Università di Roma Tor Vergata Corso di Teoria dei Fenomeni Aleatori, AA 2012/13. Catene di Markov

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università di Roma Tor Vergata Corso di Teoria dei Fenomeni Aleatori, AA 2012/13. Catene di Markov"

Transcript

1 Catene di Markov SISTEMI CASUALI DINAMICI (PROCESSI) - UN ESEMPIO: I GUASTI Frequenza dei guasti: N GUASTI 0 T N T 0 T!

2 Catene di Markov SISTEMI CASUALI DINAMICI (PROCESSI) - UN ESEMPIO: I GUASTI Campionando il tempo con il passo Δ : PG ( ) Regolare Guasto 1- PG ( ) 1 (Sistema non soggetto a manutenzioni)

3 Catene di Markov SISTEMI CASUALI DINAMICI (PROCESSI) - UN ESEMPIO: I GUASTI PG ( ) Regolare Guasto PM ( ) 1-P(M) 1- PG ( ) : probabilità che il sistema sia riparato nell intervallo successivo al guasto. R G R 1- pg ( ) pg ( ) = G pm ( ) 1 -p(m) P : MATRICE DELLE PROBABILITA DI TRANSIZIONE T x: vettore di stato x = [ R G]

4 Esempio: SATELLITI e GUASTI C: in funzionamento corretto L: in guasto a lungo termine L p L q p B B: in guasto a breve termine q L C B M: in manovra M q M p M q B

5 Catene di Markov Premessa PROCESSI STOCASTICI X(t) A valori continui TEMPO-CONTINUI ( A PARAMETRO CONTINUO TEMPO-DISCRETI: t è un insieme di valori discreti - esempio: A valori discreti o STATI :

6 Catene di Markov Cenni Storici Le catene di Markov sono particolari processi a valori discreti, o stati, introdotti da Andrei A. Markov ( ), allievo di Tschebyshev. Il loro studio si è diffuso dalla metà del Novecento per le applicazioni ai Sistemi fisici, biologici, sociali, economici in cui le probabilità di un evento dipendono dal risultato immediatamente precedente.

7 Catene di Markov Un particolare tipo di processo a valori discreti è costituito dalle catene di Markov, in cui il processo può assumere un valore (lo stato del processo) all interno di un dato insieme finito o numerabile. Il processo è definito mediante le probabilità di passare da uno stato ad un altro (probabilità di transizione).

8 Catene di Markov tempo-discreto La sequenza di variabili aleatorie: X 1,X 2,... forma una catena di Markov tempo discreta se per ogni n (n = 1, 2, ) e per tutti valori possibili delle variabili aleatorie X 1,X 2,... si ha: P X n j X1 i 1,X 2 i 2,...,X n1 in1 PXn j Xn1 in1 cioè se la probabilità che lo stato del processo all istante n sia j dipende solamente dallo stato all istante precedente n 1.

9 Catene di Markov omogenee Una catena di Markov è omogenea se le probabilità di transizione (passaggio da uno stato ad un altro) sono costanti (non dipendono dal tempo). Nel seguito consideriamo il caso omogeneo.

10 Un processo Catena di Markov tempo-continua X t a valori interi non negativi è una catena di Markov tempo continua se, per ogni s: P X ts j X t i, X l P X ts j X t i 0 t s 0 t t+s tempo

11 Esempio di una catena di Markov a 4 stati (A,B,C,D) 0.3 A B C 0.2 D 1 P Matrice di transizione

12 La Matrice di Transizione La somma delle probabilità di transizione da un generico stato verso tutti gli altri e verso se stesso deve essere pari ad 1: N j1 P ij 1 i=1,2,3,...,n essendo N il numero di stati del processo. Una matrice con queste caratteristiche (somma unitaria degli elementi di ogni riga) è detta stocastica. Equivalentemente: T P u = u con u =[1,1...1]

13 Esempio: Contatore t 1 2 M FINESTRA NEL TEMPO

14 Esempio: Contatore (segue) p p p 0 1 L L M q q q q Esempio: M = 1000, L 1 = 480, L 2 = NB: = probabilità dello stato j P = q 0 0 p q 0 p q p 0 1

15 La Matrice di Transizione a 2 passi P 2 N PP ij ik kj k1 La matrice delle probabilità di transizione a due passi costituita da tutti gli elementi 2 P ij 2 P,, si ottiene come prodotto (righe x colonne) delle matrice delle probabilità di transizione per se stessa: 2 2 P PP P

16 La Matrice di Transizione a n passi Per la generica probabilità di transizione a tre passi: N 3 2 ij ik kj P P P Più in generale, indicando con k P P P P P P ij n P : La matrice n P P X j X i ij nm m n P di elementi n P si ottiene moltiplicando P ij per se stessa n 1 volte: P n P n

17 La Matrice di Transizione Le espressioni utilizzate del tipo: N nm n m P P P ij ik kj k1 sono chiamate equazioni di Chapman Kolmogorov. Per ricavare le probabilità degli stati del processo all istante n occorre conoscere le probabilità dello stato iniziale.

18 Probabilità degli Stati all istante n Se si dispongono delle probabilità iniziali (i 1,2,...,N ): P X i 1 i le probabilità degli stati all istante n si ottengono mediante il Teorema della Probabilità Totale: N n P X j P X i P X j X i P n 1 n 1 i ij i1 i1 N

19 Probabilità degli Stati all istante n Se il vettore (trasposto) delle probabilità di stato è: si ha: n T x PX,,..., n 1 P Xn 2 P Xn N e quindi: T n n 1 x x T P T n 1 n x x T P

20 Il concetto di Raggiungibilità Uno stato j è raggiungibile da uno stato i se esiste almeno un istante n tale che n P 0. ij Un insieme C di stati si dirà chiuso se da stati appartenenti a C non è possibile raggiungere stati esterni a C. Nella matrice delle probabilità di transizione: Pij 0 ic, j C.

21 STATI RICORRENTI E TRANSITORI Lo stato è transitorio se esiste uno stato raggiungibile da, mentre non è raggiungibile da. Lo stato è ricorrente se: cioè, se non è transitorio.

22 Il concetto di Stato Assorbente Se l insieme C è costituito da un singolo stato, questo si chiama assorbente. Per il generico stato assorbente si ha quindi: Pii 1 Pij 0 j i B C A E 1 p D Uno stato assorbente è transitorio. La figura mostra una Catena di Markov con un insieme chiuso (B, C, D) ed uno stato assorbente E.

23 Catena di Markov Regolare Se esiste un numero finito m tale che in m passi tutti gli stati sono raggiungibili a partire da qualsiasi stato, cioè: ( m) ij P 0 i, j la catena viene detta regolare. Per una catena regolare esiste quindi almeno una potenza della matrice delle probabilità di transizione i cui elementi sono tutti non nulli.

24 Teorema di Markov Ci sono condizioni sotto le quali le probabilità di stato convergono al passare del tempo (esistono finiti i limiti): lim P X j j 1,...,N n n Tali condizioni sono date dal Teorema di Markov: Se la catena è regolare (cioè esiste un m tale che ( m) ij P 0 i, j), allora esistono delle quantità j tali che: lim P n ij n i 1, 2,..., N j

25 Vettore Limite delle Probabilità di Stato Le probabilità di stato j, per n che tende ad infinito, a partire dallo stato iniziale i esimo avente probabilità i 1,2,...,N, si ottengono dalle relazioni: i n n lim P j n i ij n n n i 0 N N N i ij i j j i j n i0 i0 i0 N n lim x lim P X j lim P cioè sono uguali alle probabilità limite di transizione.

26 Vettore Limite delle Probabilità di Stato Il vettore limite delle probabilità di stato deve essere, per le sue caratteristiche, invariante, cioè tale che (in virtù della relazione già vista T n 1 n x x T P ) sia: T P T può essere determinato risolvendo il sistema di equazioni lineari corrispondente a questa relazione di invarianza.

27 ESEMPIO DI VETTORE LIMITE 1-pG pg P = ; x = p 1-p M M x x 1 2 Con Risolvendo G G cioè

28 Applicazioni Processi di Nascita e Morte Teoria delle file di attesa (teoria delle code) Molte altre

SISTEMI CASUALI DINAMICI (PROCESSI) ESEMPIO: I GUASTI (Ipotesi Markoviana) Frequenza dei guasti: N Guasti = N/T X X X X X X X

SISTEMI CASUALI DINAMICI (PROCESSI) ESEMPIO: I GUASTI (Ipotesi Markoviana) Frequenza dei guasti: N Guasti = N/T X X X X X X X CATENE DI MARKOV SISTEMI CASUALI DINAMICI (PROCESSI) ESEMPIO: I GUASTI (Ipotesi Markoviana) Frequenza dei guasti: N Guasti = N/T X X X X X X X X X 0 T 0 T! Δ 0, 1,, 0 Δ 1 Δ Δ 1Δ Δ Δ ESEMPIO: I GUASTI (Ipotesi

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE CATENE DI MARKOV TEMPO CONTINUE Definizioni Sia dato un processo stocastico x(t) che può assumere valori discreti appartenenti ad un insieme se accade che il processo è una catena

Dettagli

Note sulle Catene di Markov

Note sulle Catene di Markov Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo

Dettagli

5. Catene di Markov a tempo discreto (CMTD)

5. Catene di Markov a tempo discreto (CMTD) 5. Catene di Markov a tempo discreto (CMTD) Carla Seatzu, 8 Marzo 2008 Definizione: CATENA Le catene sono p.s. in cui lo stato è discreto : X{x,x 2, }. L insieme X può essere sia finito sia infinito numerabile.

Dettagli

Catene di Markov. Richiami teorici

Catene di Markov. Richiami teorici Catene di Marov Richiami teorici Pagina di 4 Alcune definizioni L insieme di tutti i possibili risultati di un esperimento è detto spazio degli eventi dell esperimento. Lo spazio si indica con Ω ed un

Dettagli

VETTORI DI VARIABILI ALEATORIE

VETTORI DI VARIABILI ALEATORIE VETTOI DI VAIABILI ALEATOIE E. DI NADO 1. Funzioni di ripartizione congiunte e marginali Definizione 1.1. Siano X 1, X 2,..., X n v.a. definite su uno stesso spazio di probabilità (Ω, F, P ). La n-pla

Dettagli

PROCESSI STOCASTICI 1: ESERCIZI

PROCESSI STOCASTICI 1: ESERCIZI PROCESSI STOCASTICI 1: ESERCIZI (1) ESERCIZIO: Date P e Q matrici stocastiche, dimostrare che la matrice prodotto P Q è una matrice stocastica. Dedurre che la potenza P n e il prodotto P 1 P 2 P n sono

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE CATENE DI MARKOV TEMPO DISCRETE Definizioni Catena: Processo stocastico in cui lo spazio degli stati è discreto o numerabile Processo stocastico tempo discreto: Si considerano

Dettagli

Catene di Markov a tempo continuo. Richiami teorici

Catene di Markov a tempo continuo. Richiami teorici Catene di Marov a tempo continuo Richiami teorici Pagina di 55 Data ultima revisione 2/5/ Definizione di catena di Marov a Una catena di Marov a è definita come: M(X, P(t)) t R + dove gli stati x,...,

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di PS-Probabilità P.Baldi Tutorato 9, 19 maggio 11 Corso di Laurea in Matematica Esercizio 1 a) Volendo modellizzare l evoluzione della disoccupazione in un certo ambito

Dettagli

Processi stocastici A.A Corso di laurea Magistrale in Statistica Univ. degli Studi di Palermo

Processi stocastici A.A Corso di laurea Magistrale in Statistica Univ. degli Studi di Palermo Processi stocastici A.A. 09 0 Corso di laurea Magistrale in Statistica Univ. degli Studi di Palermo G. Sanfilippo 20 maggio 200 Registro delle lezioni. Lezione del 3 Marzo 200, 8-, ore complessive 3 Richiami

Dettagli

Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un rating all altro secondo la matrice di transizione

Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un rating all altro secondo la matrice di transizione Esercizi di Calcolo delle Probabilità della 10 a Matematica, Università degli Studi di Padova). settimana (Corso di Laurea in Esercizio 1. Una obbligazione può avere rating A, B, C o D e passare da un

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Teoria delle File di Attesa

Teoria delle File di Attesa Teoria delle File di Attesa Una coda, o fila di attesa, si forma quando degli utenti attendono di essere serviti da uno o più serventi. Esempi: Studenti agli sportelli della segreteria Utenti di un centro

Dettagli

Markov Chains and Markov Chain Monte Carlo (MCMC)

Markov Chains and Markov Chain Monte Carlo (MCMC) Markov Chains and Markov Chain Monte Carlo (MCMC) Alberto Garfagnini Università degli studi di Padova December 11, 2013 Catene di Markov Discrete dato un valore x t del sistema ad un istante di tempo fissato,

Dettagli

Un modello di Markov per la determinazione del rendimento atteso di un obbligazione rischiosa

Un modello di Markov per la determinazione del rendimento atteso di un obbligazione rischiosa Un modello di Markov per la determinazione del rendimento atteso di un obbligazione rischiosa Analisi dei Sistemi Finanziari 1 Giugno, 2007 Cristina Manfredotti Dipartimento di Informatica, Sistemistica

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2013/2014 www.mat.uniroma2.it/~caramell/did 1314/ps.htm 04/03/2014 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Metodo degli Elementi finiti: elementi monodimensionali Risoluzione di casi con più elementi

Metodo degli Elementi finiti: elementi monodimensionali Risoluzione di casi con più elementi Metodo degli Elementi finiti: elementi monodimensionali Risoluzione di casi con più elementi 1 Metodo degli Elementi finiti: elementi monodimensionali Risoluzione di casi con più elementi 2 Metodo degli

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Istituzioni di Matematiche sesta parte

Istituzioni di Matematiche sesta parte Istituzioni di Matematiche sesta parte anno acc. 2013/2014 Univ. Studi di Milano D.Bambusi, C.Turrini (Univ. Studi di Milano Istituzioni di Matematiche 1 / 27 index Matrici e operazioni tra matrici 1 Matrici

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

Lezione 11. Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale

Lezione 11. Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale Lezione Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale Matrici. Somma Date due matrici n x m, A = A ij e B = B ij, con i =,,,

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2012/2013 www.mat.uniroma2.it/~caramell/did 1213/ps.htm 05/03/2013 - Lezioni 1, 2, 3 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Catene di Markov. 8 ottobre 2009

Catene di Markov. 8 ottobre 2009 Catene di Markov 8 ottobre 2009 Definizione 1. Si dice catena di Markov (finita) un sistema dotato di un numero finito n di stati {1, 2,..., n} che soddisfi la seguente ipotesi: la probabilità che il sistema

Dettagli

Stazionarietà. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 3: Processi Stocastici 3-1

Stazionarietà. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 3: Processi Stocastici 3-1 IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 3: Processi Stocastici Motivazioni Esempi Definizione Dualitá Stazionarietà 3-1 Motivazioni In molti settori scientifici sia tecnologici che economico-sociali

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea Specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Cenni alla sintesi di Circuiti TD Generalità sulle tecniche di progetto. Filtri

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2016/17 Processi stocastici e analisi di serie temporali

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2016/17 Processi stocastici e analisi di serie temporali Corso di Laurea Magistrale in Ingegneria Informatica A.A. 206/7 Processi stocastici e analisi di serie temporali PROVA DI ESONERO SUI PROCESSI DI MARKOV DEL 6 DICEMBRE 206 Punteggi: : + + 4 2; 2: 2 5;

Dettagli

Corso di Automazione Industriale 1. Capitolo 6. Catene di Markov

Corso di Automazione Industriale 1. Capitolo 6. Catene di Markov Corso di Automazione Industriale 1 Capitolo 6 Catene di Markov 1 Catene di Markov a tempo discreto Una catena di Markov a tempo discreto (DTMC) è un sistema a stato e tempo discreti in cui l evoluzione

Dettagli

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2

ESERCIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 ESECIZI DATI A LEZIONE TPA - anno 2006 CAPITOLO 2 1. Una σ algebra è chiusa rispetto a intersezioni finite e numerabili, e rispetto a differenze e differenze simmetriche. 2. Una σ algebra è anche un algebra,

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2014/2015 Univ. Studi di Milano E.Frigerio, C.Turrini (Univ. Studi di Milano Istituzioni di Matematiche 1 / 30 index Generalità sugli insiemi 1 Generalità

Dettagli

I appello di CP per Informatica 19/6/2006

I appello di CP per Informatica 19/6/2006 I appello di CP per Informatica 9/6/26 Istruzioni: per l esame completo occorre svolgere il primo esercizio e il terzo o (in alternativa al terzo) il quarto; a sostituzione del I esonero occorre svolgere

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

λ è detto intensità e rappresenta il numero di eventi che si

λ è detto intensità e rappresenta il numero di eventi che si ESERCITAZIONE N 1 STUDIO DI UN SISTEMA DI CODA M/M/1 1. Introduzione Per poter studiare un sistema di coda occorre necessariamente simulare gli arrivi, le partenze e i tempi di ingresso nel sistema e di

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano Istituzioni di Matematiche 1 / 33 index Generalità sugli insiemi 1 Generalità

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2014/2015 www.mat.uniroma2.it/~caramell/did 1415/ps.htm 02/03/2015 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

PROCESSI STOCASTICI A.A. 2010/2011. DIARIO DELLE LEZIONI

PROCESSI STOCASTICI A.A. 2010/2011. DIARIO DELLE LEZIONI PROCESSI STOCASTICI A.A. 2010/2011. DIARIO DELLE LEZIONI Martedì 19/10/2010 (14-16) Richiami di teoria della probabilità: spazio di probabilità, alcune consequenze della definizione di funzione di probabilità,

Dettagli

Teoria delle Probabilità e Applicazioni programma 2004/05

Teoria delle Probabilità e Applicazioni programma 2004/05 Teoria delle Probabilità e Applicazioni programma 2004/05 Capitolo 1: esempio guida Lezioni: 8/3, 9/3 (5h) 1. Come modellizzare l esperimento infiniti lanci di una moneta equilibrata oppure l esperimento

Dettagli

SISTEMI DI EQUAZIONI LINEARI

SISTEMI DI EQUAZIONI LINEARI SISTEMI DI EQUAZIONI LINEARI Date le rette di equazioni ax + by + c = 0 e a x + b y + c = 0 quanti punti hanno in comune? Per rispondere devo risolvere il sistema ax + by + c = 0 ቊ a x + b y + c = 0 e

Dettagli

Tutorato XI Probabilità e Statistica a.a. 2014/2015

Tutorato XI Probabilità e Statistica a.a. 2014/2015 Tutorato XI Probabilità e Statistica a.a. 4/5 Argomenti: catene di Markov: probabilità e tempi medi di passaggio. Esercizio. Un topolino si sposta sui vertici di un grafo come nella Figura. 4 5 7 6 Ad

Dettagli

GEOMETRIA 1 prima parte

GEOMETRIA 1 prima parte GEOMETRIA 1 prima parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 44 index Relazioni in un insieme 1 Relazioni in un insieme 2 Gruppi,

Dettagli

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}. APPLICAZIONI Diremo applicazione (o funzione) da un insieme A ad un insieme B una legge f che associa ad ogni elemento a A uno ed un solo elemento b B. Scriviamo f : A B e il corrispondente o immagine

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI MATRICI E SISTEMI LINEARI - PARTE I - Felice Iavernaro Dipartimento di Matematica Università di Bari 27 Febbraio 2006 Felice Iavernaro (Univ. Bari) Matrici e Sistemi lineari 27/02/2006 1 / 1 Definizione

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Esercitazione

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Esercitazione Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (55AA) A.A. 28/9 - Esercitazione 28--9 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

Limiti della Distribuzione Binomiale

Limiti della Distribuzione Binomiale Limiti della Distribuzione Binomiale Giuseppe Sanfilippo 11 maggio 2012 1 Teorema di Bernoulli Sia X 1, X 2,..., X n... una successione di variabili aleatorie bernoulliane stocasticamente indipendenti

Dettagli

Luigi Piroddi

Luigi Piroddi Automazione industriale dispense del corso (a.a. 2008/2009) 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI 2 Direttore Beatrice VENTURI Università degli Studi di Cagliari Comitato scientifico Umberto NERI University of

Dettagli

Definizione di Sistema Dinamico

Definizione di Sistema Dinamico Capitolo 1. INTRODUZIONE 1.1 Definizione di Sistema Dinamico Esistono vari tipi di sistemi dinamici: tempo continui, tempo discreti, lineari, non lineari, a variabili concentrate, a variabili distribuite,

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE Modelli delle Sorgenti di Traffico Generalità Per la realizzazione di un modello analitico di un sistema di telecomunicazione dobbiamo tenere in considerazione 3 distinte sezioni

Dettagli

Proprietà strutturali: Controllabilità e Osservabilità

Proprietà strutturali: Controllabilità e Osservabilità CONTROLLI AUTOMATICI LS Ingegneria Informatica Proprietà strutturali: Controllabilità e Osservabilità Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 051 2093034 e-mail: claudio.melchiorri@deis.unibo.it

Dettagli

PreCorso di Matematica - PCM Corso M-Z

PreCorso di Matematica - PCM Corso M-Z PreCorso di Matematica - PCM Corso M-Z DOCENTE: M. Auteri Outline Docente: Auteri PreCorso di Matematica 2016 2 Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti

Dettagli

Processi stocastici. variabile casuale: funzione da uno spazio campione S a valori nello spazio E R X(t) : S E. spazio degli stati del processo

Processi stocastici. variabile casuale: funzione da uno spazio campione S a valori nello spazio E R X(t) : S E. spazio degli stati del processo Processi stocastici Processo stocastico: famiglia di variabili casuali {X(t) t T} definite su uno spazio di probabilità indiciate dal parametro t (tempo) X(t) variabile casuale: funzione da uno spazio

Dettagli

Lezione del dove a 1, a n e b sono numeri reali assegnati, detti coefficienti e termine noto dell equazione;

Lezione del dove a 1, a n e b sono numeri reali assegnati, detti coefficienti e termine noto dell equazione; Le lezioni del 60 e 010 si riferiscono al Capitolo 1 Introduzione ai sistemi lineari Di seguito si elencano gli argomenti svolti, descrivendoli sinteticamente dando i riferimenti a tale capitolo, oppure

Dettagli

Luigi Piroddi

Luigi Piroddi Automazione industriale dispense del corso (a.a. 2008/2009) 8. Reti di Petri: rappresentazione algebrica Luigi Piroddi piroddi@elet.polimi.it Rappresentazione matriciale o algebrica E possibile analizzare

Dettagli

Capitolo 2 - Modelli di sistemi: processi stocastici

Capitolo 2 - Modelli di sistemi: processi stocastici Capitolo 2 - Modelli di sistemi: processi stocastici I processi stocastici costituiscono una classe di modelli di sistemi che permette lo studio e l analisi dei sistemi. In questo capitolo introduciamo

Dettagli

Problema. Sistemi lineari. Problema. Problema. Quali sono i potenziali in ogni nodo? Leggi di Kirkoff e di Ohm:

Problema. Sistemi lineari. Problema. Problema. Quali sono i potenziali in ogni nodo? Leggi di Kirkoff e di Ohm: Problema 4 Ω 3 3 Ω 2 2 Ω 40 V Sistemi lineari 2 Ω Ω 2 Ω Ω 5 6 7 8 Ω 4 Ω Ω 0 V Quali sono i potenziali in ogni nodo? 2 4 Ω Problema 3 3 Ω 2 2 Ω 40 V 4 Ω Problema 3 3 Ω 2 2 Ω 40 V 2 Ω Ω 2 Ω Ω 2 Ω Ω 2 Ω Ω

Dettagli

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 013/14 Nome: 16 luglio 014 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Correzione di Esercizi 4 di Calcolo delle Probabilità e Statistica. Mercoledì 4 maggio 2016

Correzione di Esercizi 4 di Calcolo delle Probabilità e Statistica. Mercoledì 4 maggio 2016 Correzione di Esercizi di Calcolo delle Probabilità e Statistica. Mercoledì maggio 6 Chun Tian. Answer of Exercise Figure. Catena di Markov.. (a) Le classi di equivalenza e i loro periodi. Da Figure, si

Dettagli

Controllabilità e raggiungibilità

Controllabilità e raggiungibilità TDSC Parte 4, 1 Controllabilità e raggiungibilità Definizioni e proprietà per i sistemi dinamici TDSC Parte 4, 2 Definizioni generali Che cosa si intende per controllabilità o per raggiungibilità?! Facendo

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova scritta

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova scritta Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 208/9 - Prova scritta 209-0-09 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

1.4.2 Proprietà di Markov. Catene di Markov a tempo continuo

1.4.2 Proprietà di Markov. Catene di Markov a tempo continuo PROCESSI DI NASCITA E MORTE 35 14 PROCESSI DI NASCITA E MORTE Molti sistemi a coda possono essere ben rappresentati mediante i cosiddetti processi di nascita e morte che sono importanti processi in teoria

Dettagli

PROCESSI STOCASTICI 1: ESERCIZI

PROCESSI STOCASTICI 1: ESERCIZI PROCESSI STOCASTICI 1: ESERCIZI (1) ESERCIZIO: Date P e Q matrici stocastiche, dimostrare che la matrice prodotto P Q è una matrice stocastica. Dedurre che la potenza P n e il prodotto P 1 P 2 P n sono

Dettagli

CP110 Probabilità: Esame del 15 settembre Testo e soluzione

CP110 Probabilità: Esame del 15 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 15 settembre, 2010 CP110 Probabilità: Esame del 15 settembre 2010 Testo e soluzione 1. (6 pts) 10 carte numerate da 1 a 10 vengono

Dettagli

di transizione p n,m ( t) = P N(t + t) = m N(t) = n.

di transizione p n,m ( t) = P N(t + t) = m N(t) = n. PROCESSI DI NASCITA E MORTE 33 14 PROCESSI DI NASCITA E MORTE Molti sistemi a coda possono essere ben rappresentati mediante i cosiddetti processi di nascita e morte che sono importanti processi in teoria

Dettagli

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo a Proprietà Letteraria Riservata

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 29 maggio 2007 Test di indipendenza su tabelle di contingenza. Catene di Markov Esercizio Per controllare l efficacia di un vaccino vengono scelti

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Raggiungibilità e controllabilità

Raggiungibilità e controllabilità Capitolo. TEORIA DEI SISTEMI 4. Raggiungibilità e controllabilità Raggiungibilità. Il problema della raggiungibilità consiste nel determinare l insieme di stati raggiungibili a partire da un dato stato

Dettagli

Osservabilità e ricostruibilità

Osservabilità e ricostruibilità Capitolo. TEORIA DEI SISTEMI 5. Osservabilità e ricostruibilità Osservabilità: il problema dell osservabilità consiste nel determinare lo stato iniziale x(t ) mediante osservazioni degli ingressi u(t)

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Metodi di Geometria Algebrica per la ricostruzione statistica degli alberi filogenetici Luigi Biondi

Metodi di Geometria Algebrica per la ricostruzione statistica degli alberi filogenetici Luigi Biondi Metodi di Geometria Algebrica per la ricostruzione statistica degli alberi filogenetici Luigi Biondi 20 Luglio 2011 Specie 1: ACGTACTACTGCAGTCCTAGCTGATCGT... Specie 2: ACTGTCGATCATGCTAATCGATGCATCG... Specie

Dettagli

Si noti che la matrice trasposta A ha lo stesso determinante. Questa proprietà è generale;

Si noti che la matrice trasposta A ha lo stesso determinante. Questa proprietà è generale; Ottavio Serra Matrici e determinanti In questa nota estenderemo a matrici quadrate di ordine n qualsiasi il concetto di determinante introdotto nelle scuole secondarie per matrici di ordine 2 come tecnica

Dettagli

Teoria delle File di Attesa Una coda, o fila di attesa, si forma quando degli utenti attendono di essere serviti da uno o più serventi.

Teoria delle File di Attesa Una coda, o fila di attesa, si forma quando degli utenti attendono di essere serviti da uno o più serventi. Teoria delle File di Attesa Una coda, o fila di attesa, si forma quando degli utenti attendono di essere serviti da uno o più serventi. Esempi: Studenti agli sportelli della segreteria Utenti di un centro

Dettagli

Esercitazione 03: Sistemi a tempo discreto

Esercitazione 03: Sistemi a tempo discreto 0 aprile 06 (h) Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina Analisi di investimenti Una banca propone un tasso d interesse i = 3% trimestrale

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Catene di Markov - Foglio 1

Catene di Markov - Foglio 1 Catene di Markov - Foglio 1 1. Una pedina si muove su un circuito circolare a 4 vertici, numerati da 1 a 4. La pedina si trova inizialmente nel vertice 1. Ad ogni passo un giocatore lancia un dado equilibrato:

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

Processi di Markov. Processi di Markov

Processi di Markov. Processi di Markov Processi Stocastici Processi Stocastici Processi Stocastici Catene o Catene o Catene di M Processi Stocastici Processi Stocastici Processi Stocastici Catene o Catene o Catene di M Processi Stocastici Un

Dettagli

Spazi vettoriali. Indipendenza lineare.

Spazi vettoriali. Indipendenza lineare. Spazi vettoriali Indipendenza lineare Nel piano vettoriale G 2, fissato un punto O ed identificati i vettori con i segmenti orientati con origine in O, informalmente si puo dire che che due vettori sono

Dettagli

Reti nel dominio del tempo. Lezione 7 1

Reti nel dominio del tempo. Lezione 7 1 Reti nel dominio del tempo Lezione 7 1 Poli (o frequenze naturali) di una rete Lezione 7 2 Definizione 1/2 Il comportamento qualitativo di una rete dinamica dipende dalle sue frequenze naturali o poli

Dettagli

CP110 Probabilità: Esame del 25 gennaio, Testo e soluzione

CP110 Probabilità: Esame del 25 gennaio, Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 25 gennaio, 2011 CP110 Probabilità: Esame del 25 gennaio, 2011 Testo e soluzione 1. (6 pts Un mazzo di 20 carte contiene 15 carte

Dettagli

Sommario lezioni di geometria

Sommario lezioni di geometria Sommario lezioni di geometria C. Franchetti November 12, 2006 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 ) indica

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 4 Abbiamo visto: Distribuzioni discrete Modelli probabilistici nel discreto Distribuzione uniforme

Dettagli

Sistemi lineari 1 / 41

Sistemi lineari 1 / 41 Sistemi lineari 1 / 41 Equazioni lineari Una equazione lineare a n incognite, è una equazione del tipo: a 1 x 1 + a 2 x 2 + + a n x n = b, dove a 1,,a n,b sono delle costanti (numeri) reali. I simboli

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

PROCESSI STOCASTICI 1: INTEGRAZIONI

PROCESSI STOCASTICI 1: INTEGRAZIONI PROCESSI STOCASTICI 1: INTEGRAZIONI 1. Definizioni e risultati sparsi Def. Dato un insieme I, si chiama processo stocastico con spazio degli stati I una famiglia {X t } t T di variabili aleatorie a valori

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 8: Vettori e Matrici

Laboratorio di Calcolo Numerico Laboratorio 8: Vettori e Matrici Laboratorio di Calcolo Numerico Laboratorio 8: Vettori e Matrici Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 03 Maggio 2017 Richiami In MATLAB, ogni variabile

Dettagli

Motivazioni. Sistemi lineari. Obiettivo. Il problema

Motivazioni. Sistemi lineari. Obiettivo. Il problema Motivazioni Sistemi lineari Metodo di eliminazione di Gauss Molti problemi si possono rappresentare mediante un sistema lineare La soluzione di un sistema lineare costituisce un sottoproblema di moltissime

Dettagli

a a 1n A = a n1... a nn a 11 x a 1n x n = b 1 a n1 x a nn x n = b n ] sono determinati. 2- La matrice A = [ a ij

a a 1n A = a n1... a nn a 11 x a 1n x n = b 1 a n1 x a nn x n = b n ] sono determinati. 2- La matrice A = [ a ij Recupero. 2, Determinanti. 1. Determinanti Consideriamo una matrice A = a 11... a 1n.. a n1... a nn quadrata di ordine n ad elementi in R. Sappiamo che sono equivalenti la affermazioni 1- tutti i sistemi

Dettagli

3. Trovare, se esiste, una funzione di ingresso che porti il sistema da x(0) = x allo stato 0.

3. Trovare, se esiste, una funzione di ingresso che porti il sistema da x(0) = x allo stato 0. Esempio Per il sistema a tempo discreto x(k + ) = Ax(k) + Bu(k) avente: A =, B =, si considerino i seguenti quesiti:. Il sistema è raggiungibile? è controllabile?. Lo stato x = [ ] è raggiungibile? è controllabile?.

Dettagli

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel CONTROLLI AUTOMATICI LS Ingegneria Informatica Sistemi a Dati Campionati Prof. DEIS-Università di Bologna Tel. 51 29334 e-mail: claudio.melchiorri@unibo.it http://www-lar lar.deis.unibo.it/people/cmelchiorri

Dettagli

Approssimazione numerica

Approssimazione numerica Approssimazione numerica Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Approssimazione numerica p.1/10 Problema

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli