il valore del polinomio di Chebyshev di grado n in un vettore di punti, usando la formula di ricorrenza a tre termini. Costruire il grafico

Dettagli

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2 Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2018/2019 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 19 dicembre 2018 1. Mercoledì 26/09/2018, 15 17. ore:

Dettagli

Metodi numerici per la risoluzione di equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 15 ottobre 2007 Outline 1 Il problema di Cauchy Il problema

Dettagli

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004 METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November, Nell approssimare numericamente un problema di Cauchy, puo capitare di essere interessati a valori della soluzione in punti

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A

Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A Esercizi di autovalutazione - Matlab Metodi Numerici con Elementi di Programmazione A.A. 2018-19 1. Scrivere la function Matlab myfun.m che valuti la funzione e la sua derivata in corrispondenza delle

Dettagli

SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I

SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I e caratterizzata dalle condizioni f o (x) + i I μ i g i (x) = 0 e dall ammissibilita ( g i (x) = 0, i I )

Dettagli

Soluzione di Equazioni non lineari

Soluzione di Equazioni non lineari Soluzione di Equazioni non lineari Corso di Calcolo Numerico 20 Marzo 2018 Function in MATLAB Lo scopo di una funzione è quello di prendere in input un certo numero di valori, fare alcune operazioni con

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4-23/3/2015

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4-23/3/2015 Complementi di Matematica e Calcolo Numerico A.A. 2014-2015 Laboratorio 4-23/3/2015 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare

Dettagli

MODELLI E METODI NUMERICI -01FGW. TEMI d ESAME

MODELLI E METODI NUMERICI -01FGW. TEMI d ESAME MODELLI E METODI NUMERICI -01FGW 1 Problemi ellittici 1.1 Esercizio TEMI d ESAME u = f in R = (0, 1) (0, 2) u = 0 su R, dove quindi R è un rettangolo, mentre R indica il bordo del rettangolo. Il carico

Dettagli

Analisi Numerica: quadratura

Analisi Numerica: quadratura Analisi Numerica: quadratura S. Maset Dipartimento di Matematica e Geoscienze, Università di Trieste In situazioni come queste, si ricorrerà a metodi numerici come quelli che presenteremo per calcolare

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 Equazioni non lineari Data una funzione consideriamo il problema

Dettagli

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Argomenti trattati Introduzione ai modelli Equazioni differenziali del primo ordine Metodi risolutivi:integrazione diretta

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof. ssa Laura Pezza (A.A. 2017-2018) XXXII Lezione del 21.05.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 1. Metodo

Dettagli