Feature Selection per la Classificazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Feature Selection per la Classificazione"

Transcript

1 1 1 Dipartimento di Informatica e Sistemistica Sapienza Università di Roma Corso di Algoritmi di Classificazione e Reti Neurali 20/11/2009, Roma

2 Outline Feature Selection per problemi di Classificazione Classificazione e Feature Selection Metodi per la Feature Selection Modelli Lineari Spider Info

3 Apprendimento Supervisionato Consideriamo una dipendenza funzionale g : X Y ed un insieme di coppie di valori (Training Set): T = {(x i, y i ) x i X, y i Y and i = 1,...,m} GOAL: Estrarre una stima ĝ di g

4 Apprendimento Supervisionato Consideriamo una dipendenza funzionale g : X Y ed un insieme di coppie di valori (Training Set): T = {(x i, y i ) x i X, y i Y and i = 1,...,m} GOAL: Estrarre una stima ĝ di g

5 Apprendimento Supervisionato Consideriamo una dipendenza funzionale g : X Y ed un insieme di coppie di valori (Training Set): T = {(x i, y i ) x i X, y i Y and i = 1,...,m} GOAL: Estrarre una stima ĝ di g

6 Problemi di Classificazione Spazio di Input diviso in k sottoinsiemi X 1,...,X k X tali che Spazio di Output Y = {1,...,k} X i X j = i, j = 1,...,k, i j GOAL: Assegnare ciascun vettore di input x al sottoinsieme a cui appartiene Classificazione Binaria: due insiemi X 1, X 2 X, tali che X 1 X 2 = +1 se x X 1 g(x) = (1) 1 se x X 2

7 Problemi di Classificazione Spazio di Input diviso in k sottoinsiemi X 1,...,X k X tali che Spazio di Output Y = {1,...,k} X i X j = i, j = 1,...,k, i j GOAL: Assegnare ciascun vettore di input x al sottoinsieme a cui appartiene Classificazione Binaria: due insiemi X 1, X 2 X, tali che X 1 X 2 = +1 se x X 1 g(x) = (1) 1 se x X 2

8 Problemi di Classificazione Spazio di Input diviso in k sottoinsiemi X 1,...,X k X tali che Spazio di Output Y = {1,...,k} X i X j = i, j = 1,...,k, i j GOAL: Assegnare ciascun vettore di input x al sottoinsieme a cui appartiene Classificazione Binaria: due insiemi X 1, X 2 X, tali che X 1 X 2 = +1 se x X 1 g(x) = (1) 1 se x X 2

9 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

10 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

11 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

12 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

13 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

14 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

15 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

16 Generalizzazione GENERALIZZAZIONE strettamente connessa con COMPLESSITÀ Overfitting ĝ troppo complessa approssimazione non buona di g sul Test Set Underfitting ĝ troppo semplice approssimazione non buona di g sul Training Set GOAL: Trovare complessità ottimale per ĝ (i.e. il modello più semplice che garantisce buone performance sui dati di training)

17 Generalizzazione GENERALIZZAZIONE strettamente connessa con COMPLESSITÀ Overfitting ĝ troppo complessa approssimazione non buona di g sul Test Set Underfitting ĝ troppo semplice approssimazione non buona di g sul Training Set GOAL: Trovare complessità ottimale per ĝ (i.e. il modello più semplice che garantisce buone performance sui dati di training)

18 Generalizzazione GENERALIZZAZIONE strettamente connessa con COMPLESSITÀ Overfitting ĝ troppo complessa approssimazione non buona di g sul Test Set Underfitting ĝ troppo semplice approssimazione non buona di g sul Training Set GOAL: Trovare complessità ottimale per ĝ (i.e. il modello più semplice che garantisce buone performance sui dati di training)

19 Procedure di Cross-Validation - k-fold Cross-Validation: 1) Training Set diviso in k distiti segmenti T 1,..., T k ; 2) Funzione ĝ costruita mediante un algoritmo d apprendimento utilizzando i dati da k 1 segmenti; 3) Performance testate utilizzando i segmenti rimanenti; 4) Processo iterato per ognuna delle k possibili scelte per il segmento omesso dal processo di training, e calcolo della media sui k risultati. - Leave-one-out: k uguale al numero dei dati di training GOAL: Valutare le capacità di generalizzazione di ĝ

20 Procedure di Cross-Validation - k-fold Cross-Validation: 1) Training Set diviso in k distiti segmenti T 1,..., T k ; 2) Funzione ĝ costruita mediante un algoritmo d apprendimento utilizzando i dati da k 1 segmenti; 3) Performance testate utilizzando i segmenti rimanenti; 4) Processo iterato per ognuna delle k possibili scelte per il segmento omesso dal processo di training, e calcolo della media sui k risultati. - Leave-one-out: k uguale al numero dei dati di training GOAL: Valutare le capacità di generalizzazione di ĝ

21 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

22 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

23 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

24 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

25 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

26 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

27 Feature Selection Definizione Processo per selezionare un sottoinsieme minimo di features, garantendo buone performance e una stima accurata di g sul Training Set Motivazioni: 1. riduzione dei dati 2. miglioramento della predizione 3. comprensione dei dati

28 Feature Selection in Pratica Scelta del Sottoinsieme di Features In uno spazio n-dimensionale, i metodi di feature selection cercano di trovare il migliore sottoinsieme, tra i 2 n sottoinsiemi candidati, in accordo con uno specifico criterio Problema Ricerca troppo costosa quando n diventa grande Soluzione Procedura per prevenire la ricerca esaustiva

29 Feature Selection in Pratica Scelta del Sottoinsieme di Features In uno spazio n-dimensionale, i metodi di feature selection cercano di trovare il migliore sottoinsieme, tra i 2 n sottoinsiemi candidati, in accordo con uno specifico criterio Problema Ricerca troppo costosa quando n diventa grande Soluzione Procedura per prevenire la ricerca esaustiva

30 Feature Selection in Pratica Scelta del Sottoinsieme di Features In uno spazio n-dimensionale, i metodi di feature selection cercano di trovare il migliore sottoinsieme, tra i 2 n sottoinsiemi candidati, in accordo con uno specifico criterio Problema Ricerca troppo costosa quando n diventa grande Soluzione Procedura per prevenire la ricerca esaustiva

31 Approcci Basati sul Machine Learning Suddivisi in tre diverse classi: 1. Filter: selezionano un sottoinsieme di variabili in fase di preprocessamento, senza tener conto del predittore utilizzato. 2. Wrapper: utilizzano una determinata macchina per l apprendimento come black box per determinare il potere predittivo di un sottoinsieme di variabili. 3. Metodi Embedded: Selezione delle variabili come parte del processo di training.

32 Metodi Filter Indipendenti dal predittore utilizzato per la classificazione Performance valutate solo sulla base di metriche calcolate direttamente dai dati Meno costosi dei metodi Wrapper

33 Metodi Filter: Funzione di Scoring Funzione di Scoring dato un sottoinsieme di variabili S, e un insieme di training D, la funzione di scoring F(S) calcola la rilevanza del sottoinsieme S per la classificazione. Funzione di Scoring Utilizzando questi indici per le singole feature x j con j = 1,..., n, possiamo ordinare le variabili: F(x j1 ) F(x j2 ) F(x jn ). Scelta Feature Le feature con un valore basso della funzione di scoring vengono scartate

34 Metodi Filter: Funzione di Scoring Funzione di Scoring dato un sottoinsieme di variabili S, e un insieme di training D, la funzione di scoring F(S) calcola la rilevanza del sottoinsieme S per la classificazione. Funzione di Scoring Utilizzando questi indici per le singole feature x j con j = 1,..., n, possiamo ordinare le variabili: F(x j1 ) F(x j2 ) F(x jn ). Scelta Feature Le feature con un valore basso della funzione di scoring vengono scartate

35 Un esempio di Funzione di Scoring: F-Score F-Score dato un insieme di vettori di training x i, con i = 1,..., m, indichiamo il numero di istanze positive e negative rispettivamente con n + e n. Il valore F-score viene calcolato come segue: F(i) = ( x (+) i x i ) 2 + ( x ( ) 1 n+ n + 1 k=1 (x(+) x (+) ) k,i i n 1 i x i ) 2 n k=1 (x( ) k,i x ( ) i ) 2 Significato numeratore indica la discriminazione tra le due classi il denominatore indica la discriminazione per singola classe maggiore l indice, maggiore la possibilità che la variabile considerata sia capace di discriminare.

36 Un esempio di Funzione di Scoring: F-Score F-Score dato un insieme di vettori di training x i, con i = 1,..., m, indichiamo il numero di istanze positive e negative rispettivamente con n + e n. Il valore F-score viene calcolato come segue: F(i) = ( x (+) i x i ) 2 + ( x ( ) 1 n+ n + 1 k=1 (x(+) x (+) ) k,i i n 1 i x i ) 2 n k=1 (x( ) k,i x ( ) i ) 2 Significato numeratore indica la discriminazione tra le due classi il denominatore indica la discriminazione per singola classe maggiore l indice, maggiore la possibilità che la variabile considerata sia capace di discriminare.

37 F-Score: Problema F-score non rivela la mutua informazione tra le feature

38 Metodi Wrappers Utilizza le performance di predizione di un classificatore per determinare l importanza di un sottoinsieme di variabili Necessaria una strategia di ricerca efficiente (ricerca esaustiva possibile solo se numero di variabili limitato) Costo dipende dal metodo di ricerca utilizzato

39 Strategie di Ricerca Greedy Metodi Greedy Rappresentano una classe di strategie di ricerca molto efficiente dal punto di vista computazionale Forward Selection Comincia dall insieme vuoto e include progressivamente nuove variabili Backward Elimination Comincia dall insieme completo delle feature e elimina progressivamente le variabili meno promettenti

40 Strategie di Ricerca Greedy Metodi Greedy Rappresentano una classe di strategie di ricerca molto efficiente dal punto di vista computazionale Forward Selection Comincia dall insieme vuoto e include progressivamente nuove variabili Backward Elimination Comincia dall insieme completo delle feature e elimina progressivamente le variabili meno promettenti

41 Metodi Embedded Incorporano la feature selection come parte del processo di training Problema formulato come segue: min g(w, X, Y) w R n (2) s.t. w 0 s 0 g misura le performance del classificatore selezionato, descritto dal vettore di parametri w, e dal training set (X, Y). Norma l 0 formulata come segue: w 0 = card{w i : w i 0}

42 Metodi Embedded II Problema (2) riscritto come segue: min w R n g(w, X, Y) + λs(w) (3) con λ > 0, s approssimazione di w 0. alcuni embedded methods aggiungono o rimuovono in maniera iterativa le features dai dati per approssimare una soluzione del problema (3).

43 Modelli Lineari per la Feature Selection Consideriamo due insiemi A e B in R n di m e k punti rispettivamente A e B sono rappresentati dalle matrici A R m n e B R k n : ogni punto rappresenta una riga della matrice. Vogliamo costruire un iperpiano di separazione: P = {x x R n, x T w = γ}, (4) eliminando il maggior numero di componenti possibili di w. L iperpiano di separazione P determina due semispazi aperti: - {x x R n, x T w > γ} contenente principalmente punti di A; - {x x R n, x T w < γ} contenente principalmente punti di B.

44 Modelli Lineari per la Feature Selection II Vogliamo soddisfare le seguenti disuguaglianze: Versione normalizzata: Aw > eγ, Bw < eγ (5) Aw γ + e, Bw eγ e. (6) Nelle applicazioni reali dati linearmente separabili sono difficili da trovare. Cerchiamo di soddisfare le (6), in senso approssimato: 1 min f(w, γ) = min w,γ w,γ m ( Aw + eγ + e) k (Bw eγ + e)+ 1 (7) Norma l 1 definita come segue: x 1 = n x i i=1

45 Definizione del problema Formulazione (7) equivalente alla seguente formulazione: min w,γ,y,z s.t. e T y m + et z k Aw + eγ + e y Bw eγ + e z y 0, z 0 (8) questo problema di programmazione lineare, o equivalentemente la (7), definisce un iperpiano P che soddisfa le (6) in maniera approssimata. Nella feature selection vogliamo eliminare il maggior numero possibile di elementi di w, dunque introduciamo il seguente problema: min w,γ,y,z (1 λ)( et y m + et z k ) + λ w 0 s.t. Aw + eγ + e y λ [0, 1) Bw eγ + e z y 0, z 0 (9)

46 Approssimazione della norma-zero Formulazione (9) equivalente alla seguente formulazione: min w,γ,y,z,v (1 λ)( et y m + et z k ) + λ n s(v i ) i=1 s.t. Aw + eγ + e y λ [0, 1) Bw eγ + e z v w v y 0, z 0 (10) con s : R R + funzione gradino tale che s(t) = 1 per t > 0 e s(t) = 0 per t 0. Funzione gradino discontinua, tipicamente rimpiazzata da una funzione smooth: - funzione sigmoidale; - funzione esponenziale concava; - funzione logaritmica. Per rendere il problema (9) trattabile, possibile rimpiazzare la norma l 0 con la norma l 1.

47 Formulazione ottenuta mediante Funzione Esponenziale Concava Sostituendo la funzione gradino con una funzione esponenziale concava, otteniamo il seguente problema di programmazione concava: min w,γ,y,z,v s.t. (1 λ)( et y m + et z k Aw + eγ + e y Bw eγ + e z v w v y 0, z 0 ) + λ n (1 ε αv i ) i=1 (11) con λ [0, 1).

48 Algoritmo di Frank-Wolfe Problema da risolvere min f(x) x P (12) P R n poliedro non vuoto f : R n R concava, continuamente differenziabile, limitata inferiormente su P

49 Algoritmo di Frank-Wolfe Frank-Wolfe con passo unitario (FW1) 1. Sia x 0 R n il punto iniziale; 2. Per k = 0, 1,..., se x k / arg min x P f(xk ) T x calcola una soluzione x k+1 di altrimenti ESCI. min x P f(xk ) T x Proposizione 1 L algoritmo di Frank-Wolfe con passo unitario converge a un vertice stazionario del problema (12) in un numero finito di iterazioni. [O.L. Mangasarian, Applied Mathematics and Parallel Computing, 1996]

50 Algoritmo di Frank-Wolfe Frank-Wolfe con passo unitario (FW1) 1. Sia x 0 R n il punto iniziale; 2. Per k = 0, 1,..., se x k / arg min x P f(xk ) T x calcola una soluzione x k+1 di altrimenti ESCI. min x P f(xk ) T x Proposizione 1 L algoritmo di Frank-Wolfe con passo unitario converge a un vertice stazionario del problema (12) in un numero finito di iterazioni. [O.L. Mangasarian, Applied Mathematics and Parallel Computing, 1996]

51 Spider: Informazioni Utili Software per Machine Learning in Matlab Contiene una serie di tool per la Feature Selection disponbile al sito:

52 Spider: Programmi per Feature Selection featsel: tool per effettuare il ranking delle variabili secondo uno specifico criterio rfe: eliminazione ricorsiva delle feature fsv: feature selection basata sull approssimazione della norma zero mediante formulazione esponenziale concava

53 Scaricare Lezioni lezioni disponbili al sito: rinaldi/didattica

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 8 Support Vector Machines Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com http://www.onairweb.com/corsopr

Dettagli

Support Vector Machines introduzione. Vittorio Maniezzo Università di Bologna

Support Vector Machines introduzione. Vittorio Maniezzo Università di Bologna 7 Support Vector Machines introduzione Vittorio Maniezzo Università di Bologna 1 SVM - introduzione Le SV machinessono state sviluppate negli AT&T Bell Laboratoriesda Vapnike colleghi (Boseret al., 1992,

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale Esperienze di Apprendimento Automatico per il corso di lippi@dsi.unifi.it Dipartimento Sistemi e Informatica Università di Firenze Dipartimento Ingegneria dell Informazione Università di Siena Introduzione

Dettagli

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14 SVM Veronica Piccialli Roma 11 gennaio 2010 Università degli Studi di Roma Tor Vergata 1 / 14 SVM Le Support Vector Machines (SVM) sono una classe di macchine di che derivano da concetti riguardanti la

Dettagli

Data mining: classificazione DataBase and Data Mining Group of Politecnico di Torino

Data mining: classificazione DataBase and Data Mining Group of Politecnico di Torino DataBase and Data Mining Group of Database and data mining group, Database and data mining group, DataBase and Data Mining Group of DataBase and Data Mining Group of So dati insieme di classi oggetti etichettati

Dettagli

Uno standard per il processo KDD

Uno standard per il processo KDD Uno standard per il processo KDD Il modello CRISP-DM (Cross Industry Standard Process for Data Mining) è un prodotto neutrale definito da un consorzio di numerose società per la standardizzazione del processo

Dettagli

MACHINE LEARNING e DATA MINING Introduzione. a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it

MACHINE LEARNING e DATA MINING Introduzione. a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it MACHINE LEARNING e DATA MINING Introduzione a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it Apprendimento Automatico(i) Branca dell AI che si occupa di realizzare dispositivi artificiali capaci di

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA Ing. Simone SCARDAPANE Circuiti e Algoritmi per l Elaborazione dei Segnali Anno Accademico 2012/2013 Indice della Lezione 1. Analisi delle Componenti Principali 2. Auto-Associatori 3. Analisi delle Componenti

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Backpropagation in MATLAB

Backpropagation in MATLAB Modello di neurone BACKPROPAGATION Backpropagation in MATLAB Prof. Beatrice Lazzerini Dipartimento di Ingegneria dell Informazione Via Diotisalvi 2, 56122 Pisa La funzione di trasferimento, che deve essere

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Computazione per l interazione naturale: macchine che apprendono

Computazione per l interazione naturale: macchine che apprendono Computazione per l interazione naturale: macchine che apprendono Corso di Interazione Naturale! Prof. Giuseppe Boccignone! Dipartimento di Informatica Università di Milano! boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Sommario. 1 Specifiche della soluzione. Davide Anastasia, Nicola Cogotti. 27 dicembre 2005

Sommario. 1 Specifiche della soluzione. Davide Anastasia, Nicola Cogotti. 27 dicembre 2005 Utilizzo delle reti neurali di tipo MLP e RBF per l approssimazione di funzioni reali di variabile reale note mediante coppie di punti (x,y) in presenza di rumore Davide Anastasia, Nicola Cogotti 27 dicembre

Dettagli

Analisi di Support Vector Machines per la classificazione automatica

Analisi di Support Vector Machines per la classificazione automatica Università degli Studi di Padova FACOLTÀ DI INGEGNERIA Corso di Laurea in Ingegneria dell Informazione Tesi di laurea triennale Analisi di Support Vector Machines per la classificazione automatica Laureanda:

Dettagli

Computazione per l interazione naturale: Modelli dinamici

Computazione per l interazione naturale: Modelli dinamici Computazione per l interazione naturale: Modelli dinamici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Metodi di ottimizzazione per le reti neurali

Metodi di ottimizzazione per le reti neurali Metodi di ottimizzazione per le reti neurali L. Grippo (grippo@dis.uniroma1.it) Dipartimento di Informatica e Sistemistica, Università di Roma La Sapienza, Via Buonarroti 12, 00185 Roma M. Sciandrone (sciandro@iasi.rm.cnr.it)

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Metodi incrementali. ² Backpropagation on-line. ² Lagrangiani aumentati

Metodi incrementali. ² Backpropagation on-line. ² Lagrangiani aumentati Metodi incrementali ² Backpropagation on-line ² Lagrangiani aumentati 1 Backpropagation on-line Consideriamo un problema di addestramento di una rete neurale formulato come problema di ottimizzazione del

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

Università degli studi di Genova

Università degli studi di Genova Università degli studi di Genova Facoltà di Ingegneria TESI DI LAUREA Sviluppo di un modulo ad elevate prestazioni per Data Mining con SQL Server Relatore: Prof. Ing. Davide Anguita Correlatore: Dott.

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Introduzione al Pattern Recognition Statistico

Introduzione al Pattern Recognition Statistico Introduzione al Pattern Recognition Statistico Roberto Tagliaferri Dipartimento di Informatica Università di Salerno ( Sa ) 84084 Fisciano e-mail robtag@unisa.it Statistical Pattern Recognition Introduzione

Dettagli

Data Mining in SAP. Alessandro Ciaramella

Data Mining in SAP. Alessandro Ciaramella UNIVERSITÀ DI PISA Corsi di Laurea Specialistica in Ingegneria Informatica per la Gestione d Azienda e Ingegneria Informatica Data Mining in SAP A cura di: Alessandro Ciaramella La Business Intelligence

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Riconoscimento e recupero dell informazione per bioinformatica

Riconoscimento e recupero dell informazione per bioinformatica Riconoscimento e recupero dell informazione per bioinformatica Reti Neurali Manuele Bicego Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Introduzione: approcci

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Machine Learning -1. Seminari di Sistemi Informatici. F.Sciarrone-Università Roma Tre

Machine Learning -1. Seminari di Sistemi Informatici. F.Sciarrone-Università Roma Tre Machine Learning -1 Seminari di Sistemi Informatici Sommario Problemi di apprendimento Well-Posed Esempi di problemi well-posed Progettazione di un sistema di apprendimento Scelta della Training Experience

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Ingegneria di Manutenzione II. Intelligence diagnostica

Ingegneria di Manutenzione II. Intelligence diagnostica 1 Ingegneria di Manutenzione II Intelligence diagnostica Stefano Ierace, Luigi Troiano stefano.ierace@unibg.it - troiano@unisannio.it Università degli Studi di Bergamo Università del Sannio Obiettivi del

Dettagli

Classificazione Binaria e Support Vector Machines

Classificazione Binaria e Support Vector Machines Classificazione Binaria e Support Vector Machines A. Astorino 1 Introduzione Ci sono molti problemi, nei campi piú svariati, che possono essere formulati e risolti efficacemente come programmi matematici.

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

Mining Positive and Negative Association Rules:

Mining Positive and Negative Association Rules: Mining Positive and Negative Association Rules: An Approach for Confined Rules Alessandro Boca Alessandro Cislaghi Premesse Le regole di associazione positive considerano solo gli item coinvolti in una

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

Introduzione al Calcolo Scientifico

Introduzione al Calcolo Scientifico Introduzione al Calcolo Scientifico Corso di Calcolo Numerico, a.a. 2008/2009 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Introduzione al Calcolo Scientifico

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Reti neurali e loro applicazioni

Reti neurali e loro applicazioni Università degli Studi di Padova FACOLTÀ DI INGEGNERIA Corso di Laurea in Informazione Tesi di laurea triennale Reti neurali e loro applicazioni Relatore: LUCA SCHENATO Laureando: STEFAN KOKOROVIC Anno

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

Introduzione all elaborazione di immagini Part II

Introduzione all elaborazione di immagini Part II Introduzione all elaborazione di immagini Part II Obiettivi delle tecniche di elaborazione di immagini: miglioramento di qualità (image enhancement) ripristino di qualità o restauro (image restoration)

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico On AIR s.r.l. Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 1 - Introduzione generale Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com http://www.onairweb.com/corsopr

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Le parole dell informatica: modello di calcolo, complessità e trattabilità

Le parole dell informatica: modello di calcolo, complessità e trattabilità Le parole dell informatica: modello di calcolo, complessità e trattabilità Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Appunti delle esercitazioni di Ricerca Operativa

Appunti delle esercitazioni di Ricerca Operativa Appunti delle esercitazioni di Ricerca Operativa a cura di P. Detti e G. Ciaschetti 1 Esercizi sulle condizioni di ottimalità per problemi di ottimizzazione non vincolata Esempio 1 Sia data la funzione

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Esercitazioni in Maple

Esercitazioni in Maple Esercitazioni in Maple 6 giugno 2007 Capitolo 1 Prima esercitazione 1.1 Anelli di polinomi Per cominciare bisogna dichiarare un anello di polinomi. Possiamo lavorare con un qualsiasi anello di tipo dove

Dettagli

ASSIOMI DELLA GEOMETRIA RAZIONALE

ASSIOMI DELLA GEOMETRIA RAZIONALE ASSIOMI DELLA GEOMETRIA RAZIONALE ASSIOMI DI APPARTENENZA A1 Per ogni coppia di punti A e B di un piano π esiste ed è unica la retta che li contiene. A2 Data nel piano π una retta r esistono almeno due

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

Modelli per variabili dipendenti qualitative

Modelli per variabili dipendenti qualitative SEMINARIO GRUPPO TEMATICO METODI e TECNICHE La valutazione degli incentivi industriali: aspetti metodologici Università di Brescia, 17 gennaio 2012 Modelli per variabili dipendenti qualitative Paola Zuccolotto

Dettagli

Metodi basati sugli autovettori per il Web Information Retrieval

Metodi basati sugli autovettori per il Web Information Retrieval Metodi basati sugli autovettori per il Web Information Retrieval HITS, PageRank e il metodo delle potenze LSI e SVD LSI è diventato famoso per la sua abilità nel permettere di manipolare i termini (all

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

Statistical learning Strumenti quantitativi per la gestione

Statistical learning Strumenti quantitativi per la gestione Statistical learning Strumenti quantitativi per la gestione Emanuele Taufer Vendite Simbologia Reddito Statistical learning A cosa ci serve f? 1 Previsione 2 Inferenza Previsione Errore riducibile e errore

Dettagli

Realizzazione e valutazione delle. tecniche di pattern recognition per. calcolatori. Claudio Mazzariello cmazzari@unina.it

Realizzazione e valutazione delle. tecniche di pattern recognition per. calcolatori. Claudio Mazzariello cmazzari@unina.it Realizzazione e valutazione delle prestazioni di un sistema basato su tecniche di pattern recognition per la rilevazione di attacchi a reti di calcolatori Claudio Mazzariello cmazzari@unina.it artimento

Dettagli

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello V. M. Abrusci 12 ottobre 2015 0.1 Problemi logici basilari sulle classi Le classi sono uno dei temi della logica. Esponiamo in questa

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Segmentazione di Immagini Mammografiche con Convolutional Neural Networks

Segmentazione di Immagini Mammografiche con Convolutional Neural Networks Alma Mater Studiorum Università di Bologna Scuola di Scienze Corso di Laurea Magistrale in Fisica Segmentazione di Immagini Mammografiche con Convolutional Neural Networks Relatore: Prof. Renato Campanini

Dettagli

Riconoscimento e Recupero dell'informazione per Bioinformatica

Riconoscimento e Recupero dell'informazione per Bioinformatica Riconoscimento e Recupero dell'informazione per Bioinformatica LAB. 8 PRTools (2) Pietro Lovato Corso di Laurea in Bioinformatica Dip. di Informatica Università di Verona A.A. 2015/2016 Ripasso: validazione

Dettagli

Insiemi di livello e limiti in più variabili

Insiemi di livello e limiti in più variabili Insiemi di livello e iti in più variabili Insiemi di livello Si consideri una funzione f : A R, con A R n. Un modo per poter studiare il comportamento di una funzione in più variabili potrebbe essere quello

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Condizionamento del problema

Condizionamento del problema Condizionamento del problema x 1 + 2x 2 = 3.499x 1 + 1.001x 2 = 1.5 La soluzione esatta è x = (1, 1) T. Perturbando la matrice dei coefficienti o il termine noto: x 1 + 2x 2 = 3.5x 1 + 1.002x 2 = 1.5 x

Dettagli

Metodi di ottimizzazione per le reti neurali

Metodi di ottimizzazione per le reti neurali Metodi di ottimizzazione per le reti neurali L. Grippo DIS, Università di Roma La Sapienza M. Sciandrone IASI, Consiglio Nazionale delle Ricerche, Roma Generalità sulle reti neurali Addestramento di reti

Dettagli

Analisi discriminante

Analisi discriminante Capitolo 6 Analisi discriminante L analisi statistica multivariata comprende un corpo di metodologie statistiche che permettono di analizzare simultaneamente misurazioni riguardanti diverse caratteristiche

Dettagli

Introduzione al Calcolo Scientifico

Introduzione al Calcolo Scientifico Introduzione al Calcolo Scientifico Corso di Calcolo Numerico, a.a. 2010/2011 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Introduzione al Calcolo Scientifico

Dettagli

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet.

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet. Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Dottorato di Ricerca in Statistica e Finanza Quantitativa - XXI Ciclo Sergio Salvino

Dettagli

Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22

Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22 Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Calcolo differenziale e approssimazioni, formula di Taylor Docente: Anna Valeria Germinario Università di Bari

Dettagli

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice.

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice. Convalida: attività volta ad assicurare che il SW sia conforme ai requisiti dell utente. Verifica: attività volta ad assicurare che il SW sia conforme alle specifiche dell analista. Goal: determinare malfunzionamenti/anomalie/errori

Dettagli

RETI NEURALI (II PARTE)

RETI NEURALI (II PARTE) RETI NEURALI (II PARTE) HOPFIELD Neural Net è utilizzata come MEMORIA ASSOCIATIVA e come CLASSIFICATORE input e output sono BINARI {+, -} i pesi sono fissati con un apprendimento non iterativo (fixed point

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Morfologia e Image Processing

Morfologia e Image Processing Morfologia e Image Processing Multimedia Prof. Battiato Morfologia Matematica Nell ambito dell image processing il termine morfologia matematica denota lo studio della struttura geometrica dell immagine.

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico On AIR s.r.l. Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 4 Reti neurali per la classificazione Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com

Dettagli

Pro e contro delle RNA

Pro e contro delle RNA Pro e contro delle RNA Pro: - flessibilità: le RNA sono approssimatori universali; - aggiornabilità sequenziale: la stima dei pesi della rete può essere aggiornata man mano che arriva nuova informazione;

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Lezione 10. La classificazione dell Intelligenza Artificiale

Lezione 10. La classificazione dell Intelligenza Artificiale Lezione 10 Intelligenza Artificiale Cosa è l Intelligenza Artificiale Elaborazione del linguaggio naturale La visione artificiale L apprendimento nelle macchine La classificazione dell Intelligenza Artificiale

Dettagli

Miglioramento dell analisi di immagine in GRASS tramite segmentazione

Miglioramento dell analisi di immagine in GRASS tramite segmentazione Segmentazione in GRASS Miglioramento dell analisi di immagine in GRASS tramite segmentazione Alfonso Vitti e Paolo Zatelli Dipartimento di Ingegneria Civile ed Ambientale Università di Trento Italy FOSS4G-it

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Algoritmi Euristici. Corso di Laurea in Informatica e Corso di Laurea in Matematica. Roberto Cordone DI - Università degli Studi di Milano

Algoritmi Euristici. Corso di Laurea in Informatica e Corso di Laurea in Matematica. Roberto Cordone DI - Università degli Studi di Milano Algoritmi Euristici Corso di Laurea in Informatica e Corso di Laurea in Matematica Roberto Cordone DI - Università degli Studi di Milano Lezioni: Mercoledì 08.30-10.30 Venerdì 08.30-10.30 Ricevimento:

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Artificial Neural Network(ANN)

Artificial Neural Network(ANN) Artificial Neural Network(ANN) Dott.ssa Elisa Turricchia Alma Mater Studiorum - Università di Bologna ANN: Definizione Una rete neurale artificiale definisce un modello matematico per la simulazione di

Dettagli

5. Problemi di Ottimizzazione e Programmazione Matematica

5. Problemi di Ottimizzazione e Programmazione Matematica Dispense del corso di Ottimizzazione Combinatoria (IN440) 5. Problemi di Ottimizzazione e Programmazione Matematica Marco Liverani Università degli Studi Roma Tre Dipartimento di Matematica e Fisica Corso

Dettagli

Esercitazioni di Progettazione del Software. Esercitazione (Prova al calcolatore del 17 settembre 2010)

Esercitazioni di Progettazione del Software. Esercitazione (Prova al calcolatore del 17 settembre 2010) Sapienza - Università di Roma Facoltà di Ingegneria dell Informazione, Informatica e Statistica Corso di Laurea in Ingegneria Informatica ed Automatica, Ingegneria dei Sistemi Informatici Esercitazioni

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli