Prima prova in itenere di Istituzioni di Probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prima prova in itenere di Istituzioni di Probabilità"

Transcript

1 Prima prova in itenere di Istituzioni di Probabilità 14 novembre 2012 Esercizio 1. Un processo di Ornstein-Uhlenbec modificato (OUM) è un processo reale, con R come insieme dei tempi, con traiettorie continue, gaussiano centrato, con funzione di covarianza Cov(X t, X s ) = E[X t X s ] = exp[ t s ]. 1. Sia B un moto browniano (rispetto alla sua filtrazione naturale) a traiettorie continue; per t in R, sia X t = e t B e 2t. Si dimostri che X è un processo OUM. 2. Sia X un processo OUM; sia B 0 = 0, B t = tx log( t) per t > 0. Si dimostri che B è un moto browniano grossolano (rispetto alla sua filtrazione naturale). 3. Con le notazioni del punto 2, si dimostri che B ha traiettorie q.c. continue. Suggerimento: Per il punto 3, fare uso di una modificazione continua di B. Esercizio 2. Sia (Ω, A, P ) uno spazio di probabilità, sia F = (F n ) n una filtrazione discreta su Ω, con F n contenuto in A per ogni n. Sia X una v.a., A-misurabile e integrabile. Siano τ, σ due tempi d arresto limitati (τ, σ N), rispetto alla filtrazione F, siano F τ, F σ le σ-algebre associate. Si dimostri che: 1. se Y è una v.a. reale F -misurabile, per un certo, allora Y 1 {τ=} è F τ - misurabile; 2. la v.a. N =0 E[X F ]1 {τ=} è F τ -misurabile e integrabile e vale q.c. E[X F τ ] = E[X F ]1 {τ=} ; =0 3. facoltativo: E[E[X F τ ] F σ ] = E[E[X F σ ] F τ ] = N =0 E[X F ]1 {τ σ=} q.c.. Suggerimenti: Per il punto 1, può (non necessariamente deve) essere utile questo fatto, di facile dimostrazione: un evento A in A appartiene a F τ se e solo se A {τ = h} è in F h per ogni h. Per il punto 3, può essere utile notare che 1 {τ σ=} = 1 {τ=} 1 {σ>} + 1 {τ } 1 {σ=}. 1

2 Esercizio 3. Sia ( ),n N una famiglia di v.a. i.i.d., su (Ω, A, P ) spazio di probabilità, a valori in N (0 compreso), limitate (dalla stessa costante C), con speranza µ = E[ξ (1) 1 ] > 0. Siano S 0 = 1 e, per n 1, S n = S n 1 (S n = 0 sull insieme {S n 1 = 0}). Chiamiamo M n = µ n S n, F n = σ(ξ (m) N, m n), per n naturale. =1 1. Si dimostri che, per ogni n, S n è una v.a. limitata e che S = (S n ) n è un processo di Marov rispetto alla filtrazione F = (F n ) n (in particolare adattato a questa filtrazione). 2. Si dimostri che M è una martingala rispetto alla filtrazione F = (F n ) n. 3. Si deduca che M converge q.c.; si deduca che, per µ < 1, S converge q.c. a Facoltativo: si dimostri che, per µ > 1, la convergenza ha luogo anche in L 2 ; si deduca (sempre per µ > 1) che, con probabilità positiva, S tende a +. Suggerimento: Per i punti 1, 2 e 4, notare che ( N S n = N=0 1 {Sn 1 =N} (equivalentemente, S n = N =1 ξ(n) sull evento {S n 1 = N}, con la convenzione 0 1 ξ(n) = 0) e ricavare un analoga espressione per f(s n ). =1 ) 2

3 Soluzione 1 (Esercizio 1). Nel seguito, useremo la caratterizzazione del moto browniano grossolano standard, come processo gaussiano centrato, nullo a tempo 0, con Cov(B t, B s ) = t s. Punto 1: Per tutti i t 1 <... < t n numeri reali, (X t1,... X tn ) è un vettore gaussiano centrato, perché è ottenuto dal vettore gaussiano centrato (B e 2t 1,... B e 2tn) tramite trasformazione lineare. Per s t, E[X s X t ] = e s e t E[B e 2sB e 2t] = e s e t e 2s = e (t s). Infine, X ha traiettorie continue, poiché, per ogni ω, t e t B e 2t è composizione di mappe continue. Il punto 1 è dimostrato. Punto 2: La dimostrazione è analoga a quella del punto 1. Punto 3: Su ]0, + [, le traiettorie di B sono continue, poiché composizione di mappe continue. Dunque ci basta controllare la continuità (q.c.) in t = 0. Per il teorema di Kolmogorov, esiste una modificazione B con traiettorie continue. Affermo che B e B sono in realtà indistinguibili. Questo vuol dire che, per q.o. ω, la traiettoria B(ω) è uguale alla traiettoria B(ω), in particolare è continua; questo concluderebbe. Ci resta da dimostrare che B e B sono indistinguibili. Su ]0, + [ sono indistinguibili perché processi continui e modificazione uno dell altro. Quindi i due processi coincidono per tutti i tempi t in ]0, + [, salvo al più su un insieme N 1 di misura nulla. Inoltre, al tempo t = 0, i due processi sono q.c. nulli, quindi coincidono salvo al più su un insieme N 2 di misura nulla. In conclusione, essi coincidono per tutti i tempi, salvo al più su N 1 N 2, che è di misura nulla, quindi sono indistinguibili. Soluzione 2 (Esercizio 2). Punto 1: Utilizzando il suggerimento, si tratta di verificare che, per ogni h naturale e per ogni boreliano D di R, l evento C := {Y D} {τ = h} è in F h. Distinguiamo due casi. Se h, sull insieme {τ = h}, Y 1 τ= vale 0; quindi C è l insieme vuoto (se 0 non è in D) oppure {τ = h} (se 0 è in D), entrambi in F h. Se h =, C diventa {Y D} {τ = }, che è in F poiché intersezione di eventi in F. Dimostriamo ora un implicazione del suggerimento: se A {τ = h} è in F h per ogni h, allora A {τ m} = h h A {τ = h} è in F m per ogni m, dunque A è in F τ. Un modo alternativo per dimostrare il punto 1 è il seguente: detto Z il processo dato da Z n = E[Y F n ], allora le v.a. Z τ e 1 τ= son F τ -misurabili, dunque Y 1 τ= = Z 1 τ= = Z τ 1 τ= è F τ -misurabile. Punto 2: Chiamiamo Y = E[X F ]1 τ=. La misurabilità di Y rispetto a F τ e l integrabilità sono conseguenza del punto 1, dato che Y è somma finita di v.a. del tipo E[X F ]1 τ=, F τ -misurabile e integrabile per ogni. Per la formula in tesi, vogliamo dimostrare che, per ogni A F τ -misurabile, E[X1 A ] = 3

4 E[Y 1 A ]. Vale: E[Y 1 A ] = E[E[X F ]1 {τ=} A ] = E[X1 {τ=} A ] = E[X1 A 1 τ= ] = E[X1 A ], dove la somma varia tra = 0 e N (che maggiora τ); nella seconda uguaglianza, abbiamo usato il fatto che {τ = } A è F -misurabile, per ogni. Il punto 2 è dimostrato. Una dimostrazione alternativa della formula in tesi si basa sul teorema d arresto. Infatti il processo (M n = E[X F n ]) n è una martingala; inoltre τ N e quindi F τ F N. Dunque, per il teorema d arresto, E[X F τ ] = E[M n F τ ] = M τ = N =0 M 1 τ= = Y. Punto 3: Applichiamo due volte il punto 2 al membro sinistro dell uguaglianza in tesi, utilizzando la F -misurabilità di 1 τ : E[E[X F τ ] F σ ] = E[E[X F ]1 τ= F σ ] = E[E[X F ]1 τ= F h ]1 σ=h h = E[X1 τ= F h ]1 σ=h + E[X F ]1 τ= 1 σ=h h h> = E[X 1 τ= F h ]1 σ=h + E[X F ]1 τ= 1 σ=h h h h> = h E[X F h ]1 τ h 1 σ=h + E[X F ]1 τ= 1 σ> = = E[X F ](1 τ 1 σ= + 1 τ= 1 σ> ) E[X F ]1 τ σ=. Poiché l espressione nell ultima riga è simmetrica in τ e σ, scambiando i due tempi d arresto otteniamo lo stesso risultato per E[E[X F σ ] F τ ], da cui la tesi. Anche in questo caso, una dimostrazione alternativa è possibile, usando il teorema d arresto, applicato la prima volta alla martingala M e ai tempi d arresto N e τ, la seconda alla martingala arrestata M τ e ai tempi d arresto N e σ; questo ci dà E[E[M N F τ ]F σ ] = M τ σ, fatto valido in generale per tempi d arresto limitati da N, ed equivalente alla nostra tesi. Soluzione 3 (Esercizio 3). Il fatto che S sia adattato a F si dimostra per induzione su n: per n = 0 è ovvio (S 0 è costante), per il caso induttivo da n 1 a n, il suggerimento mostra che S n è F n -misurabile poiché funzione di S n 1, F n 1 -misurabile 4

5 per ipotesi induttiva, e ( ), F n -misurabile. Per l ipotesi di limitatezza delle, S n CS n 1 e quindi S n C n. Notiamo poi che, per f : R R misurabile, vale f(s n ) = N=0 1 S n 1 =Nf( N =1 ξ(n) ). Questo ci permette di calcolare agevolamente la speranza condizionale E[f(S n ) F n 1 ], nel caso f(s n ) sia integrabile (possiamo scambiare anche qui serie e speranza): E[f(S n ) F n 1 ] = N = N 1 Sn 1 =NE[f( E[1 Sn 1 =Nf( =1 =1 ) F n 1] )] = ϕ(s n 1), (1) dove ϕ(n) = E[f( N =1 ξ(n) )]; nella seconda uguaglianza abbiamo utilizzato il fatto che S n 1 è F n 1 misurabile e il fatto che ( ) è una famiglia indipendente da F n 1. Punto 1: Abbiamo già verificato l adattabilità e la limitatezza di S. Per la proprietà di Marov, basta osservare che, per f misurabile limitata, E[f(S n ) F n 1 ] è funzione di S n 1 (ϕ(s n 1 )), in particolare è σ(s n 1 )-misurabile. La tesi è dimostrata. Punto 2: Il processo M è integrabile poiché limitato. Applichiamo quindi la formula (1) a f(x) = x, notando che, in questo caso, ϕ(n) = Nµ: otteniamo E[S n F n 1 ] = µs n 1, da cui si ricava facilmente E[M n F n 1 ] = M n 1, cioè la tesi. Punto 3: La martingala M è positiva, in particolare E[ M n ] = E[M n ] = E[M 0 ] = 1 è limitata in n. Per il teorema di convergenza delle martingale, M converge q.c. a una v.a. M. Per questa convergenza, S n = µ n M n è minore di µ n (M + 1) definitivamente q.c. (cioè per n > n 0, dove n 0 può dipendere da ω). Se µ < 1, µ n tende a 0, dunque S n converge q.c. verso 0 (anzi, essendo a valori interi, vale 0 definitivamente q.c.). Punto 4: Il processo S è in L 2 essendo limitato. Vogliamo stimare E[Sn]; 2 scriviamo allora E[Sn] 2 = E[E[Sn F 2 n 1 ] e usiamo (1) (un altro modo è usare direttamente l indipendenza tra S n 1 e ( ) ): detto σ 2 il momento secondo di ξ (1) 1, vale E[S 2 n] = N = N E[1 Sn 1 =NE[( =1 )2 ]] E[1 Sn 1 =N(N(σ 2 µ 2 ) + N 2 µ 2 )] = (σ 2 µ 2 )E[S n 1 ] + µ 2 E[S 2 n 1].(2) La seconda uguaglianza è un semplice conto per v.a. i.i.d., che dimostreremo alla fine (si noti intanto che, per la disuguaglianza di Hölder, σ 2 µ 2 0). 5

6 Dall espressione sopra si ottiene (ricordando E[M n ] = 1) Procedendo per induzione abbiamo E[M 2 n] = σ2 µ 2 µ n+1 + E[M 2 n 1]. E[M 2 n] = 1 + (σ 2 µ 2 ) n µ. Se µ > 1, la serie µ converge, quindi E[M 2 n] è limitata in n. Per il teorema di convergenza in L p (p > 1), M converge in L 2 a M. In particolare M converge in L 1, quindi E[M ] = lim n E[M n ] = 1 > 0. Dunque M è strettamente positiva su un insieme non trascurabile, anzi esiste δ > 0 e un insieme misurabile B in Ω avente probabilità positiva, tale che M δ su B. Allora su B, S n = µ n M n µ n (M δ/2) µ n δ/2 definitivamente q.c.. Poiché µ n tende all infinito, otteniamo che S n diverge a + q.c. su B. Rimane da dimostrare il conto in (2); per semplicità, omettiamo l apice n. Abbiamo =1 E[( ξ ) 2 ] = E[ =1 ξ h< ξ h ξ ] = σ 2 N + N(N 1)µ 2 = (σ 2 µ 2 )N + µ 2 N 2. La dimostrazione è completa. 6

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 14/2/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 14/2/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 14/2/213 Exercise 1. punti 9+) Sia X = X t, x)) t,x un processo stocastico a valori reali, avente come parametro la coppia t,

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 22/7/213 Exercise 1 (punti 1 circa Diremo che un processo X = (X t t [,1] a valori reali è un ponte browniano se è un processo

Dettagli

Analisi Stocastica Programma del corso 2009/10

Analisi Stocastica Programma del corso 2009/10 Analisi Stocastica Programma del corso 2009/10 [13/01a] Introduzione. 0. Preludio (1 ora) [1] Descrizione del corso: obiettivi, prerequisiti, propedeuticità. Un esempio euristico: lavoro di una forza,

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 2/12/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 2/12/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del /1/13 Exercise 1 punti 1 circa Un foglio browniano è un processo gaussiano a valori reali X s, t, indicizzato da s, t in [,

Dettagli

III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre

III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre 2015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Analisi Stocastica Programma del corso 2008/09

Analisi Stocastica Programma del corso 2008/09 Analisi Stocastica Programma del corso 2008/09 [13/01] Introduzione. 0. Preludio (1 ora) [1] Descrizione del corso: obiettivi, prerequisiti, propedeuticità. Un esempio euristico: lavoro di una forza, valore

Dettagli

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno

I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 23 Giugno I Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 014/15 Nome: 3 Giugno 015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Convergenza di martingale - La convergenza in L p, p > 1 equivale alla limitatezza in L p : disuguaglianza per submg non negative; disuguaglianza di

Convergenza di martingale - La convergenza in L p, p > 1 equivale alla limitatezza in L p : disuguaglianza per submg non negative; disuguaglianza di 1. martedì 10 marzo Convergenza di martingale - La convergenza in L p, p > 1 equivale alla limitatezza in L p : disuguaglianza per submg non negative; disuguaglianza di Doob; una mg è L p limitata se e

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica a.a. 2013/14 Registro delle lezioni

Istituzioni di Probabilità Laurea magistrale in Matematica a.a. 2013/14 Registro delle lezioni Istituzioni di Probabilità Laurea magistrale in Matematica a.a. 2013/14 Registro delle lezioni Lezione 1 (25/2). Introduzione al corso. Prime definizioni sui processi stocastici (processo stocastico, distribuzioni

Dettagli

Istituzioni di Probabilità - A.A

Istituzioni di Probabilità - A.A Istituzioni di Probabilità - A.A. 25-26 Prima prova di verifica intermedia - 29 aprile 25 Esercizio. Sia (X n ) n una successione di v.a. i.i.d. centrate con < X P-q.c., sia λ R ed F una v.a. integrabile

Dettagli

CP410: Esonero 1, 31 ottobre 2013

CP410: Esonero 1, 31 ottobre 2013 Dipartimento di Matematica, Roma Tre Pietro Caputo 2013-14, I semestre 31 ottobre, 2013 CP410: Esonero 1, 31 ottobre 2013 Cognome Nome Matricola Firma 1. Fare un esempio di successione di variabili aleatorie

Dettagli

CP410: Esame 2, 3 febbraio 2015

CP410: Esame 2, 3 febbraio 2015 Dipartimento di Matematica, Roma Tre Pietro Caputo 2014-15, I semestre 3 febbraio, 2015 CP410: Esame 2, 3 febbraio 2015 Cognome Nome Matricola Firma 1. Sia (Ω, F, P) lo spazio di probabilità definito da

Dettagli

Misure e loro proprietà (appunti per il corso di Complementi di Analisi Matematica per Fisici, a.a )

Misure e loro proprietà (appunti per il corso di Complementi di Analisi Matematica per Fisici, a.a ) Misure e loro proprietà (appunti per il corso di Complementi di Analisi Matematica per Fisici, a.a. 2006-07 Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 1. (Misura. Si chiama misura

Dettagli

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 7 gennaio

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 7 gennaio V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 24/5 Nome: 7 gennaio 26 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2016

Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2016 Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 0/0/06 COGNOME e NOME... N. MATRICOLA... Esercizio. (9 punti) Sia {S n } n N una passeggiata aleatoria standard (cioè

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019 Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2019 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Costruire, se esiste, un esempio con le seguenti proprietà 1. {F n }

Dettagli

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 013/14 Nome: 16 luglio 014 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica a.a. 2012/13 Registro delle lezioni

Istituzioni di Probabilità Laurea magistrale in Matematica a.a. 2012/13 Registro delle lezioni Istituzioni di Probabilità Laurea magistrale in Matematica a.a. 2012/13 Registro delle lezioni Lezione 1 (27/9). Introduzione al corso. Prime definizioni sui processi stocastici (processo stocastico, distribuzioni

Dettagli

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da NOTE INTEGRATIVE PER IL CORSO DI ANALISI MATEMATICA 2 ANNO ACCADEMICO 2012/13 NOTE SULLA CONTINUITÀ UNIFORME D.BARTOLUCCI, D.GUIDO Sia f(x) = x 3, x [ 1, 1]. Si ha 1. La continuità uniforme x 3 y 3 = x

Dettagli

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 ESECIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 1. Una σ algebra è chiusa rispetto a intersezioni finite e numerabili, e rispetto a differenze e differenze simmetriche. 2. Una σ algebra è anche un algebra,

Dettagli

1 Alcuni risultati sulle variabili Gaussiane multivariate

1 Alcuni risultati sulle variabili Gaussiane multivariate Il modello lineare-gaussiano e il filtro di Kalman Prof. P.Dai Pra 1 Alcuni risultati sulle variabili Gaussiane multivariate In questo paragrafo verranno enunciate e dimostrate alcune proprietà del valor

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità M. Pratelli e M. Romito Gli esercizi che seguono sono stati proposti nel corso Probabilità dell Università di Pisa negli a.a. 2012-13 e 2013-14 (M. Romito) e 2014-15

Dettagli

Probabilità e Finanza

Probabilità e Finanza Diario delle lezioni di Probabilità e Finanza a.a. 2016/2017 www.mat.uniroma2.it/~caramell/did 1617/pf.htm 26/09/2016 - Lezioni 1, 2 Introduzione al corso. Tassi di interesse: interesse composto, semplice,

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 14 luglio

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 14 luglio III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 14/15 Nome: 14 luglio 15 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Teoria delle Probabilità e Applicazioni programma 2004/05

Teoria delle Probabilità e Applicazioni programma 2004/05 Teoria delle Probabilità e Applicazioni programma 2004/05 Capitolo 1: esempio guida Lezioni: 8/3, 9/3 (5h) 1. Come modellizzare l esperimento infiniti lanci di una moneta equilibrata oppure l esperimento

Dettagli

Probabilità e Finanza

Probabilità e Finanza Diario delle lezioni di Probabilità e Finanza a.a. 2017/2018 www.mat.uniroma2.it/~caramell/did 1718/pf.htm 10/10/2017 - Lezioni 1, 2 Introduzione al corso. Richiami di probabilità: le algebre e le σ-algebre.

Dettagli

Si noti che questa definizione dice esattamente che

Si noti che questa definizione dice esattamente che DISUGUAGLIANZA INTEGRALE DI JENSEN IN DIMENSIONE FINITA LIBOR VESELY integrazione. Prima disuguaglianza integrale di Jensen.. Motivazione. Siano un insieme convesso in uno spazio vettoriale, f : (, + ]

Dettagli

Soluzione della prova scritta di di Algebra lineare del 10 giugno Esercizio 1

Soluzione della prova scritta di di Algebra lineare del 10 giugno Esercizio 1 Soluzione della prova scritta di di Algebra lineare del 0 giugno 05 Esercizio (a) La matrice A che rappresenta f rispetto alle basi assegnate è la seguente: A = 0 0 0 (b) Applicando il metodo di Gauss

Dettagli

Note di Teoria della Probabilità.

Note di Teoria della Probabilità. Note di Teoria della Probabilità. In queste brevi note, si richiameranno alcuni risultati di Teoria della Probabilità, riguardanti le conseguenze elementari delle definizioni di probabilità e σ-algebra.

Dettagli

12. Funzioni numeriche misurabili.

12. Funzioni numeriche misurabili. 12. Funzioni numeriche misurabili. 12.1. Funzioni numeriche misurabili. D ora in avanti, nel corso di questi appunti, adotteremo la seguente terminologia: per far riferimento ad una funzione f : Ω R, per

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

CP410: Esame 2, 30 gennaio Testo e soluzione

CP410: Esame 2, 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 23-4, I semestre 3 gennaio, 24 CP4: Esame 2, 3 gennaio 24 Testo e soluzione Cognome Nome Matricola Firma . Per ogni n N, sia X n la variabile aleatoria

Dettagli

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del dicembre 27 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. Es. 4 Somma Voto finale Attenzione:

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica Appunti delle lezioni tenute dal Prof. A. Fonda Università di Trieste CdL Matematica a.a. 07/08 La derivata direzionale In questa sezione E sarà un sottoinsieme aperto di R N x 0 un

Dettagli

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n,

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n, 1. Autospazi e autospazi generalizzati Sia ϕ: V V un endomorfismo. Allora l assegnazione x ϕ induce un morfismo di anelli ρ: K[x] End K (V ). Più esplicitamente, al polinomio p dato da viene associato

Dettagli

Condizionamento e martingale

Condizionamento e martingale Capitolo 3 Condizionamento e martingale 31 Condizionamento Sia (Ω, F, P) uno spazio di probabilità Dunque, ricordiamo, Ω è un insieme (lo spazio campionario); F è una σ-algebra di sottoinsiemi di Ω (gli

Dettagli

! X (92) X n. P ( X n X ) =0 (94)

! X (92) X n. P ( X n X ) =0 (94) Convergenza in robabilità Definizione 2 Data una successione X 1,X 2,...,X n,... di numeri aleatori e un numero aleatorio X diremo che X n tende in probabilità a X escriveremo X n! X (92) se fissati comunque

Dettagli

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Limiti e continuità Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Cenni di topologia La nozione di intorno Sia x 0 R e r > 0.

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2013-2014 Lezione 4 Indice 1 Convergenza in legge di processi stocastici 2

Dettagli

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 4 luglio 26 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

Probabilità e Finanza

Probabilità e Finanza Diario delle lezioni di Probabilità e Finanza a.a. 2018/2019 www.mat.uniroma2.it/~caramell/did 1819/pf.htm 02/10/2018 - Lezioni 1, 2 Introduzione al corso. Richiami di probabilità: le algebre e le σ-algebre.

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

VERSIONE PRELIMINARE Lezioni di Analisi Matematica 3 corso di Laurea in Fisica a.a

VERSIONE PRELIMINARE Lezioni di Analisi Matematica 3 corso di Laurea in Fisica a.a Lezioni di Analisi Matematica 3 corso di Laurea in Fisica a.a. 2005-06 G. Molteni, M. Vignati Notazioni I vettori di R n e le funzioni a valori in R n sono indicate in grassetto, per cui si dirà v R n

Dettagli

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j Analisi II, a.a. 7-8 Soluzioni Calcolare le seguenti distanze e norme: (i d (x, y dove x = {x j } e y = {y j } sono le successioni di l definite da x j = ( j, y j = j/(j + ; (ii d (f, g dove f, g sono

Dettagli

Matrici jordanizzabili

Matrici jordanizzabili Capitolo 17 Matrici jordanizzabili 17.1 Introduzione Abbiamo visto che non tutte le matrici sono simili a matrici diagonali. Mostreremo in questo capitolo che alcune matrici sono simili a matrici di Jordan.

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica 16 Febbraio 2015

Istituzioni di Probabilità Laurea magistrale in Matematica 16 Febbraio 2015 Istituzioni di Probabilità Laurea magistrale in Matematica 16 Febbraio 15 sercizio 1. (punti 1 ) ) Basandosi sul noto concetto di integrale di Itô, ogni studente esponga, preliminarmente, una ragionevole

Dettagli

Calcolo I, a.a Primo esonero 11 novembre k + 2 k

Calcolo I, a.a Primo esonero 11 novembre k + 2 k Calcolo I, a.a. 015 016 Primo esonero 11 novembre 015 1) 6 punti Dimostrare per induzione che 5 n +, n 1. Se n = 1 la disuguaglianza si riduce a 5 + che è vera. Supponiamo ora che la disuguaglianza sia

Dettagli

Diario Complementi di Probabilità a.a. 2018/2019

Diario Complementi di Probabilità a.a. 2018/2019 Diario Complementi di Probabilità a.a. 2018/2019 Testi di riferimento: [W] Probability with martingales, D.Williams [Bi] Probability and measure, P.Billingsley [Ba] Appunti del corso di Calcolo delle Probabilità

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 20 febbraio

II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 20 febbraio II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 3/4 Nome: febbraio 4 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

Corsi di Laurea Magistrale in Matematica, A.A Calcolo stocastico e applicazioni (Docente: Bertini) Esercizi settimanali

Corsi di Laurea Magistrale in Matematica, A.A Calcolo stocastico e applicazioni (Docente: Bertini) Esercizi settimanali Settimana 1 Esercizio 1. [Unicità della misura di Wiener] Sia C([0, 1]) l insieme delle funzioni continue sull intervallo [0, 1] con la topologia (metrizzabile) indotta dalla convergenza uniforme. Sia

Dettagli

Determinante, autovalori e autovettori

Determinante, autovalori e autovettori Determinante, autovalori e autovettori Lorenzo Pareschi Dipartimento di Matematica, Universitá di Ferrara http://wwwlorenzopareschicom lorenzopareschi@unifeit Lorenzo Pareschi (Univ Ferrara) Determinante,

Dettagli

f(x) := lim f n (x) Se introduciamo la norma uniforme di una funzione f (sull insieme A) mediante := sup f(x)

f(x) := lim f n (x) Se introduciamo la norma uniforme di una funzione f (sull insieme A) mediante := sup f(x) Capitolo 2 Successioni e serie di funzioni 2. Convergenza puntuale e orme Supponiamo che sia un sottoinsieme di R N e supponiamo che per ogni intero n sia data una funzione f n : R M. Diremo in questo

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 3 gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Diario Complementi di Probabilità a.a. 2017/2018

Diario Complementi di Probabilità a.a. 2017/2018 Diario Complementi di Probabilità a.a. 2017/2018 Testi di riferimento: [W] Probability with martingales, D.Williams [Bi] Probability and measure, P.Billingsley [Ba] Appunti del corso di Calcolo delle Probabilità

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

X n = αx n 1 + Y n. Si dimostri che. Usando la precedente relazione si dimostri che. e che. e si determini il limite di media e varianza quando n +.

X n = αx n 1 + Y n. Si dimostri che. Usando la precedente relazione si dimostri che. e che. e si determini il limite di media e varianza quando n +. Problema 1. Siano X, Y 1, Y,... variabili aleatorie indipendenti. Si supponga che X abbia media m e varianza σ e che le Y i abbiano distribuzione gaussiana con media µ e varianza σ. Dato α in (, 1, si

Dettagli

1 2 1 x = Quando sapremo calcolare i determinanti potremo ricavare:

1 2 1 x = Quando sapremo calcolare i determinanti potremo ricavare: 5 NOVEMBRE 2009 Esempio: Risolviamo il sistema: 3x + 2y + 4z = 1 2x y + z = 0 x + 2y + 3z = 1 1 2 4 3 1 4 3 2 1 0 1 1 2 0 1 2 1 0 1 2 3 1 1 3 1 2 1 x =, y =, z = 3 2 4 3 2 4 3 2 4 2 1 1 2 1 1 2 1 1 1 2

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Principio di induzione: esempi ed esercizi Principio di induzione: Se una proprietà P n dipendente da una variabile intera n vale per n e se, per ogni n N vale P n P n + allora P vale su tutto N Variante

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Elementi di Algebra e Logica Esercizi 1. Insiemi, funzioni, cardinalità, induzione, funzioni ricorsive.

Elementi di Algebra e Logica Esercizi 1. Insiemi, funzioni, cardinalità, induzione, funzioni ricorsive. Elementi di Algebra e Logica 2008 Esercizi 1 Insiemi, funzioni, cardinalità, induzione, funzioni ricorsive 1 Siano A = {0, 2, 4,, 8, 10}, B = {0, 1, 2, 3, 4, 5, } e C = {4, 5,, 7, 8, 9, 10} Determinare:

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Formule di Taylor Ottobre 2012 Indice 1 Formule di Taylor 1 1.1 Il polinomio di Taylor...............................

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 06/7 - Prova del 07-07-07 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

Processi Stocastici, anno 2013/14

Processi Stocastici, anno 2013/14 Processi Stocastici, anno 213/14 Esercitazione 1 Esercizio 1 Siano X e Y due v.a. indipendenti in L 2, con E(X) = µ, V (X) = σ 2, E(Y ) = ν. Si determini il valor medio condizionato E(X + Y X), il valor

Dettagli

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo. Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione

Dettagli

Diario Complementi di Probabilità a.a. 2016/2017

Diario Complementi di Probabilità a.a. 2016/2017 Diario Complementi di Probabilità a.a. 2016/2017 Testi di riferimento: [W] Probability with martingales, D.Williams [Bi] Probability and measure, P.Billingsley [Ba] Appunti del corso di Calcolo delle Probabilità

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

Soluzioni delle Esercitazioni VIII 21-25/11/2016. = lnx ln1 = lnx. f(t)dt.

Soluzioni delle Esercitazioni VIII 21-25/11/2016. = lnx ln1 = lnx. f(t)dt. Esercitazioni di Matematica Esercitazioni VIII -5//6 Soluzioni delle Esercitazioni VIII -5//6 A. Funzione integrale. La funzione integrale di f nell intervallo [, ] è per definizione F() = dt con [,].

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Variabili aleatorie Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

7 Il Teorema di Bolzano - Weierstrass

7 Il Teorema di Bolzano - Weierstrass dimostrazione di (3.6). Supponiamo per esempio che f sia crescente e che x 0 < b Poniamo l + := inf f(x) x I,x 0

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso.

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso. Esercitazione 8 Novembre 018 1. Stabilire quali delle seguenti affermazioni sono vere e quali false. 1.1. Se una funzione f(x) è definita in un intervallo aperto (a, b), ha senso chiedersi se esistono

Dettagli

Il teorema di dualità forte

Il teorema di dualità forte Complementi di Algoritmi e Strutture Dati Il teorema di dualità forte Docente: Nicolò Cesa-Bianchi versione 13 maggio 2018 Ricordiamo la formulazione del problema di programmazione lineare nella sua forma

Dettagli

SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 2011

SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 2011 1 SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 011 Problema 1. Sia Z l insieme dei numeri interi. a) Sia F 100 l insieme delle funzioni

Dettagli

Lezione 7 29 Ottobre

Lezione 7 29 Ottobre PSC: Progettazione di sistemi di controllo a.a. 2010-2011 Lezione 7 29 Ottobre Docente: Luca Schenato Stesori: L. Schenato 7.1 Definizioni e proposizioni generali Si consideri lo spazio delle matrici semidefinite

Dettagli

Esercizi 8 12 gennaio 2009

Esercizi 8 12 gennaio 2009 Sia α > e Esercizi 8 2 gennaio 29 f(x, y = ( + x 2 + y 2 α. Dimostrare che f appartiene a L p ( 2, con α p >. Osserviamo innanzitutto che, essendo f continua, l integrale di f p su 2 è uguale all integrale

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 206/7 - Prova del 207-09-08 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

Indice. 1 Nozioni di base 2. 2 I tre principi di Littlewood 5. 3 Il ``quarto'' principio di Littlewood 7

Indice. 1 Nozioni di base 2. 2 I tre principi di Littlewood 5. 3 Il ``quarto'' principio di Littlewood 7 Indice 1 Nozioni di base 2 2 I tre principi di Littlewood 5 3 Il ``quarto'' principio di Littlewood 7 4 I principi di Littlewood in spazi di misura generici 10 1 Capitolo 1 Nozioni di base Denizione 1.

Dettagli

Appunti del corso Processi stocastici. Marco Frego, Marco Pizzato, Luca Tasin, Luciano Tubaro

Appunti del corso Processi stocastici. Marco Frego, Marco Pizzato, Luca Tasin, Luciano Tubaro Appunti del corso Processi stocastici Marco Frego, Marco Pizzato, Luca Tasin, Luciano Tubaro anno accademico 2007-2008 Indice 1 Introduzione ai Processi Stocastici 5 1..........................................

Dettagli

Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 2019 A.A. 2018/2019. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 2019 A.A. 2018/2019. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 19 A.A. 18/19. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1 Scritto del quinto appello, 11 settembre 019 Testi 1 1. a) Dato u L 1 R), sia vx) := u x); esprimere ˆv in termini di û. b) Caratterizzare le funzioni u L 1 R) tali che û è una funzione dispari a valori

Dettagli

a j n + convergente divergente irregolare.

a j n + convergente divergente irregolare. Serie numeriche Definizione Data una successione reale {a j } + successione delle somme parziali n esime come: n s n a j, jj il cui limite, per n + : jj R, si definisce la s lim s n n + jj a j è detto

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioni degli esercizi di Analisi Matematica I (Prof. Pierpaolo Natalini) Roberta Bianchini 30 ottobre 07 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) = arccos x x + π/3.. Verificare

Dettagli

1 Volume di parallelepipedi e determinanti

1 Volume di parallelepipedi e determinanti 1 Volume di parallelepipedi e determinanti Dimostriamo la seguente relazione fondamentale tra volumi e determinanti. Lemma 1 Sia T una matrice reale (n n) e sia K 1 := [0, 1] n. Allora dove mis denota

Dettagli

Elementi di Probabilità e Statistica - 052AA - A.A

Elementi di Probabilità e Statistica - 052AA - A.A Elementi di Probabilità e Statistica - 05AA - A.A. 014-015 Prima prova di verifica intermedia - 9 aprile 015 Problema 1. Dati due eventi A, B, su uno spazio probabilizzato (Ω, F, P), diciamo che A è in

Dettagli

Elementi di analisi matematica e complementi di calcolo delle probabilita T

Elementi di analisi matematica e complementi di calcolo delle probabilita T Elementi di analisi matematica e complementi di calcolo delle probabilita T Presentiamo una raccolta di quesiti per la preparazione alla prova orale di Elementi di analisi matematica e complementi di calcolo

Dettagli

Diario Complementi di Probabilità a.a. 2007/2008

Diario Complementi di Probabilità a.a. 2007/2008 Diario Complementi di Probabilità a.a. 2007/2008 Testi di riferimento: Probability with martingales, D.Williams Probability and measure, P.Billingsley Esercizi con soluzione distribuiti a lezione 1. 23

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

I Esonero Complementi di Probabilità a.a. 2014/2015

I Esonero Complementi di Probabilità a.a. 2014/2015 I Esonero Complementi di Probabilità a.a. 204/205 Esercizio. Sia (X n ) n una successione di variabili aleatorie indipendenti, X n Be(p), con p (0, ). Sia H n = {X n = } (l n-esima prova è un successo),

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1 46 Roberto Tauraso - Analisi 2 Esempio 3.6 Determinare il carattere della serie Applichiamo il criterio del rapporto: n n. a n+ a n (n +! nn (n + nn (n + n+ (n + n n n+ (n + ( n + n e. n Dato che e

Dettagli