CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni"

Transcript

1 CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof. ssa Laura Pezza (A.A ) XXXII Lezione del laura.pezza 1

2 1. Metodo di Eulero Metodi one step espliciti: esempi y i+1 = y i + hf(x i, y i ) ordine p = 1 Errore locale di troncamento (resto della f. di Taylor) R i+1 = h2 2 y (ξ i+1 ) Metodi di ordine superiore a partire dalla formula di Taylor richiedono le derivate di f. 2. Taylor di ordine 2 y(x i+1 ) = y(x i )+... [ f x (x i, y(x i )) + f y (x i, y(x i ))y ((x i ) ] (x i+1 x i )+ R(x i+1, h), da cui y i+1 = y i + h [f x (x i, y i ) + f y (x i, y i )f(x i, y i )] Errore locale di troncamento R i+1 = h3 6 y (ξ i+1 ) p = 2 2

3 Costo computazionale = numero di valutazioni di funzioni Metodi basati sulla formula di Taylor ordine costo computazionale Il costo computazionale cresce molto velocemente. è uguale la costo com- E possibile avere metodi il cui ordine putazionale? Come costruire metodi di ordine p > 1, in cui invece delle derivate si usano valori della funzione? 3

4 Una struttura particolare: y i+1 = y i + h r j=1 a j k j (x i, y i ; h) k 1 = k 1 (x i, y i ; h) = f(x i, y i ) k j = f(x i + hα i, y i + h j 1 l=1 λ j,l k l ) Tecnica di costruzione: si sviluppa in serie di punto iniziale x i, y i e si confronta con il metodo di Taylor di ordine prefissato. Si ottiene una classe di metodi conosciuti come metodi di Runge- Kutta (a r stadi) 4

5 Metodo di Heun o Runge-Kutta di ordine p = 2 y i+1 = y i + h(k 1 + k 2 ) k 1 = f(x i, y i ), k 1 = f(x i+1, y i + h k 1 ) Metodo di Runge-Kutta classico ordine p = 4 y i+1 = y i + 6 h (k 1 + 2k 2 + 2k 3 + k 4 ) k 1 = f(x i, y i ) k i = f(x i + 2 h, y i + 2 h k i 1), i = 2, 3 k 4 = f(x i+1, y i + h k 1 ) 5

6 Un altro modo per ottenere il metodo di Heun Integrando e applicando la formula del trapezio: y(x i+1 ) = y(x i ) + xi+1 x i f(x, y(x) dx = y(x i ) + h 2 [ f(xi, y(x i )) + f(x i+1, y(x i+1 )) ] h3 12 M i (conferma che è p = 2) Algoritmo trascurare il resto approssimarey(x j ) y(x i ) y i y(x i+1 ) y i + hf(x i, y i ) ( metodo di Eulero) y i+1 = y i + h [ f(x i, y i ) + f(x i+1, y i + hf(x i, y i )) ] k 1 k 2 6

7 Ordine e Costo computazionale nei m. Runge-Kutta p = r r = 1, 2, 3, 4 p = r 1 r = 5, 6, 7 p = r 2 r = 8, 9 p r 2 r 10 quindi metodi di ordine elevato sono poco efficienti. Il metodo classico è il più usato. 7

8 Esempio Problema di Cauchy: y (x) = y x, x [0, 2], y(0) = 2 Soluzione esatta: y(x) = e x + x y 10 9 Metodo di Heun 8 7 Metodo di R K classico 6 5 Metodo di Eulero x 4.5 Grafico della soluzione 8

9 Metodo di Eulero Metodo di Heun Metodo di R K classico x 4.8 Grafico dell errore

10 Convergenza dei metodi one-step Struttura dell algoritmo: y i+1 = y i + hψ(x i, y i ; h) Supponiamo che il metodo sia consistente. Espressione dell errore locale di troncamento: R i+1 = ht (x i+1 ) Errore di troncamento unitario Teorema Ipotesi: i 1 Sia il metodo consistente i 2 Ψ C 0 (D); i 3 Ψ(x, u; h) Ψ(x, v; h) L Ψ u v ( Ψ Lipschitziana rispetto a y) i 4 (x i, y i ) D, i T = max x i I T (x i). e i T L Ψ ( e L Ψ (x i x 0 ) 1 ) 9

11 Dim. e i+1 = y(x i+1 ) y i+1 = y(x i ) + hψ(x i, y(x i ); h) + ht (x i ) y i hψ(x i, y i ; h) e i+1 e i + hl Ψ e i + ht = (1 + hl Ψ ) e i + ht (1) 1. Per induzione: e i T L Ψ [ (1 + hlψ ) i 1 ] (2) base dell induzione i = 1 e 0 = 0 (y(x 0 ) = y 0 ) (1) e 1 ht = T L Ψ [ (1 + hlψ ) 1 1 ] (2) è vera 10

12 Ip. induttiva e j T L Ψ [ (1 + hlψ ) j 1 ] j = 1,..., i e i+1 (1 + hl Ψ ) e i + ht (1 + hl Ψ ) T T (1 + hl Ψ ) i+1 (1 + hl Ψ ) T L Ψ e i+1 T L Ψ (1 + hl Ψ ) i+1 T L Ψ L Ψ L Ψ + ht e t = 1 + t + t 2 / t e t (1 + t) i e it [ (1 + hlψ ) i 1 ] + ht = e i+1 T L Ψ [ e hl Ψ (i+1) 1 ] ma h(i + 1) = x i+1 x 0 e si ha la tesi. 11

13 Metodo di Eulero (Convergenza) R i+1 = h2 2 y (ξ i ) (y sufficientemente regolare) T = h 2 M 2, M 2 = max y (x), Ψ = f L Ψ = L e i hm 2 2L [ e L(x i x 0 ) 1 ] Il metodo converge per h 0 e x i x 0 = ih =costante. 12

14 Definizione Un metodo è consistente se lim h 0 T (x i ) = R i h = 0 Metodi one-step: y(x i+1 ) = y(x i ) + hψ(x i, y(x i ); h) + R i T (x i+1 ) = y(x i+1) y(x i ) Ψ(x i, y(x i ); h) }{{ h } h 0 y (x) = f(x, y(x)) T (x i+1 ) 0 lim Ψ(x, y; h) = f(x, y) h 0 Condizione di consistenza 13

15 Teorema(Convergenza) f C 0 (D), f Lipschitziana rispetto a y (Teorema di Cauchy) i 1 Ψ C 0 (D); i 2 Ψ è di Lipschitz rispetto alla variabile y i 3 Ψ verifica la condizione di consistenza i 4 y i(h) y 0 η, per h h 0, allora il metodo onestep converge per h 0 nel senso y i(h) y( x), x = x i(h) 14

16 Un osservazione Riprendiamo la maggiorazione dell errore, e i el(x i x 0 ) 1 L 2 h, h fissato. Problema Come si propagano gli errori per i +? Si mantengono limitati? Si può assicurare che la soluzione numerica {y i } segua la soluzione analitica y(x), quando ci si allontana da x 0?. Nella maggiorazione compare e L(x i x 0 ) 1 (esponenziale crescente con x i x 0 ): bisogna aspettarsi che non sempre le cose vadano bene. ( M ) 15

17 Esempio y = 2x 2 x x2 1 x(x 2 y, y(2) = 0, 1) h = 0.1 x i Eulero Heun R-K classico e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

18 h = 0.05 x i Eulero Heun R-K classico e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

19 y 0 i+1 = m j=0 α j y i j + h Metodi predictor-corrector n j=0 β j f(x i j, y i j ) = = Φ(y i, y i 1,..., y i r ; h) predictor, m. esplicito y k i+1 = m j=0 α j y i j + h n j=0 β j f(x i j, y i j ) + hβ 1 f(x i+1, y k 1 i+1 ) = = Ψ(y k 1 i+1, y i, y i 1,..., y i s ; h) corrector, m. implicito Corrector metodo del punto unito, y i+1 = punto fisso di Ψ(y i+1, ) ( funzione di iterazione) Punto iniziale: y 0 i+1 ottenuto dal predictor. lim k yk i+1 = y i+1? 18

20 Si ricorre al Teorema del punto fisso : fisso ξ per z k = g(z k 1 ): C.S. di convergenza al punto g (z) γ, γ (0, 1) o più in generale se g(z ) g(z ) γ z z Ψ(z, ) Ψ(z, ) = hβ 1 f(x i+1, z ) hβ 1 f(x i+1, z ) = = h β 1 f(x i+1, z ) f(x i+1, z ) h β }{{} 1 L z z f Lipschitziana Il corrector verifica la condizione di contrazione se γ = h β 1 L < 1 19

21 Teorema Se f verifica la condizione di Lipschitz ripetto a y, il procedimento iterativo dato dal corrector converge se il passo h verifica la limitazione h < 1 β 1 L Quindi pur di prendere h sufficientemente piccolo, almeno in teoria, il procedimento iterativo basato sul corrector converge. 20

22 Modalità di applicazione Criteri d arresto del procedimento iterativo yi+1 k = Ψ(yk 1 i+1, ): quelli visti per i metodi iterativi. Numero massimo di iterate: deve essere ragionevolmente piccolo (il metodo perde competitività ) quindi si itera per 3/4 volte: se non viene raggiunta l accuratezza prefissata, si riduce il passo h e si ricomincia. Poichè il metodo è multistep (escluso il caso di Eulero modificato) il cambio di passo comporta il calcolo delle nuove coordinate d innesco. Se l approssimazione iniziale fornita dal predictor è sufficientemente accurata, in genere, basta una iterata per raggiungere un accuratezza anche buona. 21

23 Esempi 1. Metodo di Eulero modificato p = 2 y i+1 = y i + hf i Predictor yi+1 k = y i + h ( fi + f(x i+1, y k 1 2 i+1 )) Corrector 2. Metodo di Adams (Bashforth-Moulton) p = 3 y i+1 = y i + 12 h ( ) 23fi 16f i 1 + 5f i 2 Predictor y k i+1 = y i + h 12 ( 8fi f i 1 + 5f(x i+1, y k 1 i+1 )) Corrector 2. Metodo di Milne p = 4 y i+1 = y i + 4h ( ) 3 2fi f i 1 + 2f i 2 Predictor yi+1 k = y i + h ( fi + 4f i 1 + f(x i+1, y k 1 3 i+1 )) Corrector 22

24 Un esempio di comportamento delle approssimazioni y = 3(x y) + 1, y(0) = 1 Metodi a confronto, entrambi con p = 2 y i+1 = y i 1 + 2hf i (punto centrale) y i+1 = y i + h 2 (k 1 + k 2 ) (Heun) k 1 = f i, k 2 = f(x i+1, y i + h k 1 ) 23

25 2.5 punto centrale 2 R K 2 y(x)=exp( 3x)+x Grafico della soluzione 24

26 punto centrale R K Grafico dell errore Nel metodo basato sulla f. soluzione! del punto centrale l errore domina la

27 Il comportamento cambia se si aumenta l ordine? Metodi a confronto, entrambi con p = 4 y i+1 = y i 3 + 4h ( ) 3 2fi f i 1 + 2f i 2 (aperta a 3 nodi) y i+1 = y i + h 24 ( 55fi 59f i f i 2 9f i 3 ) (Adams-Bashforth) 25

28 2.5 y(x)=exp( 3x)+x 2 aperta a 3 nodi Adams Bash Grafico della soluzione 26

29 0.15 Errore aperta a 3 nodi Errore Adams Bash y(x)=exp( 3x)+x Grafico dell errore Anche nel metodo basato sulla f. aperta l errore domina la soluzione. Il fenomeno si verifica solo più tardi rispetto al caso precedente.

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof. ssa Laura Pezza (A.A. 2017-2018) XXVIII Lezione del 15.05.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 1. Metodo

Dettagli

Metodi a più passi. Esempi

Metodi a più passi. Esempi . Esempi Metodo del punto medio y(t n+1 ) = y(t n 1 ) + t n+1 t n 1 f (t, y(t)) dt = y(t n 1 ) + 2hf (t n, y(t n )) + O(h 3 ) u n+1 = u n 1 + 2hf (t n, u n ) Metodo di Simpson y(t n+1 ) = y(t n 1 ) + t

Dettagli

Metodi numerici per ODE. Metodi numerici per ODE

Metodi numerici per ODE. Metodi numerici per ODE Problema di Cauchy Consideriamo un equazione differenziale (sistema di equazioni) del primo ordine in forma normale con condizioni iniziali assegnate. { y (x) = f (x, y(x)) x [x 0, x F ] y(x 0 ) = y 0

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) XXIV Lezione dell 8.05.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Formule di Newton-Cotes

Dettagli

Metodi ad un passo espliciti

Metodi ad un passo espliciti Sono metodi della forma { un+1 = u n + h Φ(t n, u n ; h, f ) n = 0,..., N 1 Esempi: u 0 = y 0 metodi di Taylor metodo di Eulero esplicito metodo di Taylor di ordine 2 Φ(t, u; h, f ) = f (t, u) Φ(t, u;

Dettagli

Contenuti. (b) tipi di errori: errori di discretizzazione locali e globali; errori di arrotondamento; metodi consistenti

Contenuti. (b) tipi di errori: errori di discretizzazione locali e globali; errori di arrotondamento; metodi consistenti Appunti di Analisi e Calcolo Numerico Metodi numerici per la soluzione delle equazioni differenziali LS in Ingegneria Edile AA 2007-2008 Docente : Dott. Ivelina Bobtcheva Contenuti 1. Radici di equazioni

Dettagli

Fondamenti di Calcolo Numerico. Appunti relativi alla soluzione numerica di un problema di Cauchy

Fondamenti di Calcolo Numerico. Appunti relativi alla soluzione numerica di un problema di Cauchy Fondamenti di Calcolo Numerico Appunti relativi alla soluzione numerica di un problema di Cauchy Claudia Fassino (fassino@dima.unige.it) Premessa Queste dispense riassumono le mie lezioni relative alla

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) XXII Lezione del 3.05.2018 http://www.dmmm.uniroma1.it/ pezza 1 Formule di quadratura

Dettagli

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) V Lezione del 15.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Metodo di Newton:

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Equazioni differenziali ordinarie Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio:

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 2 3 Problemi ai valori iniziali Problemi ai

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) III Lezione del 12.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 I metodi

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009 Metodi numerici per equazioni differenziali ordinarie Calcolo Numerico a.a. 2008/2009 ODE nei problemi dell ingegneria 1 Le leggi fondamentali della fisica, della meccanica, dell elettricità e della termodinamica

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 Problemi ai Valori Iniziali: metodo di Eulero

Dettagli

Lezione n. 2. Introduzione all analisi numerica (metodi diretti ed iterativi per la soluzione di sistemi di equazioni lineari e non lineari)

Lezione n. 2. Introduzione all analisi numerica (metodi diretti ed iterativi per la soluzione di sistemi di equazioni lineari e non lineari) Lezione n. 2 Introduzione all analisi numerica (metodi diretti ed iterativi per la soluzione di sistemi di equazioni lineari e non lineari) R. Albanese, "Metodi numerici Pag. 1 Pag. 2 Metodi diretti per

Dettagli

Modellistica e Simulazione. Outline. Notes. Notes. Luigi Iannelli. 6 giugno Introduzione. Generalità sui metodi numerici di integrazione

Modellistica e Simulazione. Outline. Notes. Notes. Luigi Iannelli. 6 giugno Introduzione. Generalità sui metodi numerici di integrazione 6 giugno 2011 1 Outline Introduzione Generalità sui metodi numerici di integrazione Proprietà dei metodi di integrazione Alcuni metodi di integrazione 2 Equazioni differenziali nello spazio di stato Consideriamo

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2016-2017) IV Lezione del 06.03.2017 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni su equazioni differenziali ordinarie Modello matematico: eq. differenziali ordinarie Il moto di una particella di

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni Prof.ssa L. Pezza (A.A. 2017-2018) IV Lezione del 13.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni non

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Equazioni Differenziali Si consideri il seguente problema: Quali sono le curve y = f (x) del piano

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Eq. differenziali ordinarie: modello matematico. METODI NUMERICI - II canale (A.A )

Eq. differenziali ordinarie: modello matematico. METODI NUMERICI - II canale (A.A ) METODI NUMERICI - II canale A.A. 007-008) Prof. Francesca Pitolli Eq. differenziali ordinarie: modello matematico Il moto di una particella di massa m attaccata all estremità di una molla di costante elastica

Dettagli

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali 1 Francesca Mazzia Dipartimento di Matematica Università di Bari Equazioni Differenziali 2 Consideriamo il sistema di equazioni differenziali: con condizione iniziale: y = f(t, y) (6.1) y(t 0 ) = y 0,

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2017/2018 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2017 1. Mercoledì 27/09/2017,

Dettagli

1. Lunedì 26/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Lunedì 26/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 13 dicembre 2016 1. Lunedì 26/09/2016, 11 13. ore:

Dettagli

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2 Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2017/2018 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2017 1. Lunedì 25/09/2017, 11 13. ore:

Dettagli

Calcolo Numerico Laurea di I livello in Ingegneria Elettronica ed Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di I livello in Ingegneria Elettronica ed Ingegneria delle Comunicazioni Calcolo Numerico Laurea di I livello in Ingegneria Elettronica ed Ingegneria delle Comunicazioni Prof. ssa Laura Pezza (A.A. 2018-2019) II Lezione del 27.02.2019 http://www.dmmm.uniroma1.it/ laura.pezza

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2016 1. Martedì 27/09/2016,

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica e Ingegneria delle Comunicazioni e Clinica. Prof.ssa Laura Pezza (A.A.

Calcolo Numerico Laurea di base in Ingegneria Elettronica e Ingegneria delle Comunicazioni e Clinica. Prof.ssa Laura Pezza (A.A. Calcolo Numerico Laurea di base in Ingegneria Elettronica e Ingegneria delle Comunicazioni e Clinica Prof.ssa Laura Pezza (A.A. 2018-2019) VIII Lezione del 14.03.2019 http://www.dmmm.uniroma1.it/ laura.pezza

Dettagli

Lezione 7 Equazioni Differenziali Ordinarie.

Lezione 7 Equazioni Differenziali Ordinarie. Lezione 7 Equazioni Differenziali Ordinarie http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Equazioni Differenziali Ordinarie Descrizione dell evolversi spazio-temporale

Dettagli

Soluzione numerica di equazioni differenziali

Soluzione numerica di equazioni differenziali Soluzione numerica di equazioni differenziali Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Soluzione numerica di

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2 Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2018/2019 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 19 dicembre 2018 1. Mercoledì 26/09/2018, 15 17. ore:

Dettagli

u i = u i 1 + h b j F j, (1)

u i = u i 1 + h b j F j, (1) I metodi di Runge-Kutta sono metodi ad un passo in cui il valore u i viene calcolato combinando un prefissato numero s di valori della funzione f calcolati in punti opportunamente scelti. L ordine del

Dettagli

1 Richiami di teoria sui problemi di Cauchy

1 Richiami di teoria sui problemi di Cauchy 1 Richiami di teoria sui problemi di Cauchy Il problema di Cauchy consiste nel cercare una funzione y continua e derivabile in un intervallo I 0 di R contenente un punto x 0 tale che y (t) = f(t, y(t))

Dettagli

CORSO DI CALCOLO NUMERICO II

CORSO DI CALCOLO NUMERICO II CORSO DI CALCOLO NUMERICO II ANALISI E CONFRONTO DI METODI PER LA RISOLUZIONE DI EQUAZIONI DIFFERENZIALI ORDINARIE IN MATLAB Docente: Giuseppe Rodriguez Studenti: Mario Porru Matricola 40084 Nicola Usai

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 5 - INTEGRAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Integrazione numerica: formule di Newton-Cotes semplici 2 3 Introduzione

Dettagli

Eulero esplicito: Questo metodo approssima la derivata di una funzione con le differenze in avanti. La formula iterativa è la seguente:

Eulero esplicito: Questo metodo approssima la derivata di una funzione con le differenze in avanti. La formula iterativa è la seguente: Dato un problema di Cauchy del tipo: y =f(x,y) y(x0)=y0 Esistono vari metodi numerici che fissato h, cioè il passo di integrazione, forniscono una soluzione numerica che è costituita da una successione

Dettagli

Corsi del S.S.D. MAT08 - Analisi Numerica (Laurea Triennale e Laurea Magistrale in Ingegneria)

Corsi del S.S.D. MAT08 - Analisi Numerica (Laurea Triennale e Laurea Magistrale in Ingegneria) Corsi del S.S.D. MAT08 - Analisi Numerica Laurea Triennale e Laurea Magistrale in Ingegneria PROBLEMI AI LIMITI PER EQUAZIONI DIFFERENZIALI ORDINARIE Metodi alle differenze finite Prof. F. Pitolli, A.A

Dettagli

Analisi Numerica (A.A )

Analisi Numerica (A.A ) Analisi Numerica (A.A. 2014-2015) Appunti delle lezioni: Equazioni differenziali ordinarie Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A. Scarpa, Pal. B, I piano, Stanza

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 2 - EQUAZIONI NON LINEARI Introduzione Problema: trovare le soluzioni di un equazione del tipo f() = 0 Esempio sin a = 0 e = 3 1.0 2.0 0.5

Dettagli

Esercitazione 03 Risoluzione numerica di ODE

Esercitazione 03 Risoluzione numerica di ODE 1 Esercitazione 03 Risoluzione numerica di ODE Corso di Strumentazione e Controllo di Impianti Chimici Prof. Davide Manca Tutor: Giuseppe Pesenti Metodi di Eulero Esplicito e implicito 2 yyy(tt) = ff tt,

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: Capitolo 1 PROBLEMI INIZIALI PER ODE Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: { y (t) = f(t, y(t)), t t f (1.1) y( ) = y 0 dove f : [, t f ] R m R

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Equazioni differenziali ordinarie Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio:

Dettagli

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2013/2014 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 18 dicembre 2013 1. Martedì 1/10/2013, 12 14. ore:

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

La determinazione delle radici in forma chiusa non è sempre possibile (già per polinomi di ordine 5 non è generalmente possibile).

La determinazione delle radici in forma chiusa non è sempre possibile (già per polinomi di ordine 5 non è generalmente possibile). SOLUZIONE DI EQUAZIONI NON-LINEARI Molti problemi sono espressi nella forma f(x) = 0 con f(x) funzione non lineare (es. log(x 2 + a) + b cos x = 0, x 5 + ax 3 + b = 0) La determinazione delle radici in

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2016-2017 Problemi non lineari Definizione f : R R F : R n R m f (x) = 0 F(x) = 0 In generale si determina

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

f(x) dx = F (b) F (a) Formula di quadratura o di integrazione numerica c i f(x i ) + R n (f)

f(x) dx = F (b) F (a) Formula di quadratura o di integrazione numerica c i f(x i ) + R n (f) INTEGRAZIONE NUMERICA Integrale di funzione I(f) = a f(x) dx = F (b) F (a) Formula di quadratura o di integrazione numerica a f(x) dx = n i=0 c i f(x i ) + R n (f) dove le {x i } sono i nodi e {c i } sono

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 6 Equazioni differenziali ordinarie: metodi impliciti 3 Novembre 26 Esercizi di implementazione Un equazione differenziale

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11: testo soluzioni Proff. S. De Marchi e M. R. Russo 12 luglio 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11: testo soluzioni Proff. S. De Marchi e M. R. Russo 12 luglio 2011 Esame di Calcolo Numerico per Informatica A.A. 200/: testo soluzioni Proff. S. De Marchi e M. R. Russo 2 luglio 20 L esame consiste di 4 domande aperte e 0 esercizi a risposta multipla. Per gli esercizi

Dettagli

12. Teoria qualitativa

12. Teoria qualitativa 12. Teoria qualitativa Si esaminano le conizioni i regolarità per un campo vettoriale, che garantiscono esistenza e unicità ella soluzione per l equazione ifferenziale associata. La conizione i Lipschitz,

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica ed Ing. delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica ed Ing. delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica ed Ing. delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2018-2019) XV Lezione del 02.04.2019 http://www.dmmm.uniroma1.it/ laura.pezza 1 Data A R

Dettagli

Lezione 4 Quadratura Numerica. Fernando Palombo

Lezione 4 Quadratura Numerica.  Fernando Palombo Lezione 4 Quadratura Numerica http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Scopo della Quadratura Numerica Calcolare con metodi numerici un integrale definito

Dettagli

Metodi per il calcolo degli zeri di funzioni non lineari

Metodi per il calcolo degli zeri di funzioni non lineari Metodi per il calcolo degli zeri di funzioni non lineari N. Del Buono 1 Introduzione Le radici di un equazione non lineare f(x) = 0 non possono, in generale, essere espresse esplicitamente e anche quando

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 2 - EQUAZIONI NON LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Elementi introduttivi 2 3 4 Introduzione Problema: trovare le soluzioni di

Dettagli

Metodi di Ottimizzazione

Metodi di Ottimizzazione Metodi di Ottimizzazione Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famospaghi, @famoconti http://stegua.github.com Metodi di Ottimizzazione

Dettagli

22. Integrazione numerica

22. Integrazione numerica . Integrazione numerica I metodi di integrazione numerica per le equazioni differenziali consistono nel determinare schemi ricorrenti che generano orbite discrete vicine a quelle esatte. Uno schema di

Dettagli

Introduzione. Esercizio n 1. Metodo di Eulero Esplicito. Risolvere il problema ai valori iniziali: 3 2

Introduzione. Esercizio n 1. Metodo di Eulero Esplicito. Risolvere il problema ai valori iniziali: 3 2 Introduzione Nella seguente esercitazione si vogliono risolvere numericamente equazioni differenziali di diverso ordine, utilizzando metodi basati sulla discretizzazione delle stesse, ovvero sull approssimazione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 1 - INTRODUZIONE Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole, 9th

Dettagli

Metodi Numerici per l Approssimazione degli Zeri di una Funzione

Metodi Numerici per l Approssimazione degli Zeri di una Funzione Metodi Numerici per l Approssimazione degli Zeri di una Funzione Luca Gemignani luca.gemignani@unipi.it 29 marzo 2018 Indice Lezione 1: Il Metodo di Bisezione. 1 Lezione 2: Metodi di Iterazione Funzionale.

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 Equazioni non lineari Data una funzione consideriamo il problema

Dettagli

Sia assegnata la seguente equazione differenziale con condizione iniziale

Sia assegnata la seguente equazione differenziale con condizione iniziale Capitolo 2 METODI A UN PASSO PER ODE Sia assegnata la seguente equazione differenziale con condizione iniziale { y (t) = f(t, y(t)) y(t 0 ) = y 0 (2.1) dove y : [t 0, t f ] R, f : [t 0, t f ] R m R m e

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 2017

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 2017 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 maggio 217 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima pagina

Dettagli

La miglior approssimazione esiste se le funzioni descrivono un chiuso

La miglior approssimazione esiste se le funzioni descrivono un chiuso NON SMOOTH Funzione non C 1 tipico esempio massimo numero finito funzioni Φ(x) = max { f i (x), i I, f i C 1 } e anche massimo(sup) puntuale Φ(x) = sup { f t (x), t I, f t C 1 } Esempi a) Max numero finito

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Assoluta stabilità e metodi multipasso. Assoluta stabilità

Assoluta stabilità e metodi multipasso. Assoluta stabilità Assoluta stabilità e metodi multipasso Elena Loli Piccolomini-metodi multipasso p.1/33 Assoluta stabilità La convergenza è un concetto fondamentale: non avrebbe senso un metodo non convergente. la convergenza

Dettagli

Progetti d esame per il corso di ANALISI NUMERICA CDL Matematica Magistrale A.A. 2012/2013

Progetti d esame per il corso di ANALISI NUMERICA CDL Matematica Magistrale A.A. 2012/2013 Progetti d esame per il corso di ANALISI NUMERICA CDL Matematica Magistrale A.A. 212/213 Docente: Ivonne Sgura, Dipartimento di Matematica e Fisica Ennio De Giorgi Università del Salento, Lecce 1 ivonne.sgura@unisalento.it

Dettagli

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB Calcolo Numerico ed Elementi di Analisi - Allievi AEROSPAZIALI Proff. S. Micheletti, S. Perotto A.A. 20/202, Appello 28 Gennaio 203 NOME... COGNOME... MATRICOLA... DOCENTE... AULA... PC... Ver.A I seguenti

Dettagli

Calcolo Numerico Laurea di I livello in Ingegneria Elettronica ed Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di I livello in Ingegneria Elettronica ed Ingegneria delle Comunicazioni Calcolo Numerico Laurea di I livello in Ingegneria Elettronica ed Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) I Lezione del 1.03.2018 Tutte le informazioni e gli avvisi relativi

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

CORSO DI Analisi Numerica

CORSO DI Analisi Numerica CORSO DI Analisi Numerica Alessandro Iafrati CONTATTI Posta Elettronica: a.iafrati@insean.it Telefono: 06/50299296 A breve sarà disponibile un sito web sulla pagina del Dipartimento di Metodi e Modelli

Dettagli

Metodi di Ricerca Lineare

Metodi di Ricerca Lineare Metodi di Ricerca Lineare Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 14 settembre 2015 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

INTEGRAZIONE NUMERICA

INTEGRAZIONE NUMERICA INTEGRAZIONE NUMERICA Obiettivo: calcolare valore di integrale definito di una funzione f Integrale viene calcolato mediante insieme discreto di valori noti di f nell intervallo dato Uso di tecniche numeriche:

Dettagli

Corso di Analisi Numerica - AN410. Parte 5: formule di quadratura. Roberto Ferretti

Corso di Analisi Numerica - AN410. Parte 5: formule di quadratura. Roberto Ferretti Corso di Analisi Numerica - AN410 Parte 5: formule di quadratura Roberto Ferretti UNIVERSITÀ DEGLI STUDI ROMA TRE Formule di quadratura interpolatorie: teoria generale Formule di Newton Cotes semplici

Dettagli

La modellazione dei fenomeni fisici; definizione di analisi numerica e buona posizione.

La modellazione dei fenomeni fisici; definizione di analisi numerica e buona posizione. Insegnamento Livello e corso di studio Settore scientifico disciplinare (SSD) Analisi Numerica Corso di Laurea in Ingegneria Industriale (L9) MAT/08 Anno di corso 2 (il corso non è attivo per studenti

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1. Prova scritta di Analisi Matematica II del 14-07-1999 - c.1 1) Sia (d n ) una successione di numeri reali tali che inf d n > 0. Studiare il carattere della serie + n=1 al variare del parametro reale positivo

Dettagli

Metodi numerici per la risoluzione di equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 15 ottobre 2007 Outline 1 Il problema di Cauchy Il problema

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2018-2019) XVI Lezione ed Esercitazione d esame del 03.04.2019 http://www.dmmm.uniroma1.it/ laura.pezza

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 2. Determinazione numerica degli zeri di una funzione Si consideri il seguente problema: Data f : [a, b] R, determinare i valori

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 16 febbraio 015 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Esercizi su polinomio di Taylor, metodi numerici per il calcolo di zeri di funzione e iterazioni di punto fisso

Esercizi su polinomio di Taylor, metodi numerici per il calcolo di zeri di funzione e iterazioni di punto fisso Esercizi su polinomio di Taylor, metodi numerici per il calcolo di zeri di funzione e iterazioni di punto fisso 2 aprile 215 Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ). Richiami

Dettagli