V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 7 gennaio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 7 gennaio"

Transcript

1 V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 24/5 Nome: 7 gennaio 26 Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare tutti i risultati visti a lezione (compresi quelli di cui non è stata fornita la dimostrazione). Esercizio. Marta ha due dadi regolari, un tetraedro (con le facce numerate da a 4) e un cubo (con le facce numerate da a 6). Al primo turno Marta lancia il tetraedro. A ogni turno successivo lancia il tetraedro se al turno precedente è uscito ; altrimenti, se al turno precedente è uscito un numero maggiore di, lancia il cubo. (a) Qual è la probabilità p che esca al primo turno? E quella p 2 che esca al secondo turno? (b) Se esce al secondo turno, qual è la probabilità che sia uscito anche al primo turno? (c) Qual è la probabilità p che esca al terzo turno? Soluzione. (a) Sia A n := esce all n-esimo lancio. Chiaramente p = P(A ) = 4. Dato che P(A 2 A ) = 4 mentre P(A 2 A c ) = 6, per la formula delle probabilità totali pertanto (b) Si ha pertanto p 2 = P(A 2 ) = P(A 2 A )P(A ) + P(A 2 A c )P(A c ) = 4 p + 6 ( p ), p 2 = 4 p + 6 ( p ) = = 6. P(A A 2 ) = P(A )P(A 2 A ) = 4 4 = 6, P(A A 2 ) = P(A A 2 ) P(A 2 ) In alternativa, usando la formula di Bayes, P(A A 2 ) = P(A 2 A )P(A ) P(A 2 ) (c) Essendo P(A A 2 ) = 4 mentre P(A A c 2 ) = 6, si ha = 6 6 = = =. p = P(A ) = P(A A 2 )P(A 2 ) + P(A A c 2)P(A c 2) = 4 p ( p 2), ossia il legame tra p e p 2 è lo stesso che c è tra p 2 e p. Più in generale, p n = 4 p n + 6 ( p n ). Di conseguenza p = 4 p ( p 2) = = 5 92.

2 2 Esercizio 2. In un determinato ospedale, il numero X di bambini che nascono in una settimana ha distribuzione Pois(λ) con λ =. Le nascite in settimane distinte sono indipendenti. (a) Qual è la probabilità che in una settimana nascano 2 o più bambini? (b) Sia A il numero di bambini nati nella prima settimana dell anno e sia B il numero di bambini nati nelle prime due settimane dell anno. Si determini la densità discreta congiunta delle variabili aleatorie A e B. Indichiamo con S il numero di bambini nati in un anno (supponiamo esattamente di 52 settimane). (c) Si calcolino E[S] e Var[S]. Quindi, usando l approssimazione normale fornita dal teorema limite centrale, si stimi la probabilità che in un anno nascano più di 7 bambini. Soluzione 2. (a) Dobbiamo calcolare P(X 2) = P(X < 2) e si noti che ( ) λ P(X < 2) = P(X = ) + P(X = ) = e λ! + λ = e λ( + λ ) = 4 e.2 5.! (b) Siano X, X 2 rispettivamente i numeri di bambini nati nella prima e nella seconda settimana. Allora A = X e B = X + X 2. Dobbiamo calcolare P(A = m, B = n) e chiaramente possiamo restringerci ai valori di m, n N tali che m n, altrimenti la probabilià è nulla (essendo A B). Si ha dunque P(A = m, B = n) = P(X = m, X + X 2 = n) = P(X = m, X 2 = n m) = P(X = m)p(x 2 = n m) = e = e 2λ λ n m!(n m)!. λ λm m! e λ λn m (n m)! (c) Siano X, X 2,..., X 52, i numeri di bambini nati nelle settimane dell anno. Da S := X +X X 52 e dal fatto che le X i sono i.i.d. segue che E[S] = 52E[X ] e Var[S] = 52 Var[X ]. Ricordando che media e varianza di una Poisson coincidono col parametro, si ha E[X ] = Var[X ] = λ =, pertanto Var[S] = E[S] = 52 = 676. [Essendo le X i i.i.d. Pois(), segue che S := X + X X 52 ha distribuzione Pois(52 ) = Pois(676) per un risultato mostrato a lezione.] Per il teorema limite centrale la variabile aleatoria Z := S 52E[X ] Var[X ] 52 = S E[S] Var[S] ha distribuzione approssimativamente normale. Pertanto la probabilità richiesta vale ( ) ( S E[S] P(S > 7) = P > = P Z > 24 ) P(Z >.92) Φ(.92). Var[S] Dalla tavola della distribuzione normale si ricava Φ(.92).82, pertanto P(S > 7).82 =.8.

3 Esercizio. Sia (X, Z) un vettore aleatorio in R 2 con densità f (X,Z) (x, z) = (z x) e z {<x<z}. (a) Si determinino le densità marginali di X e Z. (b) Le variabili aleatorie X e Z sono indipendenti? (c) Si mostri che la variabile aleatoria (positiva) W := Z X è in L ma non in L 2. (d) Si determini ϕ : R 2 R tale che T := ϕ(x, Z) sia una variabile aleatoria discreta. Soluzione. (a) La densità marginale di Z soddisfa f Z (z) = se z, mentre per z > z [ ] (z x) f Z (z) = f (X,Z) (x, z) dx = (z x) e z dx = e z 2 x=z = z2 2 2 e z. R Si può riconoscere che Z ha distribuzione Gamma(, ). La densità marginale di X è data da f X (x) = per x, mentre per x >, notando che {<x<z} = (x, ) (z), si ottiene f X (x) = f (X,Z) (x, z) dz = (z x) e z dz e con il cambio di variabile y = z x si ottiene f X (x) = R y e (x+y) dy = e x y e y dy = e x, dove l ultimo integrale è stato riconosciuto come il valore medio di una variabile aleatoria Exp(), o equivalentemente come Γ(2) =! = (in alternativa lo si può calcolare direttamente integrando per parti). Dunque X Exp(). (b) X e Z non sono indipendenti, perché ad esempio P(X (2, )) > e P(Z (, 2) > (infatti X e Z hanno densità strettamente positive su (, )) mentre P(X (2, ), Z (, 2)) = perché X < Z q.c., dal momento che la densità f (X,Z) (x, z) di (X, Z) si annulla per x z. (c) Abbiamo già osservato che X < Z q.c., e chiaramente Z < q.c., pertanto < Z X < q.c. da cui < W < q.c.. Calcoliamo ora E[W ] (che è ben definito, essendo W ): [ ] E[W ] = E = Z X R 2 z x f (X,Z)(x, z) dx dz = R 2 z x (z x) e z {<x<z} dx dz ( z ) = e z dx dz = z e z dz =. Questo mostra che W L. Analogamente [ ] E[W 2 ] = E (Z X) 2 = R 2 (z x) 2 f (X,Z)(x, z) dx dz ( ) = R 2 (z x) 2 (z x) e z {<x<z} dx dz = x z x e z dz dx, e il cambio di variabile y = z x nell integrale interno conduce a ( ) E[W 2 ( ) ] = y e x y dy dx = e x y e y dy dx ( )( ) = y e y dy e x dx = y e y dy = +, perché la funzione y non è integrabile in nessun intorno di y =. Dunque W L2. (d) Basta scegliere ϕ, così che T = è una variabile aleatoria discreta. x x=

4 4 PARTE II (Esercizi 4, 5, 6) Esercizio 4. Sullo spazio di probabilità (Ω, A, P), dove Ω = (, ), A è la σ-algebra dei boreliani e P è la misura di Lebesgue, sono definite le variabili aleatorie (X n ) n N date da { X n (ω) = n n (, n ) (ω) = se ω < n. altrimenti (a) Si calcoli la funzione di ripartizione di X n. Si deduca che che X n in legge e in probabilità. [Sugg. Può essere utile calcolare innanzitutto la densità discreta di X n.] (b) Si calcoli E[ X n p ]. Per quali p (, ) si ha X n in L p? (c) Si mostri che X n q.c., ossia X n (ω) per q.o. ω Ω. (d) (*) Quanto vale P(lim sup n {X n > ε})? Si mostri che per ogni ε (, ) si ha P(X n > ε) =. n N Soluzione 4. (a) La variabile aleatoria X n assume solo i valori n e. Pertanto la sua densità discreta p Xn (x) = P(X n = x) è nulla per x {, n }. Per x = n si ha P(X n = n ) = P(ω < n ) = Leb(, n ) = n, quindi P(X n = ) = P(X n = n ) = n. La funzione di ripartizione F Xn (x) = P(X n x) vale dunque se x < F Xn (x) = n se x < n. se x n Di conseguenza lim F X n n (x) = F (x) = { se x < se x. Essendo F (x) la funzione di ripartizione della variabile aleatoria costante uguale a, la convergenza della funzione di ripartizione implica che X n in legge. Infine, per un risultato visto a lezione, la convergenza in legge verso un limite costante implica (è anzi equivalente a) la convergenza in probabilità allo stesso limite. (b) Si ha E[ X n p ] = x R x p P(X n = x) = p P(X n = ) + (n ) p P(X = n ) = n p n = n p 2 = n 2p 6. Quindi X n in L p, ossia E[ X n p ] = E[ X n p ], se e solo se 2p < ossia p < 2. (c) Per ogni ω Ω = (, ) si ha ω >, pertanto si ha ω n per n grande, o più precisamente per n n (ω) = ω 2. Quindi, per definizione di X n, si ha X n (ω) = per ogni n n (ω), e a maggior ragione lim n X n (ω) =. In definitiva, lim n X n (ω) = per ogni ω Ω. (d) Dato che X n q.c., definitivamente si ha X n ε, quindi si ha X n > ε solo per un numero finito di indici. Questo mostra che l evento lim sup n {X n > ε} = {X n > ε per infiniti n N} ha probabilità nulla, ossia P(lim sup n {X n > ε}) =.

5 5 Dato che X n assume solo i valori n e, per ε (, ) si ha {X n > ε} = {X n = n }, quindi P(X n = n ) = =. n P(X n > ε) = n N n N [Ciò non è in contraddizione con P(lim sup n {X n > ε}) =, perché gli eventi {X n > ε} non sono indipendenti e dunque non è possibile applicare la seconda parte del lemma di Borel-Cantelli.] n N

6 6 Esercizio 5. Siano X, X 2,... variabili aleatorie reali i.i.d. la cui distribuzione è assolutamente continua, con densità f : R [, ) continua e strettamente positiva (f(x) > per ogni x R). Sia g : R [, ) un altra densità continua fissata. Poniamo M := g(x ) f(x ), M n := g(x ) g(x 2 ) f(x ) f(x 2 ) g(x n) f(x n ) (a) Si mostri che E[M ] =. Si deduca che E[M n ] = per ogni n N. D ora in avanti supponiamo che E[ log M ] < e inoltre che f g. per n 2. (b) Applicando opportunamente la legge dei grandi numeri, si mostri che vale la convergenza n log M q.c. n E[ ] log M <. n [Il fatto che E[log M ] < segue dalla disuguaglianza di Jensen (facoltativo: spiegare perché).] (c) Si deduca che M n q.c. n. (d) Si dica se M n converge in probabilità, in legge, in L. Soluzione 5. (a) Applicando la formula di passaggio alla misura immagine E[ψ(X )] = R ψ(x) f(x) dx alla funzione ψ(x) = g(x)/f(x) si ottiene E [ [ ] ] g(x ) g(x) M = E = f(x) dx = g(x) dx =, f(x ) f(x) perché g è una densità. Essendo le variabili aleatorie g(xn) f(x indipendenti e con la stessa distribuzione di g(x ) n) f(x ) = M, si ottiene [ ] [ ] [ ] g(x ) g(x2 ) g(xn ) E[M n ] = E E E = E[M ] n =. f(x ) f(x 2 ) f(x n ) (b) [Si può applicare la disuguaglianza di Jensen perché log x è una funzione concava, pertanto log x è convessa. Se f g, la variabile aleatoria M = g(x ) f(x ) non è q.c. costante, pertanto la disuguaglianza di Jensen è stretta, essendo il logaritmo una funzione strettamente concava.] Le variabili aleatorie Y n := log g(xn) f(x, che sono i.i.d. e in n) L. Applicando la legge forte dei grandi numeri si ottiene dunque n log M n = Y Y n q.c. n E[Y ] = E [ ] log M. n (c) Dato che E [ ] log M <, si ha q.c. lim log M n = lim n E[ ] log M =, n n da cui segue che lim n M n = q.c.. (d) La convergenza q.c. implica quella in probabilità, la quale a sua volta implica quella in legge, pertanto da M n q.c. segue che M n in probabilità e in legge. Non si ha invece convergenza M n in L : in caso contrario si avrebbe la convergenza dei valori medi lim n E[M n ] = E[] =, mentre sappiamo che E[M n ] = per ogni n N.

7 7 Esercizio 6. Fissiamo due parametri N N e q (, 2 ). Una scala ha N + gradini, numerati da (quello più basso) a N (quello più alto). Enrico inizialmente parte dal gradino. A ogni istante lancia una q-moneta (ossia una moneta che dà testa con probabilità fissata q): se esce testa, sale di un gradino, mentre se esce croce, scende di un gradino. Fanno eccezione i gradini estremi: se si trova sul gradino ed esce croce, resta sul gradino (mentre se esce testa sale sul gradino ); viceversa, se si trova sul gradino N ed esce testa, resta sul gradino N (mentre se esce croce scende sul gradino N ). Descriviamo il moto di Enrico con una catena di Markov X = (X n ) n sullo spazio degli stati E = {,,..., N}. (a) Si scriva la matrice di transizione p ij e se ne disegni schematicamente il grafo. Si dica se la catena è irriducibile e/o aperiodica e si classifichino gli stati. (b) Si mostri che λ i = c i è una misura reversibile, per un opportuna scelta di c (, ). (c) Si determini l unica probabilità invariante π i. Per tempi grandi, quanto vale asintoticamente la probabilità che Enrico sia sul gradino più basso? Soluzione 6. (a) Per costruzione p i,i+ = q se i N e p N,N = q; analogamente p i,i = q se i N e p, = q; mentre p i,j = per gli altri valori di i, j. La catena è irriducibile perché 2... N e, viceversa, N N..., quindi i j per ogni i, j E. Essendo irriducibile, ogni stato ha lo stesso periodo. Ma il periodo dello stato è pari a, dato che p, = q >. Pertanto la catena è aperiodica. Essendoci un unica classe di comunicazione finita (e ovviamente chiusa), la catena è ricorrente positiva (e ammette un unica probabilità invariante). (b) Occorre verificare che c i p i,j = c j p j,i per ogni i, j E. Tale relazione è banalmente verificata se i = j, e anche se p i,j = p j,i = (si noti che p i,j = se e solo se p j,i = ). Quindi basta verificarla nel caso in cui j = i +, ossia c i p i,i+ = c i+ p i+,i c i q = c i+ ( q) c = q q. Si noti che c (, ), dal momento che q (, 2 ) per ipotesi. (c) Ricordiamo che la misura λ i = c i, essendo reversibile, è invariante. Inoltre c è un unica misura invariante, a meno di multipli, essendo la catena irriducibile e ricorrente. Quindi l unica probabilità invariante π i si ottiene normalizzando la misura λ i, ossia π i = λ i /Λ, dove Λ := N λ i = i= N i= c i = cn+ c In definitiva π i = λ i Λ = c c N+ ci. Infine, per il teorema di convergenza all equilibrio, la probabilità che Enrico sia sul gradino più basso vale asintoticamente (per tempi grandi) lim P(X n = ) = π = cn+. n c.

8 8 Tavola della distribuzione normale La tabella seguente riporta i valori di Φ(z) := z e 2 x2 2π dx, la funzione di ripartizione della distribuzione normale standard N(, ), per z <.5. Ricordiamo che valori di Φ(z) per z < possono essere ricavati grazie alla formula Φ(z) = Φ( z). z

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 013/14 Nome: 16 luglio 014 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19 III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 8/9 Martedì luglio 9 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 30 gennaio I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica /3 Nome: 3 gennaio 3 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 14 luglio

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 14 luglio III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 14/15 Nome: 14 luglio 15 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 20 febbraio

II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 20 febbraio II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 3/4 Nome: febbraio 4 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8

Calcolo delle Probabilità 2017/18 Foglio di esercizi 8 Calcolo delle Probabilità 07/8 Foglio di esercizi 8 Catene di Markov e convergenze Si consiglia di svolgere gli esercizi n 9,,,, 5 Catene di Markov Esercizio (Baldi, Esempio 5) Si consideri il grafo costituito

Dettagli

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 202/ Nome: 8 ottobre 20 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 3 gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre

III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre 2015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 014/15 Nome: 3 Giugno 015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 6 febbraio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 6 febbraio I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 03/4 Nome: 6 febbraio 04 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

CP410: Esonero 1, 31 ottobre 2013

CP410: Esonero 1, 31 ottobre 2013 Dipartimento di Matematica, Roma Tre Pietro Caputo 2013-14, I semestre 31 ottobre, 2013 CP410: Esonero 1, 31 ottobre 2013 Cognome Nome Matricola Firma 1. Fare un esempio di successione di variabili aleatorie

Dettagli

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 ESECIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 1. Una σ algebra è chiusa rispetto a intersezioni finite e numerabili, e rispetto a differenze e differenze simmetriche. 2. Una σ algebra è anche un algebra,

Dettagli

CP210 Introduzione alla Probabilità: Esame 2

CP210 Introduzione alla Probabilità: Esame 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, II semestre 9 luglio, 2019 CP210 Introduzione alla Probabilità: Esame 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. 2012/ Giugno 2013

I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. 2012/ Giugno 2013 I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. / 9 Giugno Recupero I esonero o prova scritta di Probabilità da 5 cfu o di Probabilità e Statistica da cfu: esercizio ; esercizio

Dettagli

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del dicembre 27 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. Es. 4 Somma Voto finale Attenzione:

Dettagli

(a) Qual è la probabilità che un neonato sopravviva al primo anno?

(a) Qual è la probabilità che un neonato sopravviva al primo anno? II Appello di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 2 luglio 2009 Matricola: ESERCIZIO. Per una certa specie africana di uccelli, i neonati hanno indipendentemente l uno dal l altro

Dettagli

Teoria delle Probabilità e Applicazioni programma 2004/05

Teoria delle Probabilità e Applicazioni programma 2004/05 Teoria delle Probabilità e Applicazioni programma 2004/05 Capitolo 1: esempio guida Lezioni: 8/3, 9/3 (5h) 1. Come modellizzare l esperimento infiniti lanci di una moneta equilibrata oppure l esperimento

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Esercitazione

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Esercitazione Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (55AA) A.A. 28/9 - Esercitazione 28--9 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 25 febbraio 2013 Matricola: ESERCIZIO 1. Si mostri la seguente formula di disintegrazione per la probabilità condizionata:

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 29-2, II semestre 25 maggio, 2 CP Probabilità: Esonero 2 Testo e soluzione . (7 pt) Siano T, T 2 variabili esponenziali indipendenti, di parametri λ =

Dettagli

CP210 Introduzione alla Probabilità: Esonero 2

CP210 Introduzione alla Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 218-19, II semestre 4 giugno, 219 CP21 Introduzione alla Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità M. Pratelli e M. Romito Gli esercizi che seguono sono stati proposti nel corso Probabilità dell Università di Pisa negli a.a. 2012-13 e 2013-14 (M. Romito) e 2014-15

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità (docenti G. Nappo, F. Spizzichino prova scritta giugno 5 (tempo a disposizione: ore La prova scritta consiste nello svolgimento

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 23 maggio, 213 CP11 Probabilità: Esonero 2 Testo e soluzione 1. (7 punti) Una scatola contiene 1 palline, 5 bianche e 5 nere. Ne vengono

Dettagli

Cognome Nome Matricola. Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale

Cognome Nome Matricola. Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Esame di Calcolo delle Probabilità mod. B del 9 settembre 2003 (Corso di Laurea in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

CP410: Esame 2, 3 febbraio 2015

CP410: Esame 2, 3 febbraio 2015 Dipartimento di Matematica, Roma Tre Pietro Caputo 2014-15, I semestre 3 febbraio, 2015 CP410: Esame 2, 3 febbraio 2015 Cognome Nome Matricola Firma 1. Sia (Ω, F, P) lo spazio di probabilità definito da

Dettagli

Studente: Matricola: Soluzione. V usando la disuguaglianza di Chebyschev, per n sucientemente grande segue,

Studente: Matricola: Soluzione. V usando la disuguaglianza di Chebyschev, per n sucientemente grande segue, Es Es 2 Es 3 Es 4 Tot Secondo appello luglio Calcolo delle probabilità 2 luglio 29 Studente: Matricola: Vero o falso Esercizio ( pti). Si dica, motivando la propria risposta, se le seguenti aermazioni

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

CP410: Esonero 1, 7 novembre, 2018

CP410: Esonero 1, 7 novembre, 2018 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, I semestre 7 novembre, 2018 CP410: Esonero 1, 7 novembre, 2018 Cognome Nome Matricola Firma 1. Sia X una variabile aleatoria su uno spazio di

Dettagli

Catene di Markov - Foglio 1

Catene di Markov - Foglio 1 Catene di Markov - Foglio 1 1. Una pedina si muove su un circuito circolare a 4 vertici, numerati da 1 a 4. La pedina si trova inizialmente nel vertice 1. Ad ogni passo un giocatore lancia un dado equilibrato:

Dettagli

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte Cap.1: Probabilità 1. Esperimento aleatorio (definizione informale): è un esperimento che a priori può avere diversi esiti possibili

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

Esame di Calcolo delle Probabilità del 12 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 12 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 2 dicembre 2005 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. 3 Es. 4 Somma Voto parziale Prima

Dettagli

Prima prova in itenere di Istituzioni di Probabilità

Prima prova in itenere di Istituzioni di Probabilità Prima prova in itenere di Istituzioni di Probabilità 14 novembre 2012 Esercizio 1. Un processo di Ornstein-Uhlenbec modificato (OUM) è un processo reale, con R come insieme dei tempi, con traiettorie continue,

Dettagli

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita Laurea Triennale in Matematica Corso di Calcolo delle Probabilita I A.A. 00/00 (Docenti: M. Piccioni, F. Spizzichino) a prova di esonero 6 giugno 00 Risolvere almeno tre dei seguenti esercizi.. Indichiamo

Dettagli

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot Es Es 2 Es 3 Es 4 Tot Appello febbraio Calcolo delle probabilità 5 febbraio 208 Studente: Matricola: Vero o falso Esercizio (0 pti). Si dica, motivando la propria risposta, se le seguenti affermazioni

Dettagli

CP410: Esame 2, 30 gennaio Testo e soluzione

CP410: Esame 2, 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 23-4, I semestre 3 gennaio, 24 CP4: Esame 2, 3 gennaio 24 Testo e soluzione Cognome Nome Matricola Firma . Per ogni n N, sia X n la variabile aleatoria

Dettagli

Esercizi: fascicolo 4

Esercizi: fascicolo 4 Esercizi: fascicolo 4 Esercizio 1 Dimostrare le seguenti proprietà (1), (2) e (3): (1) X 1 = 0 X 0; (2) X L 1 (Ω, P ), λ R λx 1 = λ X 1 ; (3) X, Y L 1 (Ω, P ) X + Y 1 X 1 + Y 1. Esercizio 2 Si estraggono

Dettagli

CP110 Probabilità: Esame 4 giugno Testo e soluzione

CP110 Probabilità: Esame 4 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 202-3, II semestre 4 giugno, 203 CP0 Probabilità: Esame 4 giugno 203 Testo e soluzione . (6 pts) Un urna contiene inizialmente pallina rossa e 0 palline

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

0 se y c 1 (y)) se c < y < d. 1 se y d

0 se y c 1 (y)) se c < y < d. 1 se y d Capitolo. Parte IX Exercise.. Sia X una variabile aleatoria reale assolutamente continua e sia (a,b) un intervallo aperto (limitato o illimitato) di R, tale che P(X (a,b)) =. Sia ϕ : (a,b) R una funzione

Dettagli

PROBABILITÀ I. a.a. 2011/2012 DIARIO DELLE LEZIONI

PROBABILITÀ I. a.a. 2011/2012 DIARIO DELLE LEZIONI PROBABILITÀ I. a.a. 2011/2012 DIARIO DELLE LEZIONI Settimana 5-9 marzo. Elementi di analisi combinatoria (vedasi capitolo I del Ross). Integrazioni: triangolo di Tartaglia, dimostrazione diretta della

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2014/2015 www.mat.uniroma2.it/~caramell/did 1415/ps.htm 02/03/2015 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Istituzioni di Probabilità - A.A

Istituzioni di Probabilità - A.A Istituzioni di Probabilità - A.A. 25-26 Prima prova di verifica intermedia - 29 aprile 25 Esercizio. Sia (X n ) n una successione di v.a. i.i.d. centrate con < X P-q.c., sia λ R ed F una v.a. integrabile

Dettagli

La funzione di ripartizione caratterizza la v.a. Ad ogni funzione di ripartizione corrisponde una ed una sola distribuzione.

La funzione di ripartizione caratterizza la v.a. Ad ogni funzione di ripartizione corrisponde una ed una sola distribuzione. Funzione di ripartizione X v.a. a valori in IR F X (x) = P (X x), x IR Indice X omesso quando chiaro Proprietà funzione di ripartizione F (i) F X (x) ; x (ii) è non decrescente Sia a < b P (a < X b) =

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 PBaldi appello, 23 giugno 29 Corso di Laurea in Matematica Esercizio Per α 2 consideriamo la catena di Markov su {, 2, 3} associata alla matrice

Dettagli

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio FOGLIO RISPOSTE

Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio FOGLIO RISPOSTE Laurea triennale in INFORMATICA, Corso di CALCOLO DELLE PROBABILITÀ COMPITO - 2 luglio 202 - FOGLIO RISPOSTE NOME e COGNOME SOLUZIONI CANALE: G. Nappo VOTO: N.B. Scrivere le risposte dei vari punti degli

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Variabili aleatorie - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2013 Variabili aleatorie Un numero aleatorio è un esempio di variabile aleatoria.

Dettagli

Probabilità 1, laurea triennale in Matematica II prova di valutazione in itinere a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova di valutazione in itinere a.a. 2008/09 robabilità, laurea triennale in Matematica II prova di valutazione in itinere a.a. 008/09. Francesco lancia ripetutamente due dadi non truccati: sia T il numero di lanci necessario ad ottenere per la prima

Dettagli

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata.

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata. Scuola Normale Superiore, ammissione al IV anno del corso ordinario Prova scritta di Analisi Matematica per Fisica, Informatica, Matematica 26 Agosto 2 Esercizio. Siano (a n ) e (b n ) successioni di numeri

Dettagli

Esame di Probabilità e Statistica del 23 agosto 2010 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 23 agosto 2010 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 3 agosto 00 Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. Es. 3 Es. 4 Somma Voto finale Attenzione: si

Dettagli

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 4 luglio 26 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

CP110 Probabilità: Esame del 6 giugno Testo e soluzione

CP110 Probabilità: Esame del 6 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 6 giugno, 211 CP11 Probabilità: Esame del 6 giugno 211 Testo e soluzione 1. (6 pts) Ci sono 6 palline, di cui nere e rosse. Ciascuna,

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica 69AA) A.A. 06/7 - Prima prova in itinere 07-0-03 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2013/2014 www.mat.uniroma2.it/~caramell/did 1314/ps.htm 04/03/2014 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

1 Esercizi tutorato 08/06, lezione 2

1 Esercizi tutorato 08/06, lezione 2 Esercizi tutorato 8/6, lezione 1 1 Esercizi tutorato 8/6, lezione Esercizio 1.1. La polizia sta cercando un criminale in una certa città che abbia una determinata caratteristica, supponiamo inoltre che

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019 Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Costruire, se esiste, un esempio con le seguenti proprietà 1. {F n }

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019 Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/6/219 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Un forno produce rosette di pane. Il peso di una

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

Esercizi - Fascicolo IV

Esercizi - Fascicolo IV Esercizi - Fascicolo IV Esercizio Una compagnia di assicurazioni emette una polizza che pagherà n euro se l evento E si verificherà entro un anno. Se la compagnia stima che l evento E si verificherà entro

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Variabili aleatorie Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

Esame di Calcolo delle Probabilità del 11 gennaio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 gennaio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del gennaio 006 Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. Es. 3 Es. 4 Somma Voto finale Attenzione: si

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

1. Si scelga a caso un punto X dell intervallo [0, 2], con distribuzione uniforme di densità. f X (x) = [0,2](x)

1. Si scelga a caso un punto X dell intervallo [0, 2], con distribuzione uniforme di densità. f X (x) = [0,2](x) Esercizi di Calcolo delle Probabilità della 3 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio.. Sia (X, Y ) un vettore aleatorio bidimensionale con densità uniforme

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 17-18, I semestre Settembre 18 Scritto del - 9-18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di mercoledì 22 Settembre 24 (tempo a disposizione: 2 ore e 4 minuti. consegna compiti e inizio

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. CORSO DI CALCOLO DELLE PROBABILITÀ o modulo - PROVA d esame del 9/02/200 - Laurea Quadriennale in Matematica - Prof. Nappo Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate

Dettagli

Studente: Matricola: 0 x 1 n, x x 1 n, che converge alla funzione di riparatizione della costante 0;

Studente: Matricola: 0 x 1 n, x x 1 n, che converge alla funzione di riparatizione della costante 0; Es 1 Es Es 3 Es Tot Terzo appello settembre Calcolo delle probabilità 13 settembre 18 Studente: Matricola: Vero o falso Esercizio 1 (1 pti). Si dica, motivando la propria risposta, se le seguenti aermazioni

Dettagli

Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2016

Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2016 Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 0/0/06 COGNOME e NOME... N. MATRICOLA... Esercizio. (9 punti) Sia {S n } n N una passeggiata aleatoria standard (cioè

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2012/2013 www.mat.uniroma2.it/~caramell/did 1213/ps.htm 05/03/2013 - Lezioni 1, 2, 3 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 3

Esercizi di Calcolo delle Probabilità Foglio 3 Esercizi di Calcolo delle Probabilità Foglio David Barbato Esercizio. (6-ese- s) Sia (X, Y ) un vettore aleatorio con densità: { αy (x, y) D f (X,Y ) (x, y) (x, y) / D Dove D {(x, y) R : x

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 208/9 - Prova in itinere 208--2 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

Esercitazione del 21/10/2011 Calcolo delle probabilità

Esercitazione del 21/10/2011 Calcolo delle probabilità Esercitazione del /0/0 Calcolo delle probabilità Funzione di ripartizione Sia F X una funzione da R in R. consideriamo le seguenti condizioni: F X è non decrescente ( ) x F X (x) x F X (x) 0 F X è continua

Dettagli

Esercizi - Fascicolo III

Esercizi - Fascicolo III Esercizi - Fascicolo III Esercizio 1 In una procedura di controllo di produzione, n processori prodotti da un processo industriale vengono sottoposti a controllo. Si assuma che ogni pezzo, indipendentemente

Dettagli

ESERCIZI HLAFO ALFIE MIMUN

ESERCIZI HLAFO ALFIE MIMUN ESERCIZI HLAFO ALFIE MIMUN December, 27. Testo degli esercizi Risolvere i seguenti problemi: () Siano X, X 2, X 3 variabili aleatorie i.i.d. bernulliane di media.5 e siano Y, Y 2, Y 3, Y 4 variabili aleatorie

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova scritta

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova scritta Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 208/9 - Prova scritta 209-0-09 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

CP110 Probabilità: Esame 5 giugno Testo e soluzione

CP110 Probabilità: Esame 5 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 5 giugno, 212 CP11 Probabilità: Esame 5 giugno 212 Testo e soluzione 1. (6 pts) Sette biglietti numerati da 1 a 7 vengono distribuiti

Dettagli

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione Diartimento di Matematica, Roma Tre Pietro Cauto 212-13, II semestre 2 settembre, 213 CP11 Probabilità: Esame 2 settembre 213 Testo e soluzione 1. (6 ts) Abbiamo due mazzi di carte francesi, il mazzo A

Dettagli

! X (92) X n. P ( X n X ) =0 (94)

! X (92) X n. P ( X n X ) =0 (94) Convergenza in robabilità Definizione 2 Data una successione X 1,X 2,...,X n,... di numeri aleatori e un numero aleatorio X diremo che X n tende in probabilità a X escriveremo X n! X (92) se fissati comunque

Dettagli

Traccia della soluzione degli esercizi del Capitolo 4

Traccia della soluzione degli esercizi del Capitolo 4 Traccia della soluzione degli esercizi del Capitolo 4 Esercizio 6 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π ), cioè f X (x) = π ( π, π ) (x). Posto Y = cos(x), trovare la distribuzione

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/213 Exercise 1 (punti 1 circa Diremo che un processo X = (X t t [,1] a valori reali è un ponte browniano se è un processo

Dettagli

Variabili aleatorie multiple. X = (X 1,..., X n ) vettore aleatorio

Variabili aleatorie multiple. X = (X 1,..., X n ) vettore aleatorio Variabili aleatorie multiple X = (X 1,..., X n ) vettore aleatorio F X (x 1,..., x n ) = P(X 1 x 1,..., X n x n ) caso particolare n = 2 (variabile doppia) F X,Y (x, y) = P(X x, Y y) V.a. discreta: (X,

Dettagli

CP110 Probabilità: Esame 4 luglio Testo e soluzione

CP110 Probabilità: Esame 4 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 4 luglio, 2012 CP110 Probabilità: Esame 4 luglio 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline numerate da 1

Dettagli

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 4. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA A.A. 2017/18 - Prova scritta 2018-09-12 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 7/8 - Prova scritta 8-7-3 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Prima prova scritta A.A. 8-9 Durata della prova h Punteggi: ) + + ; ) + + + ; ) +. Totale. Esercizio Sia

Dettagli