I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17"

Transcript

1 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 3 gennaio 7 Cognome: Nome: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare tutti i risultati visti a lezione (compresi quelli di cui non è stata fornita la dimostrazione) Esercizio Ho una moneta A regolare e una moneta B per cui la probabilità di ottenere testa vale 3 Scelgo una moneta a caso, con uguale probabilità, e la lancio ripetutamente (a) Qual è la probabilità p che in un lancio esca testa? E la probabilità p n che in n lanci escano n teste? (b) Se in n lanci escano n teste, qual è la probabilità che la moneta scelta sia A? Che cosa succede nel limite n? Soluzione (a) Introduciamo gli eventi A := scelgo la moneta A e T i := esce testa all i-esimo lancio Si ha P(A) =, P(T i A c ) = 3, P(T i A) =, dunque la probabilità che in un lancio esca una testa vale p = P(T i A)P(A) + P(T i A c )P(A c ) = ( 3 + ) = 5 8 Introduciamo ora l evento B n := in n lanci escono n teste Per costruzione, gli eventi (T i ) i N sono indipendenti rispetto alle probabilità condizionali P( A) e P( A c ) Dato che B n = T T T n, si ottiene da cui P(B n A) = P(T A) n = n, P(B n A c ) = P(T A c ) n = p n = P(B n ) = P(B n A)P(A) + P(B n A c )P(A c ) = (b) Per la formula di Bayes P(A B n ) = P(B n A)P(A) P(B n ) Si noti che P(A B n ) ( 3) n per n = n + ( 3 n ) n = ( n + + ( ) 3 n ( ) 3 n, ( ) 3 n )

2 Esercizio Siano X U(, ) e Y Geo(p) variabili aleatorie indipendenti Sia Z := Y X (a) Si dica se sono ben definite e, nel caso, si determinino E[Z], Var[Z], Cov[Z, Y ] (b) Si fissi n N Qual è la distribuzione della variabile aleatoria W n := n X? (c) Dato m N, si calcoli la funzione di ripartizione F Z (z) per ogni z [m, m] [Sugg Si considerino gli eventi {Y < m}, {Y = m}, {Y > m}] (d) Si mostri che P(Z = z) = per ogni z Soluzione (a) È noto che X, Y L, dunque anche Z L, quindi valore medio, varianza e covarianza sono ben definiti È noto che E[X] =, Var[X] =, E[Y ] = p, Var[Y ] = p p, quindi per linearità E[Z] = E[Y ] E[X] = p = p p ; per proprietà della varianza della somma di va indipendenti (essendo Cov[X, Y ] = ) Var[Z] = Var[Y ] + Var[X] = p p + = p p + p ; per la bilinearità della covarianza Cov[Z, Y ] = Cov[Y, Y ] Cov[X, Y ] = Var[Y ] = p p (b) Dato che X (, ), si ha W n (n, n), pertanto F Wn (w) = se w n mentre F Wn (w) = se w n Nel regime interessante n < w < n si ha F Wn (w) = P(W n w) = P(X n w) = (n w) = w (n ), dato che P(X x) = x per < x < In definitiva se w n F Wn (w) = w (n ) se n < w < n se w n È facile riconoscere la funzione di ripartizione di una va W n U(n, n) In alternativa, essendo F Wn di classe C a tratti, W n è assolutamente continua con densità f Wn (w) = F W n (w) = (n,n) (w), da cui W n U(n, n) (c) Per la formula di disintegrazione, se m z < m, F Z (z) = P(Z z) = P(Z z, Y < m) + P(Z z, Y = m) + P(Z z, Y > m) Se Y < m, ossia Y m, allora anche Z m, pertanto automaticamente Z z, quindi P(Z z, Y < m) = P(Y < m) = P(Y m ) Viceversa, se Y > m, ossia Y m +, allora Z m, pertanto non si può avere Z z, quindi P(Z z, Y > m) = In definitiva F Z (z) = P(Y m ) + P(Z z, Y = m) = P(Y > m ) + P(m X z, Y = m) = ( p) m + P(W m z)p(y = m) = ( p) m + (z (m ))p( p) m

3 3 (d) Dal punto precedente si può notare che la funzione F Z è continua in ogni punto z (infatti F Z (z) = per z < e F Z (m ) = F Z (m) per m N) Pertanto P(Z = z) = F Z (z) F Z (z ) = (In effetti, la funzione F Z è C a tratti, dunque la va Z è assolutamente continua, con densità f Z (z) = P(Y = m) = p( p) m se m z m) In alternativa, in modo più diretto, disintegrando rispetto ai valori assunti da Y, si ha P(Z = z) = n N P(Z = z, Y = n) = n N P(n X = z, Y = n) = n N P(X = n z)p(y = n) =, dove l ultima uguaglianza segue dal fatto che P(X = x) = per ogni x, essendo X assolutamente continua

4 Esercizio 3 Siano X, Y variabili aleatorie reali con densità congiunta f (X,Y ) (x, y) = se (x, y) D D(x, y) =, altrimenti avendo posto (a) Si calcolino le densità marginali di X e Y D := {(x, y) : < x <, < y < x } (b) Le variabili aleatorie X e Y sono indipendenti? (c) Si definisca la variabile aleatoria Z := XY e si dica per quali p (, ) si ha Z L p (d) Si calcoli per ogni t, z [, ] la probabilità P(X t, Z z) Le variabili aleatorie X e Z hanno la stessa legge? Sono indipendenti? Soluzione 3 (a) Si noti che f X (x) = se x (, ), perché in tal caso f (X,Y ) (x, y) = per ogni y Per x (, ) x f X (x) = f (X,Y ) (x, y) dy = dy = x Analogamente, f Y (y) = se y (, ) Conviene considerare separatamente i regime y (, ) e y (, ], dal momento che Dunque per y > D = { < y, < x < } { < y <, x < y } f Y (y) = mentre per < y f Y (y) = f (X,Y ) (x, y) dx = f (X,Y ) (x, y) dx = y dx = y, dx = (b) Le variabili aleatorie X e Y non sono indipendenti perché la densità congiunta f (X,Y ) (x, y) si annulla sull aperto { < x <, y > x } mentre il prodotto delle densità marginali f X (x)f Y (y) è strettamente positivo su tale aperto, dunque non si può avere f (X,Y ) (x, y) = f X (x)f Y (y) per Leb-qo (x, y) (c) Si noti che P((X, Y ) D) =, perché la densità f (X,Y ) (x, y) si annulla al di fuori di D Dunque < X < e < Y < / X qc, da cui segue che < XY <, ossia < Z < Ciò mostra che Z è limitata, dunque Z L p per ogni p (, ) In alternativa, basta calcolare E[ Z p ] = E[X p Y p ] = x p y p f (X,Y ) (x, y) dx dy = = x p dx = (p + )x p+ (p + ) ( x p x ) y p dy dx x dx = p + <

5 5 (d) Si noti che {X t, Z z} = {X t, XY z} = {(X, Y ) A} dove z A = {(x, y) : x t, y } x Di conseguenza, per t, z [, ], P(X t, Z z) = f (X,Y ) (x, y) dx dy = = A {<x t, <y z x } = z x dx dy = A D t dx dy ( z x ) t dy dx = z x dx Ponendo t = si ottiene P(Z z) = z per z Dunque Z è assolutamente continua con densità f Z (z) = F Z (z) = z (,)(z), la stessa densità di X Abbiamo mostrato che P(X A, Z B) = P(X A)P(Z B) per ogni semiretta A = (, t] e B = (, z] Dato che le semirette sono una base dei boreliani, segue che X e Z sono indipendenti

6 6 Esercizio Sia X, X, una successione di variabili aleatorie iid con leggi Exp(λ) Definiamo la successione Y, Y, ponendo Y i := X i Si osservi che le variabili aleatorie Y, Y, sono indipendenti e identicamente distribuite (perché?) (a) Si determini la legge di Y, mostrando che è assolutamente continua (b) Per quali p (, ) si ha Y L p? (c) Definiamo per n Λ n := min{y,, Y n }, W n := (log n) Λ n Si mostri che W n converge in distribuzione e si identifichi il limite Soluzione Le variabili aleatorie Y i sono indipendenti per conservazione dell indipendenza (funzioni di va indipendenti) e identicamente distribuite per conservazione della legge (la stessa funzione applicata a va identicamente distribuite) (a) Chiaramente F Y (y) = se y, perché Y > qc Per y > F Y (y) = P(Y y) = P(X /y) = e λ y, perché P(X x) = e λx se X Exp(λ) e x Dato che e λ y per y, la funzione è C a tratti, dunque la va Y è assolutamente continua con densità F Y (b) Usando la densità ricavata λ f Y (y) = F Y (y) = λ e y y (, )(y) E[ Y p ] = E[Y p ] = y p f Y (y) dy = λ λ e y dy y p La funzione integranda è continua, dunque integrabile (perché misurabile e limitata) in ogni intervallo compatto [a, b] (, ) esta da studiare la finitezza dell integrale in un intorno di zero o infinito Per y non ci sono problemi di integrabilità, grazie all esponenziale: la funzione integranda ha limite zero per y, quindi è limitata (dunque integrabile) Per y si ha e λ y λ, dunque l integranda è asintotica a, quindi è integrabile se e solo y p se p >, ossia p < In definitiva, Y L p se e solo se p < Le stesse conclusioni si possono ottenere a partire dalla legge di X, in quanto E[Y p ] = E [ X p ] = x p λ e λx dx, che è finito se e solo se p < (questa volta i possibili problemi sono solo per x ) (c) Essendo Λ n > qc, si ha F Λn (z) = per z, mentre per z > F Λn (z) = P(Λ n > z) = P(Y > z,, Y n > z) = P(Y > z) n = ( F Y (z)) n = ( e λ z ) n Di conseguenza si ha F Wn (w) = per w, mentre per w > F Wn (w) = P(W n w) = P(Λ n w log n ) = F Λ n ( w log n ) = ( e λ w log n) ( n = ) n n λ w

7 7 Per valutare il limite di questa espressione, conviene ricordare che log( + x) = x( + o()) per x Posto per brevità a := λ w, possiamo scrivere log [( n ) n ] a = n log ( n ) ( a = n n ) a ( + o()) se a < = n a ( + o()) se a = n se a > Di conseguenza, per ogni w, lim F e se w > λ se w > λ limn log[( W n n (w) = e n λ/w )n ] = G(w) := e se w = λ = e e se w = λ se w < λ se w < λ La funzione G(w) non è una funzione di ripartizione, perché non è continua da destra nel punto w = λ Tuttavia, modificando il valore della funzione in tale punto, ossia ponendo { se w λ H(w) := se w < λ, si ottiene una funzione di ripartizione, più precisamente la funzione di ripartizione di una va costante W = λ qc Abbiamo dunque mostrato che lim n F W n (w) = H(w) = F W (w) w λ Dato che w = λ è l unico punto di discontinuità della funzione di ripartizione H = F W, abbiamo mostrato che W n converge in distribuzione verso la costante W = λ

8 8 Esercizio 5 È facoltativo giustificare il seguente integrale: x tx e t : e dx = e t ( ) π Diremo che una variabile aleatoria reale X ha distribuzione log-normale di parametro β, e scriveremo X LN(β), se dove d = significa ha la stessa distribuzione di (a) Data X LN(β), si mostri che E[X] = X = d β βz e, con Z N(, ), Siano X, X,, X n variabili aleatorie indipendenti log-normali di parametro β (b) Si mostri che la seguente variabile aleatoria T n := X X X n ha distribuzione log-normale, determinandone il parametro Si osservi che E[T n ] = D ora in avanti poniamo β = (c) Si mostri che lim P(T n > e n ) = n (d) Si mostri che T n in probabilità Si dica se T n converge in L Soluzione 5 Per calcolare l integrale basta completare il quadrato scrivendo tx x = t (x t) Oppure, basta dividere ambo i membri per e t, ottenendo x tx e e (x t) e dx = dx =, π π e t dove l ultima uguaglianza segue dal fatto che l integranda è la densità di una N(t, ) (a) Usando l integrale ( ) con t = β β βz E[X] = E[e ] = e β e x βx e π dx = e β e β = (b) Siano Z,, Z n va iid N(, ) Allora X,, X n hanno la stessa legge congiunta rispettivamente di e βz β β βzn,, e Segue che T n d = e βz β e βz β e βz n β = e β(z ++Z n) n β d Dato che Z + + Z n N(, n), possiamo scrivere Z + + Z n = nz con Z N(, ), pertanto d T n = e (β n)z (β n), ossia T n LN(β n) Per il punto precedente, si ha E[T n ] = Questo valore si può anche calcolare direttamente, usando l indipendenza delle va X i : E[T n ] = E[X ]E[X ] E[X n ] = d (c) Usando la rappresentazione T n = e (β n)z (β n) = e nz n, si ha P(T n > e n ) = P(e nz n > e n ) = P( nz n > n) = P(Z > n ) n

9 9 (d) Per ogni ε > fissato, si ha ε > e n per n sufficientemente grande, da cui P( T n > ε) = P(T n > ε) P(T n > e n ) n, dunque T n in probabilità Se T n convergesse in L, si dovrebbe avere T n in L, in particolare E[T n ] E[] =, ma così non è, dato che E[T n ] = per ogni n N; dunque T n non ha limite in L

10 Esercizio 6 Sia X = (X n ) n una catena di Markov sull insieme E = {,, 3,, 5} con il seguente grafo di transizione: Indichiamo come al solito P i ( ) := P( X = i) (a) Si scriva la matrice di transizione, si classifichino gli stati (transitori, ricorrenti positivi, ricorrenti nulli) e se ne determini il periodo (b) Partendo dallo stato, qual è la probabilità di raggiungere prima o poi lo stato 3? (c) (*) Quanto valgono lim n P (X n = 3) e lim n P (X n = 5)? Soluzione 6 (a) Si ha 3 3 p = Chiaramente {3} e {5} sono classi di comunicazione chiuse e finite, dunque ricorrenti positive, mentre {,, } è una classe di comunicazione (infatti ) non chiusa (in quanto 3), quindi transitoria Gli stati 3 e 5 hanno periodo, in quanto p 33 = p 33 > e p 55 = p 55 > Anche gli stati,, hanno periodo, in quanto p = p > (gli stati di una classe di comunicazione hanno lo stesso periodo) (b) Sia σ = σ {3} := min{n : X n = 3} Le probabilià di assorbimento h i = h {3} i := P i (σ < ) soddisfano il sistema h 3 = h 5 = h i = j E p ijh j se i =,, Dunque h = 3 h + 3 h h = h + h + h = h + h La seconda relazine dà 3 h = h + ossia h = 3 h + 3 Sostituendo nelle altre relazioni { 7 9 h = h si ha { h = 9 h h h = h + 3 h + 6 h = 7 h + 6

11 Sostituendo la seconda relazione nella prima si ottiene infine 7 9 h = h h = h = 9 7 (c) Per il punto precedente si ha lim n P (X n = 3) = 7 Infatti gli eventi A n := {X n = 3} sono crescenti, ossia A n A n+ per ogni n N (questo perché, una volta raggiunto lo stato 3, non lo si lascia più), e vale che n N A n = {σ {3} < }, quindi per continuità dal basso della probabilità h = P (σ {3} < ) = lim n P (A n ) = lim n P (X n = 3) D altro canto lim n P (X n = i) = per i =,,, perché tali stati sono transitori Dato che 5 i= P (X n = i) =, segue che lim n P (X n = 5) = 3 7

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 7 gennaio

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 7 gennaio V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 24/5 Nome: 7 gennaio 26 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 14 luglio

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 14 luglio III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 14/15 Nome: 14 luglio 15 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 013/14 Nome: 16 luglio 014 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19 III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 8/9 Martedì luglio 9 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8 Calcolo delle Probabilità 07/8 Foglio di esercizi 8 Catene di Markov e convergenze Si consiglia di svolgere gli esercizi n 9,,,, 5 Catene di Markov Esercizio (Baldi, Esempio 5) Si consideri il grafo costituito

Dettagli

II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 20 febbraio

II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 20 febbraio II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 3/4 Nome: febbraio 4 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica /3 Nome: 3 gennaio 3 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 202/ Nome: 8 ottobre 20 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre

III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre 2015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 014/15 Nome: 3 Giugno 015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. 2012/ Giugno 2013

I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. 2012/ Giugno 2013 I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. / 9 Giugno Recupero I esonero o prova scritta di Probabilità da 5 cfu o di Probabilità e Statistica da cfu: esercizio ; esercizio

Dettagli

0 se y c 1 (y)) se c < y < d. 1 se y d

0 se y c 1 (y)) se c < y < d. 1 se y d Capitolo. Parte IX Exercise.. Sia X una variabile aleatoria reale assolutamente continua e sia (a,b) un intervallo aperto (limitato o illimitato) di R, tale che P(X (a,b)) =. Sia ϕ : (a,b) R una funzione

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

CP210 Introduzione alla Probabilità: Esonero 2

CP210 Introduzione alla Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 218-19, II semestre 4 giugno, 219 CP21 Introduzione alla Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 6 febbraio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 6 febbraio I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 03/4 Nome: 6 febbraio 04 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

CP410: Esame 2, 3 febbraio 2015

CP410: Esame 2, 3 febbraio 2015 Dipartimento di Matematica, Roma Tre Pietro Caputo 2014-15, I semestre 3 febbraio, 2015 CP410: Esame 2, 3 febbraio 2015 Cognome Nome Matricola Firma 1. Sia (Ω, F, P) lo spazio di probabilità definito da

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 P.Baldi appello, 7 giugno 200 Corso di Laurea in Matematica Esercizio Siano X, Y v.a. indipendenti di legge Ŵ(2, λ). Calcolare densità e la media

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 PBaldi appello, 23 giugno 29 Corso di Laurea in Matematica Esercizio Per α 2 consideriamo la catena di Markov su {, 2, 3} associata alla matrice

Dettagli

Studente: Matricola: Soluzione. V usando la disuguaglianza di Chebyschev, per n sucientemente grande segue,

Studente: Matricola: Soluzione. V usando la disuguaglianza di Chebyschev, per n sucientemente grande segue, Es Es 2 Es 3 Es 4 Tot Secondo appello luglio Calcolo delle probabilità 2 luglio 29 Studente: Matricola: Vero o falso Esercizio ( pti). Si dica, motivando la propria risposta, se le seguenti aermazioni

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Variabili aleatorie - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2013 Variabili aleatorie Un numero aleatorio è un esempio di variabile aleatoria.

Dettagli

con distribuzione gaussiana standard e si ponga

con distribuzione gaussiana standard e si ponga Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 6/7 Prova di Esonero Maggio 7 Testi e soluzioni degli esercizi proposti Siano Z, Z, Z variabili aleatorie indipendenti e

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 29-2, II semestre 25 maggio, 2 CP Probabilità: Esonero 2 Testo e soluzione . (7 pt) Siano T, T 2 variabili esponenziali indipendenti, di parametri λ =

Dettagli

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot Es Es 2 Es 3 Es 4 Tot Appello febbraio Calcolo delle probabilità 5 febbraio 208 Studente: Matricola: Vero o falso Esercizio (0 pti). Si dica, motivando la propria risposta, se le seguenti affermazioni

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

Esame di Calcolo delle Probabilità del 12 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 12 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 2 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. 3 Es. 4 Somma Voto parziale Prima

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 25 febbraio 2013 Matricola: ESERCIZIO 1. Si mostri la seguente formula di disintegrazione per la probabilità condizionata:

Dettagli

CP210 Introduzione alla Probabilità: Esame 2

CP210 Introduzione alla Probabilità: Esame 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, II semestre 9 luglio, 2019 CP210 Introduzione alla Probabilità: Esame 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

Esercizi: fascicolo 4

Esercizi: fascicolo 4 Esercizi: fascicolo 4 Esercizio 1 Dimostrare le seguenti proprietà (1), (2) e (3): (1) X 1 = 0 X 0; (2) X L 1 (Ω, P ), λ R λx 1 = λ X 1 ; (3) X, Y L 1 (Ω, P ) X + Y 1 X 1 + Y 1. Esercizio 2 Si estraggono

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità (docenti G. Nappo, F. Spizzichino prova scritta giugno 5 (tempo a disposizione: ore La prova scritta consiste nello svolgimento

Dettagli

(a) Qual è la probabilità che un neonato sopravviva al primo anno?

(a) Qual è la probabilità che un neonato sopravviva al primo anno? II Appello di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 2 luglio 2009 Matricola: ESERCIZIO. Per una certa specie africana di uccelli, i neonati hanno indipendentemente l uno dal l altro

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

Traccia della soluzione degli esercizi del Capitolo 4

Traccia della soluzione degli esercizi del Capitolo 4 Traccia della soluzione degli esercizi del Capitolo 4 Esercizio 6 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π ), cioè f X (x) = π ( π, π ) (x). Posto Y = cos(x), trovare la distribuzione

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 3

Esercizi di Calcolo delle Probabilità Foglio 3 Esercizi di Calcolo delle Probabilità Foglio David Barbato Esercizio. (6-ese- s) Sia (X, Y ) un vettore aleatorio con densità: { αy (x, y) D f (X,Y ) (x, y) (x, y) / D Dove D {(x, y) R : x

Dettagli

CP110 Probabilità: Esame 4 luglio Testo e soluzione

CP110 Probabilità: Esame 4 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 4 luglio, 2012 CP110 Probabilità: Esame 4 luglio 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline numerate da 1

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

CP110 Probabilità: Esonero 2

CP110 Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 22-3, II semestre 23 maggio, 23 CP Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una penna

Dettagli

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 ESECIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 1. Una σ algebra è chiusa rispetto a intersezioni finite e numerabili, e rispetto a differenze e differenze simmetriche. 2. Una σ algebra è anche un algebra,

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Esercitazione

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Esercitazione Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (55AA) A.A. 28/9 - Esercitazione 28--9 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 4 luglio 26 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di mercoledì 22 Settembre 24 (tempo a disposizione: 2 ore e 4 minuti. consegna compiti e inizio

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie.

Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie. Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie. 9 e 11 Dicembre 2008 Richiami di teoria Come si calcolano le densità marginali Esercizi Una v.a. n-dimensionale (o vettore aleatorio

Dettagli

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

CP410: Esonero 1, 31 ottobre 2013

CP410: Esonero 1, 31 ottobre 2013 Dipartimento di Matematica, Roma Tre Pietro Caputo 2013-14, I semestre 31 ottobre, 2013 CP410: Esonero 1, 31 ottobre 2013 Cognome Nome Matricola Firma 1. Fare un esempio di successione di variabili aleatorie

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica 69AA) AA 06/7 - Prova del 07-04-07 La durata della prova è di tre ore Le risposte devono essere adeguatamente giustificate Problema

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019 Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Costruire, se esiste, un esempio con le seguenti proprietà 1. {F n }

Dettagli

Probabilità 1, laurea triennale in Matematica II prova di valutazione in itinere a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova di valutazione in itinere a.a. 2008/09 robabilità, laurea triennale in Matematica II prova di valutazione in itinere a.a. 008/09. Francesco lancia ripetutamente due dadi non truccati: sia T il numero di lanci necessario ad ottenere per la prima

Dettagli

Istituzioni di Probabilità - A.A

Istituzioni di Probabilità - A.A Istituzioni di Probabilità - A.A. 25-26 Prima prova di verifica intermedia - 29 aprile 25 Esercizio. Sia (X n ) n una successione di v.a. i.i.d. centrate con < X P-q.c., sia λ R ed F una v.a. integrabile

Dettagli

1 Richiami di algebra lineare

1 Richiami di algebra lineare 1 Richiami di algebra lineare Definizione 11 (matrici e vettori) Una matrice A e un insieme di numeri A hk, h = 1,, m, k = 1,, n, ordinati in base alla coppia di indici h e k nel modo seguente A 1 A n

Dettagli

Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 8/0/01 Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio 1. Sia X una v.a. aleatoria assolutamente continua con densità f X data da { 0 x < 0 f X

Dettagli

CP410: Esonero 1, 7 novembre, 2018

CP410: Esonero 1, 7 novembre, 2018 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, I semestre 7 novembre, 2018 CP410: Esonero 1, 7 novembre, 2018 Cognome Nome Matricola Firma 1. Sia X una variabile aleatoria su uno spazio di

Dettagli

Nome e cognome:... Matricola...

Nome e cognome:... Matricola... Nome e cognome:................................................... Matricola................. CALCOLO DELLE PROBABILITA - 0/07/008 CdS in Economia e Finanza - Cds in Informatica - Cds SIGAD Motivare dettagliatamente

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Variabili aleatorie Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 28 giugno 2012 Matricola: Nome:

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 28 giugno 2012 Matricola: Nome: Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 8 giugno 01 Matricola: ESERCIZIO 1. Sia (A n n una successione di eventi indipendenti, tali che P (A n 1 1 n. Sia B := + n=

Dettagli

CP110 Probabilità: Esame 30 gennaio Testo e soluzione

CP110 Probabilità: Esame 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2010-11, II semestre 30 gennaio, 2012 CP110 Probabilità: Esame 30 gennaio 2012 Testo e soluzione 1. (5 pts) Un gioco consiste in n prove ripetute, tali

Dettagli

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012 Fisciano, 10/1/2012 Esercizio 1 Un esperimento consiste nel generare a caso un vettore di interi (x 1, x 2, x 3, x 4 ), dove x i {1, 2, 3, 4, 5, 6} i. (i) Si individui lo spazio campionario, determinandone

Dettagli

! X (92) X n. P ( X n X ) =0 (94)

! X (92) X n. P ( X n X ) =0 (94) Convergenza in robabilità Definizione 2 Data una successione X 1,X 2,...,X n,... di numeri aleatori e un numero aleatorio X diremo che X n tende in probabilità a X escriveremo X n! X (92) se fissati comunque

Dettagli

Variabili aleatorie n-dim

Variabili aleatorie n-dim Sessione Live #6 Settimana dal 6 maggio al giugno 003 Variabili aleatorie n-dim Funzioni di ripartizione e di densità (F.D.R. e f.d.d.) congiunte e marginali, valori medi e momenti misti, funzione generatrice

Dettagli

ESERCIZI HLAFO ALFIE MIMUN

ESERCIZI HLAFO ALFIE MIMUN ESERCIZI HLAFO ALFIE MIMUN December, 27. Testo degli esercizi Risolvere i seguenti problemi: () Siano X, X 2, X 3 variabili aleatorie i.i.d. bernulliane di media.5 e siano Y, Y 2, Y 3, Y 4 variabili aleatorie

Dettagli

Calcolo delle Probabilità: esercitazione 11

Calcolo delle Probabilità: esercitazione 11 Argomento: Distribuzioni bivariate discrete (pag. 44 e seguenti) e covarianza (pag 45 e seguenti). Distribuzione bivariate assolutamente continue (pag. 48 e seguenti del libro di testo). La v.c. trinomiale

Dettagli

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte Cap.1: Probabilità 1. Esperimento aleatorio (definizione informale): è un esperimento che a priori può avere diversi esiti possibili

Dettagli

Esercizi - Fascicolo V

Esercizi - Fascicolo V Esercizi - Fascicolo V Esercizio Sia X una v.c. uniformenente distribuita nell intervallo ( π 2, π 2 ), cioè f X (x) = π ( π 2, π 2 ) (x). Posto Y = cos(x), trovare la distribuzione di Y. Esercizio 2 Si

Dettagli

La media campionaria. MEDIA CAMPIONARIA Date n v.a. X 1,..., X n indipendenti e identicamente distribuite (in breve i.i.d.), la v.a.

La media campionaria. MEDIA CAMPIONARIA Date n v.a. X 1,..., X n indipendenti e identicamente distribuite (in breve i.i.d.), la v.a. La media MEDIA CAMPIONARIA Date n v.a. X 1,..., X n indipendenti e identicamente distribuite (in breve i.i.d.), la v.a. X n = 1 n è detta media. n X i, i=1 In altre parole, se le X 1,...,X n sono il risultato

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 17-18, I semestre Settembre 18 Scritto del - 9-18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità Esercitazione del 19/0/013 Istituzioni di Calcolo delle Probabilità David Barbato Variabili aleatorie esponenziali. Minimo di v.a. esponenziali indipendenti. Ricordiamo innanzitutto che due variabili aleatorie

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. CORSO DI CALCOLO DELLE PROBABILITÀ o modulo - PROVA d esame del 9/02/200 - Laurea Quadriennale in Matematica - Prof. Nappo Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14 Esercitazione del 0/06/05 Probabilità e Statistica Foglio David Barbato Esercizio. Ci sono 0 monetine di cui 5 con due teste, con due croci e regolari una moneta regolare ha una faccia testa e una faccia

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 23 maggio, 213 CP11 Probabilità: Esonero 2 Testo e soluzione 1. (7 punti) Una scatola contiene 1 palline, 5 bianche e 5 nere. Ne vengono

Dettagli

Tutorato V Probabilità e Statistica a.a. 2015/2016

Tutorato V Probabilità e Statistica a.a. 2015/2016 Tutorato V Probabilità e Statistica a.a. 05/06 Argomenti: momenti; varianza e covarianza; interpretazione della media condizionale; retta di regressione. Esercizio. Sia (Ω, F, P) uno spazio di probabilià.

Dettagli

X n = αx n 1 + Y n. Si dimostri che. Usando la precedente relazione si dimostri che. e che. e si determini il limite di media e varianza quando n +.

X n = αx n 1 + Y n. Si dimostri che. Usando la precedente relazione si dimostri che. e che. e si determini il limite di media e varianza quando n +. Problema 1. Siano X, Y 1, Y,... variabili aleatorie indipendenti. Si supponga che X abbia media m e varianza σ e che le Y i abbiano distribuzione gaussiana con media µ e varianza σ. Dato α in (, 1, si

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

Esercitazione del 21/10/2011 Calcolo delle probabilità

Esercitazione del 21/10/2011 Calcolo delle probabilità Esercitazione del /0/0 Calcolo delle probabilità Funzione di ripartizione Sia F X una funzione da R in R. consideriamo le seguenti condizioni: F X è non decrescente ( ) x F X (x) x F X (x) 0 F X è continua

Dettagli

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10 Anno accademico 2009/10 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

CP110 Probabilità: esame del 20 luglio 2017

CP110 Probabilità: esame del 20 luglio 2017 Dipartimento di Matematica, Roma Tre Pietro Caputo 2016-17, II semestre 20 luglio, 2017 CP110 Probabilità: esame del 20 luglio 2017 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si puo usare durante

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07 Anno accademico 2006/07 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

Esercizi - Fascicolo III

Esercizi - Fascicolo III Esercizi - Fascicolo III Esercizio 1 In una procedura di controllo di produzione, n processori prodotti da un processo industriale vengono sottoposti a controllo. Si assuma che ogni pezzo, indipendentemente

Dettagli

Esercizi - Fascicolo IV

Esercizi - Fascicolo IV Esercizi - Fascicolo IV Esercizio Una compagnia di assicurazioni emette una polizza che pagherà n euro se l evento E si verificherà entro un anno. Se la compagnia stima che l evento E si verificherà entro

Dettagli

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del dicembre 27 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. Es. 4 Somma Voto finale Attenzione:

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

1 Serie temporali. 1.1 Processi MA

1 Serie temporali. 1.1 Processi MA 1 Serie temporali Un processo stocastico 1 {X t, t T }, dove T = N o T = Z, si dice stazionario se (X 1,..., X n ) e (X k+1,...,x k+n ) hanno la stessa distribuzione per ogni n 1 e per ogni k T. Un processo

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

CALCOLO DELLE PROBABILITÀ 2 (Laurea Specialistica) 28 giugno Motivare dettagliatamente le risposte su fogli allegati

CALCOLO DELLE PROBABILITÀ 2 (Laurea Specialistica) 28 giugno Motivare dettagliatamente le risposte su fogli allegati CALCOLO DELLE PROBABILITÀ 2 (Laurea Specialistica) 28 giugno 2006 Motivare dettagliatamente le risposte su fogli allegati 1.- Sia X un numero aleatorio a valori { α, 0, α}, con α > 0 e P (X = α) = P (X

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 7/8 - Prova scritta 8-7-3 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

Tutorato VI Probabilità e Statistica a.a. 2015/2016

Tutorato VI Probabilità e Statistica a.a. 2015/2016 Tutorato VI Probabilità e Statistica a.a. 25/26 Argomenti: disuguaglianza di Chebycev e legge dei grandi numeri; v.a. assolutamente continue: densità congiunte e marginali; indipendenza; calcoli con densità.

Dettagli

Teoria delle Probabilità e Applicazioni programma 2004/05

Teoria delle Probabilità e Applicazioni programma 2004/05 Teoria delle Probabilità e Applicazioni programma 2004/05 Capitolo 1: esempio guida Lezioni: 8/3, 9/3 (5h) 1. Come modellizzare l esperimento infiniti lanci di una moneta equilibrata oppure l esperimento

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016

Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016 Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016 Esercizi possibili di probabilità e statistica Notazioni: U(a, b) è la distribuzione di probabilità uniforma nell intervallo (a,

Dettagli

CP110 Probabilità: Esame del 15 settembre Testo e soluzione

CP110 Probabilità: Esame del 15 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 15 settembre, 2010 CP110 Probabilità: Esame del 15 settembre 2010 Testo e soluzione 1. (6 pts) 10 carte numerate da 1 a 10 vengono

Dettagli