La miglior approssimazione esiste se le funzioni descrivono un chiuso

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La miglior approssimazione esiste se le funzioni descrivono un chiuso"

Transcript

1 NON SMOOTH Funzione non C 1 tipico esempio massimo numero finito funzioni Φ(x) = max { f i (x), i I, f i C 1 } e anche massimo(sup) puntuale Φ(x) = sup { f t (x), t I, f t C 1 } Esempi a) Max numero finito di funzioni (norma) Sono date p funzioni f i (x) 1 i p e si vuole calcolare per ogni punto x si calcola [se f(x) = (f 1 (x),, f p (x) ] Φ(x) = f(x) oppure f(x) 1. b) Pb di approssimazione In un intervallo t [a,b] =I e data una funzione F(t) e alcune funzioni base f i (t), 1 i p. Se ogni funzione pesa a i allora si puo costruire F(t) = a i f i (t) e dato a = (a 1,..., a p ) R p si puo calcolare Φ(a) = max t I G(t) - F(t) = max t I G(t)- a i f i (t) [ esempio massima deviazione : Φ(a) = max t I G(t)- a i f i (t) ] Se a* minimizza allora risolve il problema di miglior approssimazione (norma infinito) di G(t) attraverso funzioni f i (t). Casi tipici polinomi [ f i (t) = (t) i-1 ] esponenziali [ f i (t) = exp (k i t) (k i fissati ) ] E anche possibile una dipendenza non lineare [es f i (a i,b i,t) = a i exp (b i t) (a i e b i variabili ) ] La miglior approssimazione esiste se le funzioni descrivono un chiuso N.B. Minimo funzione convessa (generica) puo essere espresso come non smooth Se F e convessa e definita in A allora y fissato x A F(x) + F (x) t (y-x ) F( y) ( o analogo ) F(y) = sup x A { F(x) + F (x) t (y-x ) } = sup x A { L(x,y) } = θ (y) min F(y) = min θ (y) { θ nonsmooth}

2 Non basta conoscere x I(x) = { i / f i (x)= Φ(x) } e utilizzare normalmente quella(quelle) funzioni Esempio in R 2 Φ(x) = max { f 1 (x), f 2 (x)} f 1 (x) = 5 ( 9x x 2 2 ) 1/2 se x 1 > x 2 f 2 (x) = 9x x 2 se x 1 x 2 Se x 1 < 0 Φ(x) = f 2 (x) = 9x x 2 Φ (x 1,0) = 9x 1 e inf Φ(x) = - Dato un punto p = (x 1, x 2 ) con 1 > x 1 > x 2 > (9/16) 2 x 1 [ x 1 >0, x 2 > 0, Φ(x) = max { f 1 (x), f 2 (x)} = f 1 (x) ] f 1 (p ) = 5(9x x2 2 ) -1/2 (9 x 1, 16 x 2 ) t e s = (9 x 1, 16 x 2 ) t e parallelo a f 1 (p) Si minimizza f 1 (x ) dal punto p in direzione - f 1 (p ) Se p 0 = p e p 1 = p 0 - λs si ha che p 1 = (y 1, y 2 ) = (x 1 - λ 9 x 1, x 2 - λ16 x 2 ) f 1 (p 1 ) t s = 0 9(x 1 - λ 9 x 1 ) 9 x (x 2 - λ16 x 2 )16 x 2 = 0 Inoltre λ = ( 9 2 x x 2 2 ) / ( 9 3 x x 2 2 ) 9 (9 2 x x 2 2 ) < (9 3 x x 2 2 ) < 16(9 2 x x 2 2 ) e quindi 1/16 < λ < 1/9

3 Per le componenti di p 1 = (y 1, y 2 ), y 1 = x 1 - λ 9 x 1 e y 1 >0 {λ< 1/9 } y 1 < (7/16) x 1 < 1 {λ>1/16 & 1 > x 1 } Da f 1 (p 1 ) t s=0 da cui (9) 2 y 1 x 1 = (16) 2 y 2 x 2 y 1 / y 2 = (16/9) 2 x 2 / x 1 > 1 { x 2 > (9)2 /(16) 2 x 1 } e y 2 /y 1 = (9) 2 /(16) 2 (x 1 / x 2 ) > (9) 2 /(16) 2 {da x 1 > x 2 } e vale anche per p 1 = (y 1,y 2 ) 1> y 1 > y 2 > (9/16) 2 y 1 Si puo costruire una successione p n attraverso il metodo del gradiente p n rimane nella regione con 1> x 1 > x 2 > (9/16) 2 x 1 dove Φ( p n ) = f 1 (p n ) 0 La successione (x 1 ) n e positiva e decrescente ( λ>1/16 ), (x 1 ) n 0 e p n (0,0) (0,0) minimizza f 1 ma non Φ In (0,0) f 1 (0,0) = f 2 (0,0) = Φ In (0,0) f 1 = (0,0), f 2 (x) non e definito (causa x 2 ). La derivata direzionale di f 2 si calcola attraverso i vettori (9,16) e (9,-16)

4 Condizioni di ottimo (funzione min max) x I(x) = { i / f i (x) = Φ(x) }, Se insieme I finito e j I(x), f j (y) < Φ(y) in un intorno di x x non e ottimo se esiste h t.c f i (x) t h < 0 i I(x) { i e α >0 opportuno f i (x+ α h) < f i (x), Φ(x+h) = max { f i (x+ α h)} <Φ(x) } Se A matrice righe f i (x) non esiste h t.c Ah <0 per ogni componente ( teorema alternativa / Lemma di Gordan) Esiste vettore non zero p a componenti 0 tc. A t p = 0 Se ( μ 1,..μ n ) componenti di p pesi μ i i I(x) t.c μ i f i (x) = 0 ovvero i I(x) μ i f i (x) = 0, con μ i 0 [μ i non tutti zero,esempio possibile i μ i =1 ] Il Lemma di Gordan e quindi se x minimizza non esiste h e vale i I(x) μ i f i (x) = 0, μ i 0 [& i μ i =1 ] Viceversa se vale i I(x) μ i f i (x) = 0, μ i 0 [& i μ i =1 ] non esiste h e non e possibile in intorno Φ(y)<Φ(x) perche max { f i (y), i I(x) } Φ(y) < Φ(x) = f i (x), i I(x) } e f i (y) < f i (x) f i (x) t (y-x) < 0 i I(x) Nell esempio precedente la funzione Φ(x) = max { f 1 (x), f 2 (x)} puo essere anche Φ(x) =max { f 1 (x), f 2a (x), f 2b (x) } [ f 2 (x) = max { f 2a (x) =9x x 2, f 2b (x) =9x 1-16 x 2 } ] In (0,0 ) f 1 (x)= f 2a (x) = f 2b (x) e la matrice dei gradienti le tre funzioni coincidono e M = [ f 1 f 2a f 2b ] = Mp = 0 non e possibile con pesi p= ( μ 1,μ 2,μ 3 ), μ i 0 & μ 1 +μ 2 +μ 3 =1 ; la funzione Φ(x) scende se la componente x 1 diminuisce [ pesi = (0,1/2, 1/2 ) ]

5 FUNZIONE CONVESSA Il caso piu caratterizzabile e quello in cui tutte le funzioni f i (x) siano convesse In tal caso max { f i (x), i I} = Φ(x) e una funzione convessa Se f i (x) e differenziabile in x allora f i (y) f i (x) + f i (x) t (y-x) y ovvero Φ(y) f i (y) f i (x) + f i (x) t (y-x) = Φ(x) + f i (x) t (y-x) e i vettori f i (x) i I(x) sono dei sottogradienti di Φ(x) e la condizione i I(x) μ i f i (x) = 0, con μ i > 0 significa 0 Φ(x) {sottodifferenziale di Φ in x }. Nel caso convesso si puo applicare un semplice algoritmo Si suppone di conoscere x il valore Φ(x) e un vettore g Φ(x) Si considera una successione λ k λ k > 0, λ k = + (λ k ) 2 < + ( basta porre λ k = 1/k ) Si parte da un punto arbitrario x 1 e si forma la successione x k+1 = x k λ k g k / g k, g k Φ( x k ) [ ~ discesa lungo gradiente con passo che dipende da λ k (fissato) e ] Si suppone che esista un minimo x* per Φ. Per convessita se g Φ(x) Φ(x) + g t (x*-x) Φ(x*) e g t (x*-x) Φ(x*)- Φ(x) <0 Dalle formule allora x k+1 -x* 2 = x k -x* (λ k / g k ) g k 2 = e la successione x k e limitata x k -x* 2 + λ k 2 + 2(λk / g k ) g k t (x*- xk ) x k -x* 2 +λ k 2 x k+1 -x* 2 x 1 -x* 2 + j =1,k (λ j ) 2

6 Vale anche x k+1 -x* 2 = x 1 -x* 2 + j =1,k (λ j ) j =1,k (λ k / g k ) g k t (x*- xk ) e quindi lim inf g k t (x*-xk ) / g k = 0, [ λ k = +, g t (x*-x) 0, se g k t (x*-xk ) / g k a < 0 la serie diverge ] lim x k -x* = 0 oppure lim g k t (x*-xk ) = 0 ma g k t (x*- xk ) Φ(x*)- Φ( x k ) < 0 e allora lim Φ(x k ) = Φ(x*) Per una sottosuccessione ( x k y punto di ottimo ) e ogni punto limite e punto di ottimo (mettere y al posto di x*) CUTTING PLANE Si possono usare tutte o parte delle informazioni di piu punti (Metodi bundle) Il piu classico e ( Cutting Plane) Si suppone Φ:R n R (x), convessa e di conoscere x il valore Φ(x) e un vettore p Φ(x) [ Se Φ(x) = max { f i (x), i I, f i C 1 } indice j per cui vale Φ(x) = f j (x) e vettore f j (x)] Si ha disposizione un insieme di coppie { (x i p i ), x i R n, p i Φ(x i ), i=1...n+1 } y e possibile calcolare ψ (y)= max { Φ(x i ) + p i t (y-x i ) i =1...n+1 } Se x i e fissato e x k x i allora Φ(x i ) = Φ(x i ) + p i t (x i -x i ) Φ(x k ) + p i t (x i -x k ) Quindi x i ψ (x i ) = Φ(x i ) e min ψ (y) min { Φ(x i ) } Inoltre per convessita y R n Φ(y) Φ(x i ) + p i t (y-x i ) e Φ(y) ψ (y)

7 Se x* minimizza Φ e z minimizza ψ allora Φ( x*) ψ (x*) ψ (z) Si considera il seguente problema (lineare, variabili z R n, ξ R) min ξ con vincoli Φ(x i ) + p i t (z-x i ) ξ i=1...n+1 Problema lineare ovvero min 0 z + ξ p i t z -ξ Φ(x i ) + p i t xi i =1...n+1 min 0 z + ξ -p i t z +ξ Φ(x i ) - p i t xi i =1...n+1 Il cui duale e max μ i ( Φ(x i )- p i t xi ) μ i p i = 0 μ i = 1 Se la matrice (n+1,n+1) di colonne (p i,1) e non singolare e esistono pesi μ i > 0 identifica la base del problema Il vettore (z,ξ) che verifica p i t z -ξ = Φ(x i ) + p i t xi identifica la soluzione duale e ξ = ψ (z ) = min ψ Una ulteriore colonna (-p,1) con p Φ(x) viola la condizione duale se Φ(x) - p t x > -pt z +ξ In particolare per z e q Φ(z) Φ(z) > ξ, e con il simplesso la colonna generata da z (coppia (z,q), q Φ(z)) puo essere scambiata con una delle colonne La colonna eliminata dalla base viene abitualmente cancellata.

8 Alcuni Dettagli Se Φ e convessa definita per x R n allora epi (Φ) = { (x, α) R n+1 t.c Φ(x) α} x* soluzione per min Φ(x) se solo se (x*,φ(x*) ) punto di minimo per (0,1) t (x, α) calcolato per i punti ( x, α) epi(φ) Ogni coppia (x,p) con p Φ(x) identifica le relazioni Φ(y) Φ(x) + p t (y-x) y ovvero se (y, β) epi(φ) β Φ(y) Φ(x) + p t (y-x) La relazione lineare (p,-1) t (y, β) p t x - Φ(x) = (p,-1) (x, Φ(x) ) valida per tutti i punti (y, β) epi(φ) [ e anche per (x*,φ(x*) )] Il problema di minimo equivale al problema lineare con il vincolo ovvero i vincoli min (0,1) t (y, β) = max (0,-1) (y, β) epi(φ) (p,-1) t (y, β) p t x - Φ(x) Dalle condizioni KKT l ottimo x* e caratterizzato da - vincoli lineari (max n+1, se di piu si possono eliminare ) e pesi > 0 (altri non rappresentati ) per cui μ i p i = 0 μ i = 1 Il vettore (z,ξ) che verifica p i t z -ξ = Φ(x i ) + p i t xi e una previsione della soluzione. Se (z,ξ) Epi (Φ ) allora non e la soluzione e puo essere separato da un piano ( separazione punto -convesso) Il piano taglia e costituisce un vincolo violato Se si aggiunge un vincolo lineare il valore del minimo sale e si trova un punto (z +,ξ + ) con ξ + >ξ.

9 Se q Φ(z) allora si genera il piano Φ(z) + q t (y-z) e la condizione Φ(z) > ξ indica la violazione. Si possono scegliere altri punti w q Φ(w) basta che si abbia (q,-1) t (z, ξ) > p t w - Φ(w) [Φ(w) + q (z-w) > ξ ] Se i vettori p i sono di rango massimo la matrice di colonne (p i, -1) e invertibile si puo calcolare il vettore σ per cui σ i p i = q σ i = 1 σ i >0 per almeno una componente e se ρ = min (μ i /σ i, σ i > 0 ) allora ρ q + μ i p i - ρ σ i p i = ρ q + (μ i -ρσ i )p i = 0 ed e possibile cancellare un vincolo ( indice j per cui ρ = μ j /σ j ) e avere una relazione del tipo μ i + p i = 0 μ i + = 1 con valori aggiornati (μ i + ) = (μi -ρσ i ) 0 o valore nuovo ρ Il nuovo punto (z +,ξ + ) verifichera p i t z + -ξ + = p i t z -ξ = Φ(x i ) + p i t xi per i vincoli non cancellati [σ i 0, o μ i /σ i > ρ ] e q t z + - ξ + = Φ(z) + q t z ( per il nuovo vincolo ) E un algoritmo molto semplice e adattabile anche a vincoli convessi. Non converge velocemente e puo avere problemi di stabilita numerica ( se meno di n+1 vincoli alla soluzione ) Gli algoritmi bundle utilizzano tecniche simili ma sono stabilizzati. Si possono aggiungere limitazioni sui passi o generare approssimazioni non lineari (tipo trust), conservare vincoli per limitare la regione, identificare direzione di discesa attraverso soluzioni di minima norma a equazioni θ i + p i = 0 con un numero ristretto ( < n ) vincoli θ i + = 1

NLP KKT 1. Le condizioni necessarie di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J

NLP KKT 1. Le condizioni necessarie di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J NLP KKT 1 Le condizioni necessarie di ottimo per il problema min f o (x) g i (x) 0 i I h j (x) = 0 j J sono, riferite ad un punto ammissibile x*, μ 0 f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0

Dettagli

SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I

SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I e caratterizzata dalle condizioni f o (x) + i I μ i g i (x) = 0 e dall ammissibilita ( g i (x) = 0, i I )

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte II. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte II. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte II E. Amaldi DEI, Politecnico di Milano 3.3 Metodi basati su direzioni di ricerca Problema di ottimizzazione non vincolata: min x R n f(x) con f : R n R di

Dettagli

LAGRANGIANE AUMENTATE

LAGRANGIANE AUMENTATE LAGRANGIANE AUMENTATE Le condizioni di minimo vincolato per min f o (x) g i (x) = 0, i I sono legate sia alla funzione P(x,k) = f o (x) +(k/2) g i (x) 2 a al suo minimo x k che alla funzione lagrangiana

Dettagli

Metodi di Ricerca Lineare

Metodi di Ricerca Lineare Metodi di Ricerca Lineare Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com Metodi di Ottimizzazione

Dettagli

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 27 Gennaio 21 ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno Cognome : Nome : Esercizio 1. Si consideri il seguente problema: min

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Capitolo 2: Preliminari ed elementi di analisi convessa. E. Amaldi DEIB, Politecnico di Milano

Capitolo 2: Preliminari ed elementi di analisi convessa. E. Amaldi DEIB, Politecnico di Milano Capitolo 2: Preliminari ed elementi di analisi convessa E. Amaldi DEIB, Politecnico di Milano 2.1 Concetti di base In R n con norma euclidea x S R n è un punto interno di S se ε > 0 tale che B ε (x) =

Dettagli

TECNICHE DI REGOLARIZZAZIONE IN ELABORAZIONE

TECNICHE DI REGOLARIZZAZIONE IN ELABORAZIONE TECNICHE DI REGOLARIZZAZIONE IN ELABORAZIONE DI IMMAGINI Ivan Gerace, Francesca Martinelli e Patrizia Pucci Università degli Studi di Perugia Giornate di Algebra Lineare e Applicazioni 2009 Martinelli

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

Analisi II. Foglio di esercizi n.2 10/10/2017 (Aggiornamento del 17/10/2017)

Analisi II. Foglio di esercizi n.2 10/10/2017 (Aggiornamento del 17/10/2017) Analisi II Foglio di esercizi n 10/10/017 (Aggiornamento del 17/10/017) Esercizi su massimi e minimi liberi con studi aggiuntivi 1 Siano K R n compatto e Ω R n un aperto contenente K Si consideri f C 1

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 8-9 Soluzioni di alcuni esercizi Esercizi - I 3. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Scuola di Dottorato in Ingegneria L. da Vinci. Problemi di estremo vincolato ed applicazioni. Introduzione ai problemi di estremo

Scuola di Dottorato in Ingegneria L. da Vinci. Problemi di estremo vincolato ed applicazioni. Introduzione ai problemi di estremo Scuola di Dottorato in Ingegneria L. da Vinci Problemi di estremo vincolato ed applicazioni Pisa, 28-29 Maggio, 2009 Introduzione ai problemi di estremo G. Mastroeni Ricercatore, Dipartimento di Matematica

Dettagli

3.7 Metodi quasi-newton

3.7 Metodi quasi-newton 3.7 Metodi quasi-newton Varianti del metodo di Newton in cui invece di usare/invertire la matrice Hessiana di f si estraggono informazioni relative alle derivate seconde dalle variazioni di f. Si genera

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Mirano a costruire la soluzione x di un sistema lineare come limite di una successione di vettori Per matrici piene di ordine n il costo computazionale è dell ordine

Dettagli

Progr. Non Lineare: algoritmi

Progr. Non Lineare: algoritmi Progr. Non Lineare: algoritmi Fabio Schoen schoen@ing.unifi.it http://globopt.dsi.unifi.it/users/schoen A.A. 22-23 Programmazione Non Lineare: Cenni sugli algoritmi di ottimizzazione locale Schema generale

Dettagli

Equazioni differenziali e teoria della misura

Equazioni differenziali e teoria della misura SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 2 settembre 23 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

RICERCA OPERATIVA (9 cfu)

RICERCA OPERATIVA (9 cfu) a PROVA scritta di RICERCA OPERATIVA (9 cfu) gennaio Cognome Nome Ai fini della pubblicazione (cartacea e elettronica) del risultato ottenuto nella prova di esame, autorizzo al trattamento dei miei dati

Dettagli

Anno accademico

Anno accademico Scuola Normale Superiore Ammissione al 4 anno della Classe di Scienze Prova di Analisi per l ammissione alla Laurea Specialistica in Fisica applicata, Informatica, Matematica, Scienze fisiche, Tecnologie

Dettagli

1. Calcolo Differenziale per funzioni di una variabile

1. Calcolo Differenziale per funzioni di una variabile 1. Calcolo Differenziale per funzioni di una variabile 1.1 Definizione di Derivata e prime proprietà Definizione 1.1 Sia f :]a, b[ R, x 0 ]a, b[. Allora esiste δ > 0 : x 0 + ]a, b[, 0 < < δ. Se esiste

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi numerici per la soluzione di sistemi lineari Metodi Iterativi la soluzione si ottiene tramite approssimazioni

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate. min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate. min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima pagina

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del Prova scritta di nalisi Matematica II del 12-06-2001. C1 1) Studiare la convergenza semplice, uniforme e totale della serie di funzioni seguente ( 1) [ n 2 ] n x 1 + n 2 x. n=0 2) Data la funzione (x 2

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

4.5 Metodo del gradiente

4.5 Metodo del gradiente 4.5 Metodo del gradiente Si cerca un punto stazionario di f : R n R con f C 1. Metodo del gradiente con ricerca 1-D esatta: Scegliere x 0, porre k := 0 Iterazione: d k := f(x k ) Determinare α k > 0 tale

Dettagli

19. L integrale di Lebesgue: un breve riassunto, I

19. L integrale di Lebesgue: un breve riassunto, I 156 19. L integrale di Lebesgue: un breve riassunto, I Il problema di caratterizzare la classe delle funzioni integrabili secondo Riemann e di capire per quali funzioni vale il teorema fondamentale del

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Analisi Matematica 2 - A

Analisi Matematica 2 - A Analisi Matematica 2 - A Soluzione Appello scritto del 29 Gennaio 2013 Esercizio 1 (10 punti Si consideri il Problema di Cauchy { y = y + y(0 = 0, dove y è la funzione incognita ed è la sua variabile.

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE

RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE Introduzione Si vogliano individuare, se esistono, le radici o soluzioni dell equazione f(x)=0. Se f(x) è un polinomio di grado superiore al secondo o se è una

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Problema di PLI in forma standard: max cx Ax = b x 0, x I n I insieme degli interi. Regione ammissibile:

Dettagli

f n (x) 3 1. x Essendo g(x) = 3 1

f n (x) 3 1. x Essendo g(x) = 3 1 Secondo esonero di Analisi eale 6//9 a.a. 8-9 ) Studiare la convergenza in L p ((, )), p +, della successione di funzioni cos(nx) e nx f n (x) = 3. x Si vede facilmente che la successione f n converge

Dettagli

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2 Calcolo di forme indeterminate del tipo 0/0 Quando si deve calcolare il limite di rapporto di funzioni infintesime per x 0, si raccoglie la potenza di x al minimo esponente. Es. lim x 0 x 3 2x 2 + 6x x

Dettagli

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare)

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) 1 Spazi vettoriali (1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) (a) R 5 (b) [0, ) (c) x R 2 : x 1 + 2x 2 = 0} (d) x R 2 : x 2 1 + 2x 2 = 0} (e) x R 2 : x 1 > x

Dettagli

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 17 gennaio A(x) =

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 17 gennaio A(x) = Calcolo Numerico Corso di Laurea in Ingegneria Elettronica Appello del 7 gennaio 204 Sia M = F (2, 3). Dopo aver mostrato che 20 M, determinare tutti gli elementi ξ M tali che: ξ > 20 Per ogni x R, sia:

Dettagli

5.5.6 Convergenza del metodo del simplesso

5.5.6 Convergenza del metodo del simplesso 5.5.6 Convergenza del metodo del simplesso Per concludere l analisi del metodo del simplesso, vogliamo ora mostrare che, sotto opportune ipotesi, il numero di iterazioni è finito, ovvero che, in un numero

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f (x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

PROGRAMMAZIONE LINEARE E DUALITA'

PROGRAMMAZIONE LINEARE E DUALITA' PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018)

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Esercizio 1 Si consideri l insieme Esercizi sulla funzione implicita e superfici Z = {(x, y) R 2 2y xe y

Dettagli

Compito numero 2 - Compito intero

Compito numero 2 - Compito intero Esercitazione 6 - Correzione esame dell 8//3 Lucia Pilleri 9//3 Compito numero - Compito intero Esercizio del parziale - del compito intero Risolvere, mediante la fattorizzazione P A = LU, il sistema lineare

Dettagli

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Cenni sui metodi iterativi per sistemi lineari Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Metodi numerici per sistemi lineari Nei metodi diretti la presenza di eventuali elementi nulli nella

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata.

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata. Scuola Normale Superiore, ammissione al IV anno del corso ordinario Prova scritta di Analisi Matematica per Fisica, Informatica, Matematica 26 Agosto 2 Esercizio. Siano (a n ) e (b n ) successioni di numeri

Dettagli

4.8 Metodi quasi-newton

4.8 Metodi quasi-newton 4.8 Metodi quasi-newton Varianti del metodo di Newton in cui invece di usare/invertire la matrice Hessiana di f (x) si estraggono informazioni relative alle derivate seconde dalle variazioni di f (x).

Dettagli

Analisi 2 Fisica e Astronomia

Analisi 2 Fisica e Astronomia Analisi Fisica e Astronomia Appello scritto del 8 Luglio 0. Soluzione Esercizio 7 pti Sia α > 0 un parametro e consideriamo la curva piana γ : [0, ] R γt = t cos, t sin, se t 0, ], e γ0 = 0, 0. t α t α

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

ESERCIZI ASSEGNATI IN CLASSE

ESERCIZI ASSEGNATI IN CLASSE ESERCIZI ASSEGNATI IN CLASSE INGEGNERIA PER L AMBIENTE E IL TERRITORIO A. A. 2009/2010 LUCA ROSSI 1. Prima settimana Esercizio 1.1. Dimostrare che, dati due insiemi A, B, si ha: (leggi di De Morgan) A

Dettagli

Risoluzione del compito n. 5 (Luglio 2018/2)

Risoluzione del compito n. 5 (Luglio 2018/2) Risoluzione del compito n. 5 (Luglio 2018/2) PROBLEMA 1 Considerate il luogo di zeri S = {(x, y, z) R 3 : z 4+ x 2 + y 2 =0, 2x y + z =0}. a) Giustificando la risposta, dite se S è una curva liscia. b)

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2017/18 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) ai quesiti degli esercizi del 12.X.2018 1. (a) Ω è aperto, Ω = {0, 1, 2}, Ω = Ω, Ω = [0, 1]

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE Sia g C 1 R 2 ), c R. L insieme γ = γ c := {x, y) R 2 : gx, y) = c} si chiama insieme

Dettagli

A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1

A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1 A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1 A: Spazi vettoriali e sottospazi Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Provare che l

Dettagli

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Scritta di Analisi Matematica III - 28/2/2 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio 1. 1a. Teorema: (di ini) Sia Φ : A R n R R dove A è aperto.

Dettagli

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 4/7/013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 01/013 A Cognome (in STAMPATELLO):... Nome (in STAMPATELLO):... CFU:... Esercizio 1. Sia f : R R una funzione

Dettagli

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 16 gennaio 2013

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 16 gennaio 2013 Calcolo Numerico Corso di Laurea in Ingegneria Elettronica Appello del 6 gennaio 3 Sia M = F (, 4). Calcolare: rd( 7 6 ). Sia A = Determinare una fattorizzazione LR di A ed utilizzarla per calcolare A.

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

1 Analisi mat. I - Esercizi del 13/10/99

1 Analisi mat. I - Esercizi del 13/10/99 Analisi mat. I - Esercizi del //99 ES. Delle seguenti funzioni determinare: il dominio l immagine gli eventuali asintoti l insieme dove sono continue e quali siano estendibili per continuita. Determinare

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del f(x, y) = x sin y

Analisi Matematica II Corso di Ingegneria Biomedica Compito del f(x, y) = x sin y Analisi Matematica II Corso di Ingegneria Biomedica Compito del 4-- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2016-2017) IV Lezione del 06.03.2017 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni

Dettagli

1 Il metodo dei tagli di Gomory

1 Il metodo dei tagli di Gomory Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare

Dettagli

Analisi Numerica: Introduzione

Analisi Numerica: Introduzione Analisi Numerica: Introduzione S. Maset Dipartimento di Matematica e Geoscienze, Università di Trieste Analisi numerica e calcolo numerico Analisi numerica e calcolo numerico La matematica del continuo

Dettagli

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili. Geometria Algebrica A.A. 2017 2018 Esercizi Insiemi algebrici affini, Insiemi algebrici irriducibili. Negli esercizi si suppone, se non scritto al contrario, che il campo k sia algebricamente chiuso di

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

Soluzione esercizi 28 ottobre 2011

Soluzione esercizi 28 ottobre 2011 ANALISI Soluzione esercizi 8 ottobre 0 4.. Esercizio. Siano α e β due numeri reali tali che la loro somma e la loro differenza siano razionali: provare che allora essi sono entrambi razionali. Il teorema

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Esercizi scelti di Analisi matematica elementare

Esercizi scelti di Analisi matematica elementare Esercizi scelti di Analisi matematica elementare Gianni Gilardi Queste pagina costituiscono il materiale relativo a un corso intensivo di analisi matematica dedicato a quegli studenti del corso di laurea

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 12 aprile 2018

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 12 aprile 2018 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 12 aprile 2018 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R + NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:

Dettagli

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]).

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Esempio 1: equazioni polinomiali p N (x)

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

Integrali Curvilinei

Integrali Curvilinei Integrali Curvilinei Gianluca Gorni 11 gennaio 2006 1 Lunghezza di una curva Definizione 1.1. Una curva N-dimensionale è una funzione definita su un intervallo (compatto, se non specificato altrimenti)

Dettagli

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±.

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±. Esercizi Misti iniziali. Data la funzione se ne studino massimi, minimi, flessi, iti a ±. 2. Provare che Più variabili F x) = 3. Calcolare, se esistono, i seguenti iti a) b) c) d) x,y),) x 2 + y 2 2 x,y),)

Dettagli

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da NOTE INTEGRATIVE PER IL CORSO DI ANALISI MATEMATICA 2 ANNO ACCADEMICO 2012/13 NOTE SULLA CONTINUITÀ UNIFORME D.BARTOLUCCI, D.GUIDO Sia f(x) = x 3, x [ 1, 1]. Si ha 1. La continuità uniforme x 3 y 3 = x

Dettagli

Università degli Studi di Roma La Sapienza

Università degli Studi di Roma La Sapienza Università degli Studi di Roma La Sapienza Dipartimento di Informatica e Sistemistica A. Ruberti Proff. Gianni Di Pillo and Laura Palagi Note per il corso di OTTIMIZZAZIONE (a.a. 2007-08) Dipartimento

Dettagli

Programmazione Non Lineare

Programmazione Non Lineare Capitolo 1 Programmazione Non Lineare 1.1 Introduzione Un problema di ottimizzazione viene definito come la minimizzazione o la massimizzazione di una funzione a valori reali su un insieme specificato.

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) V Lezione del 15.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Metodo di Newton:

Dettagli

26 - Funzioni di più Variabili Limiti e Derivate

26 - Funzioni di più Variabili Limiti e Derivate Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 26 - Funzioni di più Variabili Limiti e Derivate Anno Accademico 2013/2014 M.

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

Prova scritta di Matematica Discreta del 15/2/2005

Prova scritta di Matematica Discreta del 15/2/2005 Prova scritta di Matematica Discreta del 15/2/2005 1. a. Quante parole di 6 lettere si possono formare con un alfabeto contenente 25 lettere? b. Quante se sono proibite le doppie (ossia lettere uguali

Dettagli

Compattezza in spazi di Banach, in spazi di funzioni e in spazi Lp, debole compattezza e Spazi riflessivi

Compattezza in spazi di Banach, in spazi di funzioni e in spazi Lp, debole compattezza e Spazi riflessivi Compattezza in spazi di Banach, in spazi di funzioni e in spazi Lp, debole compattezza e Spazi riflessivi Lucia Miggiano,Emanuela Miggiano,Davide Cera April 5, 2012 1 Compattezza in Spazi di Banach 1.1

Dettagli

x = t y = t z = t 3 1 A = B = 1 2

x = t y = t z = t 3 1 A = B = 1 2 11/1/05 Teoria: Enunciare e discutere il teorema di Lagrange. Esercizio 1. Determinare l equazione cartesiana del piano passante per P 0 = (1,, 1) e contenente i vettori u = (,, ) e v = (1, 5, 4). Risposta

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli