Appunti di Analisi Matematica 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti di Analisi Matematica 3"

Transcript

1 1 Appunti di Analisi Matematica 3 Capitolo 1: funzioni in campo complesso ( 1 52) Capitolo 2: trasformazioni conformi (53 63) Capitolo 3: integrazione in campo complesso (64 116) Capitolo 4: modelli matematici ( ) Capitolo 5: formula di derivazione sotto integrale ( ) Capitolo 6: trasformata di Fourier e di Laplace ( ) APPUNTI DEL CORSO DI ANALISI MATEMATICA 3 FRANCESCO PERRELLI APPUNTI DI ANALISI MATEMATICA 3

2 2 APPUNTI DI ANALISI MATEMATICA 3

3 3 APPUNTI DI ANALISI MATEMATICA 3

4 1 Capitolo 1: funzioni in campo complesso Sommario Numeri complessi... 4 Introduzione ai numeri complessi... 4 Parte reale e parte immaginaria di un numero complesso... 4 Operazioni di somma e prodotto in campo complesso e proprietà... 4 Relazione d ordine in campo complesso... 6 Numeri complessi ed estensione dei numeri reali... 6 Rappresentazione dei numeri complessi... 7 Riduzione di un numero complesso alla forma algebrica... 8 Numeri complessi in forma trigonometrica... 8 Formule di passaggio da coordinate polari a cartesiane e viceversa... 9 Esempi di forma algebrica e forma trigonometrica Prodotto tra due numeri complessi Potenze di numeri complessi e formula di De Moivré Radici n-esime di un numero complesso Esercizi sulle radici di un numero complesso Funzioni in campo complesso APPUNTI DEL CORSO DI ANALISI MATEMATICA 3 FRANCESCO PERRELLI

5 2 Sommario Esempi di funzioni Funzione fz = z Funzione fz = Rez Funzione fz = 1/z Funzione fz = z Funzione fz = Arg z Derivabilità in campo complesso Proprietà della derivazione in campo complesso Teorema di Cauchy-Riemann Applicazioni del teorema di Cauchy-Riemann fz = z2 = x2 y2 + 2 xy i fz = Rez = x + 0 i fz = z = x i y, z C fz = z2 = x2 + y2 ux, y = x2 + y2, vx, y = fz = Arg z, z C Dimostrazione della condizione di Cauchy-Riemann Teorema di Goursat Conseguenze del teorema di Cauchy-Riemann Jacobiano della trasformazione Condizioni di Cauchy-Riemann in coordinate polari Armonicità di u e v Serie di funzioni in campo complesso Convergenza puntuale Convergenza uniforme Differenza tra convergenza uniforme e puntuale Convergenza assoluta Convergenza totale Relazione tra convergenza totale e convergenza assoluta Relazione tra convergenza uniforme e convergenza puntuale Relazione tra convergenza uniforme e convergenza totale Serie di potenze Teorema di Abel Dimostrazione del primo punto Insieme di convergenza di una serie di potenze Calcolo del raggio di convergenza Teorema di Cauchy-Hadamard... 34

6 3 Teorema di D Alambert Teorema di Picard Esempi di serie di potenze n = 1 + zn n = 1 + znn n = 1 + znn n = 1 + znn! Ricapitolazione Convergenza uniforme nel cerchio di convergenza Teorema di continuità del limite di una serie Continuità della somma di una serie di potenze Olomorfismo della somma di una serie di potenze Accenno alla dimostrazione Derivate n-esime della serie di potenze Funzioni elementari in campo complesso Funzione esponenziale in campo complesso x R, ex = 1 + x + x xnn! Proprietà dell esponenziale in campo complesso Esponenziale della somma di due numeri complessi ez = excosy + isiny Modulo della funzione esponenziale Periodicità della funzione esponenziale Olomorfia della funzione esponenziale Funzioni seno e coseno Proprietà delle funzioni seno e coseno Simmetria Periodicità Identità fondamentale della trigonometria Zeri Olomorfia Funzione tangente Funzione logaritmo Isolare una determinazione del logaritmo Logaritmo principale Logaritmo come estensione di quello reale Olomorfismo della funzione logaritmo (per casa) Funzione potenza Arcoseno in campo complesso... 51

7 4 Numeri complessi Introduzione ai numeri complessi I numeri complessi vengono introdotti di solito in maniera assiomatica. Si possono paragonare gli assiomi alle regole di un gioco da tavolo: prima di cominciare a giocare, c è bisogno di fissare con i giocatori delle regole che siano le minime possibili. L impostazione assiomatica fa una cosa analoga: fissa un numero minimo di regole, che sono gli assiomi, e, con tali assiomi, si comincia ad operare e a vedere cosa si ottiene. In particolare, i numeri complessi erano stati introdotti in Analisi Matematica 1 come coppie di numeri reali, per cui l insieme dei numeri complessi era l insieme delle coppie di numeri reali. Definiamo ora invece i numeri complessi come espressioni del tipo a + ib, per cui diciamo che l insieme dei numeri complessi C è un insieme di tutte le espressioni del tipo a + ib, dove a e b sono numeri reali e i è un simbolo, detto unità immaginaria, che ha la proprietà che i 2 = 1 C = {a + ib: a, b R}, i 2 = 1 Parte reale e parte immaginaria di un numero complesso Dato un numero complesso z, esprimibile in forma algebrica, come: z = a + ib si adottano le seguenti definizioni: a si definisce parte reale di z e si indica: a = Re{z} b si definisce coefficiente della parte immaginaria di z, e si indica: Operazioni di somma e prodotto in campo complesso e proprietà b = Im{z} Sono definite nell insieme complesso due operazioni, somma e prodotto, come segue, con le solite regole del calcolo letterario, o meglio per la somma e il prodotto sono fissate le seguenti definizioni (si tratta di definizioni, cioè di assiomi, regole di base che fissiamo). Dati due numeri complessi a + ib e c + id (quindi a, b c e d per definizione di numero complesso sono tutti numeri reali): - si definisce la somma tra i due numeri complessi a + ib e c + id il numero ancora complesso a + c + i(b + d): a, b, c, d R, (a + ib) + (c + id) a + c + i (b + d) - si definisce il prodotto tra i due numeri complessi a + ib e c + id il numero ancora complesso ac bd + i(ad + bc), ottenibile applicando le classiche regole del calcolo letterario (si tenga conto che i 2 = 1): a, b, c, d R, (a + ib) (c + id) ac + iad + ibc bd = ac bd + i (ad + bc) In conclusione si sono introdotte due operazioni, la somma e il prodotto, nell insieme dei numeri complessi: (C, +, ) Tuttavia tra numeri complessi è banale pensare che si possano fare anche operazioni di sottrazione e divisione. Per introdurre quest ultime due vanno considerati ulteriori due assiomi.

8 5 In primis, rispetto alle operazioni di somma e moltiplicazione, un ulteriore assioma definisce che valgono le seguenti proprietà, cioè la proprietà associativa e commutativa sia per la somma che per il prodotto, e vale anche la proprietà distributiva di somma rispetto al prodotto: 1) proprietà associativa e commutativa per + e proprietà distributiva di + rispetto a Altro assioma definisce poi l esistenza dell elemento neutro sia rispetto alla somma che rispetto al prodotto, dove per elemento neutro rispetto alla somma e rispetto al prodotto si definiscono rispettivamente i numeri complessi 0 + i0 e 1 + i0: in quanto elementi neutri si avrà che: 0 + i0, che è indicato più semplicemente con il simbolo 0, in quanto elemento neutro rispetto alla somma, sarà tale che la sua somma con un qualsiasi numero complesso restituirà tale numero complesso; 1 + i0, che è più semplicemente con il simbolo 1, sarà tale che la sua moltiplicazione con un qualsiasi numero complesso restituirà tale numero complesso 1 : 2) 0 + i0 0 (a + ib) + (0 + i0) = a + ib 1 + i0 1 (a + ib) (1 + i0) = a + ib Terza proprietà, introdotta sempre come assioma, ci dice che, preso un qualunque numero complesso a + ib, è sempre possibile costruirne un altro, a cui diamo il nome di opposto di a + ib, fatto in maniera tale che, sommato al numero complesso di partenza, restituisca l elemento neutro rispetto alla somma: 3) a + ib 0, a ib (a + ib) + ( a ib) = 0 + i0 Quarta proprietà è l analogo nel caso della moltiplicazione per cui, preso un numero complesso a + ib (in questo caso però non qualunque ma diverso da 0 + i0), esiste (cioè riesco a costruire) un numero complesso detto reciproco, indicato in maniera sintetica come (a + ib) 1, che è fatto come a/(a 2 + b 2 ) + i( b)/(a 2 + b 2 ), o in altri termini è fatto dividendo entrambi le parti reali e immaginarie per a 2 + b 2, che gode della proprietà che la moltiplicazione tra a + ib e il suo reciproco restituisce l elemento neutro rispetto alla moltiplicazione, l unità: 4) a + ib 0, (a + ib) 1 = a b a 2 +b2 + i : (a + ib) (a + a 2 +b 2 ib) 1 = 1 + i 0 Pur avendo definito in C le sole due operazioni di somma e moltiplicazione, a partire da questi ultimi assiomi si possono individuare anche le operazioni di sottrazione e divisione, rispettivamente attraverso l opposto e il reciproco. L insieme C, con tali operazioni di somma e prodotto, costituisce un campo. 1 Infatti (a + ib) (1 + i0) = a1 + a i0 + 1ib + ib i0 = a ib + 0 = a + ib

9 6 Relazione d ordine in campo complesso Si noti che, mentre il campo dei numeri reali è un campo totalmente ordinato (presi due numeri reali qualunque è sempre possibile dire che uno è più piccolo e uno è più grande, tanto è vero che li si può rappresentare mettendoli in ordine su una retta, fissato lo zero da qualche parte su di essa), questo non è vero per i numeri complessi: non c è una relazione d ordine tra i numeri complessi. Lo si può vedere facilmente attraverso una dimostrazione per assurdo. Si supponga per assurdo che esista una relazione d ordine in campo complesso. Allora essa dovrebbe essere un estensione della relazione d ordine che vale in R e dovrebbe essere sempre possibile confrontare due numeri complessi qualsiasi e stabilire qual è maggiore e qual è minore. Si considerino allora i numeri complessi i (cioè quel numero complesso che ha parte reale nulla e coefficiente dell immaginario unitario) e 0 (cioè quel numero complesso che ha parte reale nulla e coefficiente dell immaginario nullo), e si provi a confrontarli, cosa che, nell ipotesi di esistenza di una relazione d ordine in campo complesso, dovrebbe essere certamente possibile. In particolare in base all esistenza di una relazione d ordine dovrebbe verificarsi o che i > 0 o che i < 0: a priori non sappiamo chi di due è maggiore, ma sicuramente in presenza di una relazione d ordine una delle due relazioni dovrebbe essere verificata. Proviamo per prima cosa i > 0. Si noti che, moltiplicando ambo i membri di una diseguaglianza per un numero positivo, così come lo è i nel caso che si sta considerando, il verso della diseguaglianza non cambia. Si ottiene però un assurdo: i > 0 => i i > 0 i => 1 > 0 Ne consegue che, se esiste una relazione d ordine, avendo escluso i > 0, sicuramente dovrebbe essere che i < 0. Tuttavia anche in questo caso, tenendo conto che moltiplicando ambo i membri di una diseguaglianza per un numero negativo il verso della diseguaglianza cambia, si ottiene un assurdo: i < 0 => i i > 0 i => 1 > 0 Allora i è un numero complesso che non può essere né positivo né negativo, in altri termini non vi è una relazione d ordine tra i numeri complessi, cioè questi non si possono confrontare. Numeri complessi ed estensione dei numeri reali Si noti che il motivo per cui sono introdotti i numeri complessi è per estendere i numeri reali non essendo possibile con questi ultimi risolvere disequazioni del tipo x = 0. Essendo allora il campo complesso un estensione dei numeri reali, è lecito chiedersi dove si trovano i numeri reali nel campo complesso: ebbene, i numeri reali sono tutti quei numeri complessi che hanno il coefficiente dell immaginario pari a 0. Quindi l insieme dei numeri complessi contiene l insieme dei numeri reali come sottoinsieme. Si è visto però che non si estende al campo complesso la relazione d ordine in quanto il campo complesso non è ordinato.

10 7 Rappresentazione dei numeri complessi I numeri complessi possono essere rappresentati sul piano di Gauss. Per rappresentare i numeri complessi in tale piano si noti che, dato un numero complesso z = a + ib, si può introdurre un applicazione, o meglio una funzione, che va dall insieme dei numeri complessi C in R 2 che associa ad ogni numero complesso z la coppia di numeri reali che ha come prima coordinata la parte reale, come seconda la parte immaginaria, (a, b): C R 2 z = a + ib (a, b) Si tratta di un applicazione invertibile in quanto si ha anche che una coppia di numeri reali qualunque, (α, β), la si può sempre pensare come immagine di un numero complesso avente per parte reale α e per parte immaginaria β, cioè α + iβ. Allora, moralmente, è possibile far coincidere C con R 2, cioè moralmente si può identificare un numero complesso z con una coppia di R 2 costruita come si è visto. Detto ciò, si introduca nel piano un sistema di assi cartesiani (x asse delle ascisse, y asse delle ordinate), con origine in un punto O detto origine, sistema monometrico (in quanto ha la stessa unità di misura su entrambi gli assi) ortogonale (perché gli assi sono ortogonali). In tale sistema di riferimento cartesiano è noto come rappresentare una coppia (a, b) e tale coppia identifica un punto P di coordinate (a, b), rappresentativo del numero complesso z = a + ib. Si dice modulo di z, z, la radice quadrata della somma dei quadrati delle sue parti reale e immaginaria e geometricamente rappresenta la distanza del punto P dall origine: z = a + ib, z = a 2 + b 2 Si dice coniugato di z, a + ib, il numero complesso che ha per parte reale la stessa parte reale di z ma per parte immaginaria l opposto e geometricamente è mostrato in figura: z = a + ib, z = a + ( ib)

NUMERI COMPLESSI. Rappresentazione cartesiana dei numeri complessi

NUMERI COMPLESSI. Rappresentazione cartesiana dei numeri complessi NUMERI COMPLESSI Come sappiamo, non esistono nel campo dei numeri reali le radici di indice pari dei numeri negativi. Ammettiamo pertanto l esistenza della radice quadrata del numero 1. Questo nuovo ente

Dettagli

Numeri Immaginari e Numeri Complessi. Prof.ssa Maddalena Dominijanni

Numeri Immaginari e Numeri Complessi. Prof.ssa Maddalena Dominijanni Numeri Immaginari e Numeri Complessi Numeri immaginari Nell insieme R dei numeri reali non si può estrarre la radice quadrata di un numero negativo perché non esiste nessun numero reale che elevato al

Dettagli

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Numeri complessi Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri complessi Analisi Matematica 1 1 / 34 Introduzione L introduzione dei numeri complessi

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Numeri complessi Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Introduzione I numeri complessi vengono introdotti perché tutte

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Statistica per l Analisi dei Dati. Appunti del corso di Matematica I Numeri Reali

Università degli Studi di Palermo Facoltà di Economia. CdS Statistica per l Analisi dei Dati. Appunti del corso di Matematica I Numeri Reali Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina, A.

Dettagli

Insiemi numerici: i numeri complessi

Insiemi numerici: i numeri complessi Insiemi numerici: i numeri complessi Riccarda Rossi Università di Brescia Analisi I Introduzione Storicamente: I si è passati da N a Z perché la sottrazione di due numeri naturali non è operazione interna

Dettagli

(a, b) + (c, d) = (a + c, b + d) (1) (a, b) + (0, 0) = (a + 0, b + 0) = (a, b) (a, b) + ( a, b) = (a a, b b) = (0, 0)

(a, b) + (c, d) = (a + c, b + d) (1) (a, b) + (0, 0) = (a + 0, b + 0) = (a, b) (a, b) + ( a, b) = (a a, b b) = (0, 0) Numeri Complessi I numeri complessi sono un'estensione dei numeri reali, vengono introdotti anchè tutte le equazioni algebriche ammettano soluzioni. Dato l'insieme R = R R = { (a, b) R R } deniamo per

Dettagli

Se la serie converge in C, il limite a cui tende si chiama somma della serie.

Se la serie converge in C, il limite a cui tende si chiama somma della serie. E-school di Arrigo Amadori Analisi I Serie di potenze 01 Introduzione. Le serie di potenze sono molto importanti perché costituiscono il punto di partenza per approssimare una funzione qualunque. Sono

Dettagli

ANALISI MATEMATICA III PREREQUISITI SULL ANALISI COMPLESSA A.A

ANALISI MATEMATICA III PREREQUISITI SULL ANALISI COMPLESSA A.A ANALISI MATEMATICA III PREREQUISITI SULL ANALISI COMPLESSA A.A. 205-206 March 4, 206 In questa parte vengono brevemente presentati alcuni richiami a) sui numeri complessi b) sulle funzioni complesse e

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e Tecnologie della Comunicazione Complementi 1: numeri complessi I numeri complessi La definizione dei numeri complessi nasce dalla esigenza di trovare una soluzione alla equazione: x 1 che non

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Registro delle lezioni

Registro delle lezioni Complementi di Analisi Matematica - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Registro delle lezioni Laura Poggiolini e Gianna Stefani 2 ottobre 2006, 2 ore, LP Il campo dei

Dettagli

ANALISI MATEMATICA III (ELM+TEM) A.A Prerequisiti

ANALISI MATEMATICA III (ELM+TEM) A.A Prerequisiti ANALISI MATEMATICA III (ELM+TEM) A.A. 2012-2013 Prerequisiti March 20, 2013 1 Richiami sui numeri complessi 1.1 Forma algebrica. Un numero complesso z in forma algebrica è un numero del tipo z = a + jb

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

CENNI DI TRIGONOMETRIA E CENNI SUI NUMERI COMPLESSI PER L ELETTROTECNICA

CENNI DI TRIGONOMETRIA E CENNI SUI NUMERI COMPLESSI PER L ELETTROTECNICA CENNI DI TRIGONOMETRIA E CENNI SUI NUMERI COMPLESSI PER L ELETTROTECNICA (per classi elettrotecnica e automazione) Autore Nunzio Siciliano rev. Nov.2014 Quest'opera è distribuita con Licenza Creative Commons

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 02 - I Numeri Reali Anno Accademico 2013/2014 D. Provenzano, M.

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Esercitazioni di Matematica Generale

Esercitazioni di Matematica Generale Esercitazioni di Matematica Generale Corso di laurea in Economia e Management Numeri Complessi - Funzioni Reali di Variabile Reale 05 Ottobre 017 Esercizio 1 Scrivere in forma algebrica (z = a + ib, a,

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

DOCENTE: Vincenzo Pappalardo MATERIA: Matematica I NUMERI COMPLESSI

DOCENTE: Vincenzo Pappalardo MATERIA: Matematica I NUMERI COMPLESSI DOCENTE: Vincenzo Pappalardo MATERIA: Matematica I NUMERI COMPLESSI INTRODUZIONE Problema: Esiste la radice quadrata di un numero reale x negativo? ( 4) =? Nell insieme dei numeri reali R il problema non

Dettagli

APPLICAZIONI di MATEMATICA A.A

APPLICAZIONI di MATEMATICA A.A APPLICAZIONI di MATEMATICA A.A. 2013-2014 Traccia della lezioni del 30 settembre e 4 ottobre 2013 October 5, 2013 1 Analiticita e funzioni armoniche Come abbiamo visto nella lezione scorsa, una funzione

Dettagli

Funzioni Reali di Variabile Reale

Funzioni Reali di Variabile Reale Funzioni Reali di Variabile Reale Lezione 2 Prof. Rocco Romano 1 1 Dipartimento di Farmacia Università degli Studi di Salerno Corso di Matematica, 2017/2018 Prof. Rocco Romano (Università Studi Salerno)

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

Indice. NUMERI REALI Mauro Saita Versione provvisoria. Ottobre 2017.

Indice. NUMERI REALI Mauro Saita   Versione provvisoria. Ottobre 2017. NUMERI REALI Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria. Ottobre 2017. Indice 1 Numeri reali 2 1.1 Il lato e la diagonale del quadrato sono incommensurabili: la scoperta dei numeri

Dettagli

R 2 e i numeri complessi

R 2 e i numeri complessi L. Chierchia. Dipartimento di Matematica e Fisica, Università Roma Tre 1 R e i numeri complessi 1. R come spazio vettoriale R, ossia l insieme delle coppie ordinate x, y con x e y in R è uno spazio vettoriale

Dettagli

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.

Dettagli

I numeri complessi. Capitolo 7

I numeri complessi. Capitolo 7 Capitolo 7 I numeri complessi Come abbiamo fatto per i numeri reali possiamo definire assiomaticamente anche i numeri complessi. Diciamo che l insieme C dei numeri complessi è un insieme su cui sono definite

Dettagli

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b, e i = 1 è detta unità immaginaria i e i 2 = 1

Numeri Complessi. Sono numeri del tipo z = a + ib, dove a e b, e i = 1 è detta unità immaginaria i e i 2 = 1 Numeri Complessi Sono numeri del tipo z = a + ib, dove a e b, e i = 1 è detta unità immaginaria i e i 2 = 1 L insieme dei numeri complessi è indicato con. a è detta parte reale del numero complesso b è

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Numeri complessi. Esercizi.

Numeri complessi. Esercizi. Numeri complessi. Esercizi. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria. Marzo 014. Indice 1 Numeri complessi 1.1 Test di autovalutazione............................... 1. Test di

Dettagli

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A.

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. 1 PRELIMINARI 1.1 NOTAZIONI denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. B A si legge B è un sottoinsieme di A e significa che ogni elemento di B è anche elemento di

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 lsantone@liceoantonelli.novara.it http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.

Dettagli

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4).

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4). 1 Relazioni 1. definizione di relazione; 2. definizione di relazione di equivalenza; 3. definizione di relazione d ordine Definizione Una corrispondenza tra due insiemi A e B è un sottoinsieme R del prodotto

Dettagli

APPLICAZIONI di MATEMATICA A.A

APPLICAZIONI di MATEMATICA A.A APPLICAIONI di MATEMATICA A.A. 0-03 Tracce delle lezioni del 4 e 7 settembre 0 September 7, 0 Analiticita e funzioni armoniche Come abbiamo visto nella lezione scorsa, una funzione h : R! R; h = h(x; y)

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Classi: 4A inf Serale Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Serale Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Serale Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili.

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. 1 I Numeri Complessi L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. x 2 + 1 = 0? log( 10)? log 2 3? 1? Allo scopo di

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

I NUMERI COMPLESSI Nell insieme dei numeri reali R non è possibile risolvere l'equazione di secondo grado

I NUMERI COMPLESSI Nell insieme dei numeri reali R non è possibile risolvere l'equazione di secondo grado COME NASCONO I NUMERI COMPLESSI Lo spunto per la nascita dei numeri complessi derivò dal tentativo di soluzione di un problema chiaramente impossibile. Dividere 10 in due parti il cui prodotto dia 40.

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Introduzione ai numeri complessi Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Definizione (Campo complesso C. Prima definizione.) Il campo complesso C è costituito da tutte le espressioni

Dettagli

APPLICAZIONI di MATEMATICA A.A

APPLICAZIONI di MATEMATICA A.A APPLICAIONI di MATEMATICA A.A. 05-06 Traccia delle lezioni del 8 settembre e ottobre 05 October 3, 05 Curva regolare in C Sia [a; b] un intervallo limitato e chiuso della retta reale. Una curva regolare

Dettagli

29. Numeri complessi

29. Numeri complessi ANALISI Argomenti della Lezione 9. Numeri complessi 11 gennaio 01 9.1. L insieme C. L insieme C dei numeri complessi é l insieme delle coppie ordinate di numeri reali C = R R La tradizione vuole che la

Dettagli

Convergenza per funzioni tra spazi metrici. Funzioni uniformemente continue e Lipschitz continue. Esempi. somma e prodotto, il campo C dei numeri

Convergenza per funzioni tra spazi metrici. Funzioni uniformemente continue e Lipschitz continue. Esempi. somma e prodotto, il campo C dei numeri Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Fondamenti assiomatici del sistema di numeri L unita immaginaria. Convergenza per funzioni

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

CORSO di MATEMATICA del CONTINUO per Informatica Musicale, a.a. 2017/18 GUIDA ALLE PROVE ORALI ( 1 )

CORSO di MATEMATICA del CONTINUO per Informatica Musicale, a.a. 2017/18 GUIDA ALLE PROVE ORALI ( 1 ) CORSO di MATEMATICA del CONTINUO per Informatica Musicale, a.a. 2017/18 GUIDA ALLE PROVE ORALI ( 1 ) All esame orale si richiede la conoscenza di buona parte delle definizioni e degli enunciati di proposizioni

Dettagli

Classe III Aritmetica e Algebra Dati e previsioni Geometria Geometria

Classe III Aritmetica e Algebra Dati e previsioni Geometria Geometria Classe III U. D. 1 Equazioni e disequazioni (ripasso) Aritmetica e Algebra Equazioni algebriche numeriche con δ 2. Disequazioni algebriche numeriche con δ 2. Sistemi di equazioni e/o disequazioni algebriche

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

CLASSE 1B INSIEMI NUMERICI:

CLASSE 1B INSIEMI NUMERICI: IIS Via Silvestri 301 -Roma Plesso Volta. Indirizzo Elettronica ed Elettrotecnica Programma svolto di Matematica a.s. 2018/2019 Prof.ssa Claudia Dennetta CLASSE 1B INSIEMI NUMERICI: Numeri naturali: Le

Dettagli

CLASSI: TerzeMateria: MATEMATICA e COMPLEMENTIOre settimanali previste: 4

CLASSI: TerzeMateria: MATEMATICA e COMPLEMENTIOre settimanali previste: 4 CLASSI: TerzeMateria: MATEMATICA e COMPLEMENTIOre settimanali previste: 4 modulo Titolo Modulo Titolo unità didattiche Ore previste Periodo Competenze Modulo 1 RACCORDO CON IL BIENNIO EQUAZIONI (SISTEMI)

Dettagli

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

Matematica ed Elementi di Statistica. Regole di calcolo

Matematica ed Elementi di Statistica. Regole di calcolo a.a. 2011/12 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica Regole di calcolo Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016

Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Le funzioni goniometriche La misura degli angoli Gli angoli e la loro ampiezza La misura in gradi La misura i radianti Dai

Dettagli

APPLICAZIONI di MATEMATICA A.A

APPLICAZIONI di MATEMATICA A.A APPLICAZIONI di MATEMATICA A.A. 2012-2013 Tracce delle lezioni del 17 e 20 settembre 2012 September 20, 2012 1 Richiami sui numeri complessi 1.1 Forma algebrica. Un numero complesso z in forma algebrica

Dettagli

ITI M.FARADAY Programmazione Modulare a.s Matematica

ITI M.FARADAY Programmazione Modulare a.s Matematica CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 Matematica modulo Titolo Modulo Titolo unità didattiche del modulo Ore previste Periodo mensile Competenze MODULO 1 RACCORDO

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

Complemento 10 Numeri complessi

Complemento 10 Numeri complessi Analisi Matematica I CL Fisica, Università Roma Tre AA 2008/09 L. Chierchia Complemento 0 Numeri complessi. Il campo complesso Il campo complesso C è, per definizione, la terna R 2, +,, cioè R 2 equipaggiato

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

Matematica Lezione 4

Matematica Lezione 4 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri

Dettagli

ITI M.FARADAY PROGRAMMAZIONE DIDATTICA a.s CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4.

ITI M.FARADAY PROGRAMMAZIONE DIDATTICA a.s CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4. CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 Matematica MACRO UNITÀ PREREQUISITI TITOLO UNITÀ DI APPRENDIMENTO COMPETENZE PREVISTE PERIODO RACCORDO CON IL BIENNIO U.D.A.1:

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

NUMERI COMPLESSI. I numeri complessi

NUMERI COMPLESSI. I numeri complessi NATURALI INTERI RAZIONALI REALI IRRAZIONALI COMPLESSI NUMERI COMPLESSI Definiione Rappresentaione Forma trig. ed esp. Operaioni Addiione Coniugio Moltiplicaione Potena n-esima Reciproco Diisione Radice

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni

GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni GLI INSIEMI NUMERICI N Z Q R -C 3 2 Ampliamento degli insiemi numerici Chiusura rispetto alle operazioni L insieme N = {0; 1; 2; 3; 4; } dei numeri naturali è chiuso rispetto all addizione e alla moltiplicazione

Dettagli

Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso.

Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso. Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso. Il campo C dei numeri complessi. Fondamenti assiomatici del

Dettagli

Note sui numeri complessi

Note sui numeri complessi Note sui numeri complessi Andrea Damiani 2 marzo 2015 Numero complesso Definiamo, senza ulteriori considerazioni, unità immaginaria la quantità i = 1 Definiamo poi il numero immaginario z = a + i b in

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.2 Funzioni Complesse Una funzione complessa di variabile complessa f : E C, E C è un applicazione ce associa un numero complesso f(z) ad ogni z E, con E sottoinsieme del

Dettagli

IIS A.Moro Dipartimento di Matematica e Fisica

IIS A.Moro Dipartimento di Matematica e Fisica IIS A.Moro Dipartimento di Matematica e Fisica Obiettivi minimi per le classi quarte - Matematica UNITA DIDATTICA CONOSCENZE COMPETENZE ABILITA Coniche e luoghi geometrici Le coniche Le coniche e i luoghi

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html TRASFORMATE DI LAPLACE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

Matematica Assistita 2003/04 Indice alfabetico

Matematica Assistita 2003/04 Indice alfabetico Matematica Assistita 2003/04 Indice alfabetico A Asintotico Asintoti obliqui Asintoti orizzontali Asintoti verticali pag. 4, Teoria4 pag. 11, Teoria4 pag. 7, Teoria3 pag. 7, Teoria3 C C, insieme dei numeri

Dettagli

CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4

CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche del modulo Ore previste Periodo mensile Competenze 1 Raccordo con il biennio

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

CENNI DI TRIGONOMETRIA

CENNI DI TRIGONOMETRIA CENNI DI TRIGONOMETRIA Seno Consideriamo una circonferenza C e fissiamo un sistema di riferimento cartesiano in modo che la circonferenza C sia centrata nell origine degli assi e abbia raggio. Dall origine

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 22 gennaio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 22 gennaio Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del gennaio 6 - Soluzioni compito E Determinare l insieme di definizione e di olomorfia della funzione ( ) f(z)

Dettagli

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono:

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono: LEZIONE 11 11.1. Spazi vettoriali ed esempi. La nozione di spazio vettoriale generalizza quanto visto nelle lezioni precedenti: l insieme k m,n delle matrici m n a coefficienti in k = R, C, l insieme V

Dettagli

1. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo

1. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo Quinto modulo: Funzioni Obiettivi. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo. saper operare con le funzioni esponenziale e logaritmo per risolvere

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2017/18)

Diario del corso di Analisi Matematica 1 (a.a. 2017/18) Diario del corso di Analisi Matematica 1 (a.a. 2017/18) 22 settembre 2017 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 25 settembre

Dettagli

3 ore Integrali di Fresnel Serie bilatere. Sviluppo in serie di Laurent. Teorema di Laurent, sviluppabilità in serie bilatera.

3 ore Integrali di Fresnel Serie bilatere. Sviluppo in serie di Laurent. Teorema di Laurent, sviluppabilità in serie bilatera. Lezioni Svolte Curve (14 ore) Presentazione del corso. Funzioni a valori vettoriali. Definizione di limite e di funzione continua. Curve (arco di curva parametrica). Definizione di curva continua, semplice

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli