Feature Selection per la Classificazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Feature Selection per la Classificazione"

Transcript

1 1 1 Dipartimento di Informatica e Sistemistica Sapienza Università di Roma Corso di Algoritmi di Classificazione e Reti Neurali 20/11/2009, Roma

2 Outline Feature Selection per problemi di Classificazione Classificazione e Feature Selection Metodi per la Feature Selection Modelli Lineari Spider Info

3 Apprendimento Supervisionato Consideriamo una dipendenza funzionale g : X Y ed un insieme di coppie di valori (Training Set): T = {(x i, y i ) x i X, y i Y and i = 1,...,m} GOAL: Estrarre una stima ĝ di g

4 Apprendimento Supervisionato Consideriamo una dipendenza funzionale g : X Y ed un insieme di coppie di valori (Training Set): T = {(x i, y i ) x i X, y i Y and i = 1,...,m} GOAL: Estrarre una stima ĝ di g

5 Apprendimento Supervisionato Consideriamo una dipendenza funzionale g : X Y ed un insieme di coppie di valori (Training Set): T = {(x i, y i ) x i X, y i Y and i = 1,...,m} GOAL: Estrarre una stima ĝ di g

6 Problemi di Classificazione Spazio di Input diviso in k sottoinsiemi X 1,...,X k X tali che Spazio di Output Y = {1,...,k} X i X j = i, j = 1,...,k, i j GOAL: Assegnare ciascun vettore di input x al sottoinsieme a cui appartiene Classificazione Binaria: due insiemi X 1, X 2 X, tali che X 1 X 2 = +1 se x X 1 g(x) = (1) 1 se x X 2

7 Problemi di Classificazione Spazio di Input diviso in k sottoinsiemi X 1,...,X k X tali che Spazio di Output Y = {1,...,k} X i X j = i, j = 1,...,k, i j GOAL: Assegnare ciascun vettore di input x al sottoinsieme a cui appartiene Classificazione Binaria: due insiemi X 1, X 2 X, tali che X 1 X 2 = +1 se x X 1 g(x) = (1) 1 se x X 2

8 Problemi di Classificazione Spazio di Input diviso in k sottoinsiemi X 1,...,X k X tali che Spazio di Output Y = {1,...,k} X i X j = i, j = 1,...,k, i j GOAL: Assegnare ciascun vettore di input x al sottoinsieme a cui appartiene Classificazione Binaria: due insiemi X 1, X 2 X, tali che X 1 X 2 = +1 se x X 1 g(x) = (1) 1 se x X 2

9 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

10 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

11 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

12 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

13 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

14 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

15 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

16 Generalizzazione GENERALIZZAZIONE strettamente connessa con COMPLESSITÀ Overfitting ĝ troppo complessa approssimazione non buona di g sul Test Set Underfitting ĝ troppo semplice approssimazione non buona di g sul Training Set GOAL: Trovare complessità ottimale per ĝ (i.e. il modello più semplice che garantisce buone performance sui dati di training)

17 Generalizzazione GENERALIZZAZIONE strettamente connessa con COMPLESSITÀ Overfitting ĝ troppo complessa approssimazione non buona di g sul Test Set Underfitting ĝ troppo semplice approssimazione non buona di g sul Training Set GOAL: Trovare complessità ottimale per ĝ (i.e. il modello più semplice che garantisce buone performance sui dati di training)

18 Generalizzazione GENERALIZZAZIONE strettamente connessa con COMPLESSITÀ Overfitting ĝ troppo complessa approssimazione non buona di g sul Test Set Underfitting ĝ troppo semplice approssimazione non buona di g sul Training Set GOAL: Trovare complessità ottimale per ĝ (i.e. il modello più semplice che garantisce buone performance sui dati di training)

19 Procedure di Cross-Validation - k-fold Cross-Validation: 1) Training Set diviso in k distiti segmenti T 1,..., T k ; 2) Funzione ĝ costruita mediante un algoritmo d apprendimento utilizzando i dati da k 1 segmenti; 3) Performance testate utilizzando i segmenti rimanenti; 4) Processo iterato per ognuna delle k possibili scelte per il segmento omesso dal processo di training, e calcolo della media sui k risultati. - Leave-one-out: k uguale al numero dei dati di training GOAL: Valutare le capacità di generalizzazione di ĝ

20 Procedure di Cross-Validation - k-fold Cross-Validation: 1) Training Set diviso in k distiti segmenti T 1,..., T k ; 2) Funzione ĝ costruita mediante un algoritmo d apprendimento utilizzando i dati da k 1 segmenti; 3) Performance testate utilizzando i segmenti rimanenti; 4) Processo iterato per ognuna delle k possibili scelte per il segmento omesso dal processo di training, e calcolo della media sui k risultati. - Leave-one-out: k uguale al numero dei dati di training GOAL: Valutare le capacità di generalizzazione di ĝ

21 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

22 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

23 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

24 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

25 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

26 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

27 Feature Selection Definizione Processo per selezionare un sottoinsieme minimo di features, garantendo buone performance e una stima accurata di g sul Training Set Motivazioni: 1. riduzione dei dati 2. miglioramento della predizione 3. comprensione dei dati

28 Feature Selection in Pratica Scelta del Sottoinsieme di Features In uno spazio n-dimensionale, i metodi di feature selection cercano di trovare il migliore sottoinsieme, tra i 2 n sottoinsiemi candidati, in accordo con uno specifico criterio Problema Ricerca troppo costosa quando n diventa grande Soluzione Procedura per prevenire la ricerca esaustiva

29 Feature Selection in Pratica Scelta del Sottoinsieme di Features In uno spazio n-dimensionale, i metodi di feature selection cercano di trovare il migliore sottoinsieme, tra i 2 n sottoinsiemi candidati, in accordo con uno specifico criterio Problema Ricerca troppo costosa quando n diventa grande Soluzione Procedura per prevenire la ricerca esaustiva

30 Feature Selection in Pratica Scelta del Sottoinsieme di Features In uno spazio n-dimensionale, i metodi di feature selection cercano di trovare il migliore sottoinsieme, tra i 2 n sottoinsiemi candidati, in accordo con uno specifico criterio Problema Ricerca troppo costosa quando n diventa grande Soluzione Procedura per prevenire la ricerca esaustiva

31 Approcci Basati sul Machine Learning Suddivisi in tre diverse classi: 1. Filter: selezionano un sottoinsieme di variabili in fase di preprocessamento, senza tener conto del predittore utilizzato. 2. Wrapper: utilizzano una determinata macchina per l apprendimento come black box per determinare il potere predittivo di un sottoinsieme di variabili. 3. Metodi Embedded: Selezione delle variabili come parte del processo di training.

32 Metodi Filter Indipendenti dal predittore utilizzato per la classificazione Performance valutate solo sulla base di metriche calcolate direttamente dai dati Meno costosi dei metodi Wrapper

33 Metodi Filter: Funzione di Scoring Funzione di Scoring dato un sottoinsieme di variabili S, e un insieme di training D, la funzione di scoring F(S) calcola la rilevanza del sottoinsieme S per la classificazione. Funzione di Scoring Utilizzando questi indici per le singole feature x j con j = 1,..., n, possiamo ordinare le variabili: F(x j1 ) F(x j2 ) F(x jn ). Scelta Feature Le feature con un valore basso della funzione di scoring vengono scartate

34 Metodi Filter: Funzione di Scoring Funzione di Scoring dato un sottoinsieme di variabili S, e un insieme di training D, la funzione di scoring F(S) calcola la rilevanza del sottoinsieme S per la classificazione. Funzione di Scoring Utilizzando questi indici per le singole feature x j con j = 1,..., n, possiamo ordinare le variabili: F(x j1 ) F(x j2 ) F(x jn ). Scelta Feature Le feature con un valore basso della funzione di scoring vengono scartate

35 Un esempio di Funzione di Scoring: F-Score F-Score dato un insieme di vettori di training x i, con i = 1,..., m, indichiamo il numero di istanze positive e negative rispettivamente con n + e n. Il valore F-score viene calcolato come segue: F(i) = ( x (+) i x i ) 2 + ( x ( ) 1 n+ n + 1 k=1 (x(+) x (+) ) k,i i n 1 i x i ) 2 n k=1 (x( ) k,i x ( ) i ) 2 Significato numeratore indica la discriminazione tra le due classi il denominatore indica la discriminazione per singola classe maggiore l indice, maggiore la possibilità che la variabile considerata sia capace di discriminare.

36 Un esempio di Funzione di Scoring: F-Score F-Score dato un insieme di vettori di training x i, con i = 1,..., m, indichiamo il numero di istanze positive e negative rispettivamente con n + e n. Il valore F-score viene calcolato come segue: F(i) = ( x (+) i x i ) 2 + ( x ( ) 1 n+ n + 1 k=1 (x(+) x (+) ) k,i i n 1 i x i ) 2 n k=1 (x( ) k,i x ( ) i ) 2 Significato numeratore indica la discriminazione tra le due classi il denominatore indica la discriminazione per singola classe maggiore l indice, maggiore la possibilità che la variabile considerata sia capace di discriminare.

37 F-Score: Problema F-score non rivela la mutua informazione tra le feature

38 Metodi Wrappers Utilizza le performance di predizione di un classificatore per determinare l importanza di un sottoinsieme di variabili Necessaria una strategia di ricerca efficiente (ricerca esaustiva possibile solo se numero di variabili limitato) Costo dipende dal metodo di ricerca utilizzato

39 Strategie di Ricerca Greedy Metodi Greedy Rappresentano una classe di strategie di ricerca molto efficiente dal punto di vista computazionale Forward Selection Comincia dall insieme vuoto e include progressivamente nuove variabili Backward Elimination Comincia dall insieme completo delle feature e elimina progressivamente le variabili meno promettenti

40 Strategie di Ricerca Greedy Metodi Greedy Rappresentano una classe di strategie di ricerca molto efficiente dal punto di vista computazionale Forward Selection Comincia dall insieme vuoto e include progressivamente nuove variabili Backward Elimination Comincia dall insieme completo delle feature e elimina progressivamente le variabili meno promettenti

41 Metodi Embedded Incorporano la feature selection come parte del processo di training Problema formulato come segue: min g(w, X, Y) w R n (2) s.t. w 0 s 0 g misura le performance del classificatore selezionato, descritto dal vettore di parametri w, e dal training set (X, Y). Norma l 0 formulata come segue: w 0 = card{w i : w i 0}

42 Metodi Embedded II Problema (2) riscritto come segue: min w R n g(w, X, Y) + λs(w) (3) con λ > 0, s approssimazione di w 0. alcuni embedded methods aggiungono o rimuovono in maniera iterativa le features dai dati per approssimare una soluzione del problema (3).

43 Modelli Lineari per la Feature Selection Consideriamo due insiemi A e B in R n di m e k punti rispettivamente A e B sono rappresentati dalle matrici A R m n e B R k n : ogni punto rappresenta una riga della matrice. Vogliamo costruire un iperpiano di separazione: P = {x x R n, x T w = γ}, (4) eliminando il maggior numero di componenti possibili di w. L iperpiano di separazione P determina due semispazi aperti: - {x x R n, x T w > γ} contenente principalmente punti di A; - {x x R n, x T w < γ} contenente principalmente punti di B.

44 Modelli Lineari per la Feature Selection II Vogliamo soddisfare le seguenti disuguaglianze: Versione normalizzata: Aw > eγ, Bw < eγ (5) Aw γ + e, Bw eγ e. (6) Nelle applicazioni reali dati linearmente separabili sono difficili da trovare. Cerchiamo di soddisfare le (6), in senso approssimato: 1 min f(w, γ) = min w,γ w,γ m ( Aw + eγ + e) k (Bw eγ + e)+ 1 (7) Norma l 1 definita come segue: x 1 = n x i i=1

45 Definizione del problema Formulazione (7) equivalente alla seguente formulazione: min w,γ,y,z s.t. e T y m + et z k Aw + eγ + e y Bw eγ + e z y 0, z 0 (8) questo problema di programmazione lineare, o equivalentemente la (7), definisce un iperpiano P che soddisfa le (6) in maniera approssimata. Nella feature selection vogliamo eliminare il maggior numero possibile di elementi di w, dunque introduciamo il seguente problema: min w,γ,y,z (1 λ)( et y m + et z k ) + λ w 0 s.t. Aw + eγ + e y λ [0, 1) Bw eγ + e z y 0, z 0 (9)

46 Approssimazione della norma-zero Formulazione (9) equivalente alla seguente formulazione: min w,γ,y,z,v (1 λ)( et y m + et z k ) + λ n s(v i ) i=1 s.t. Aw + eγ + e y λ [0, 1) Bw eγ + e z v w v y 0, z 0 (10) con s : R R + funzione gradino tale che s(t) = 1 per t > 0 e s(t) = 0 per t 0. Funzione gradino discontinua, tipicamente rimpiazzata da una funzione smooth: - funzione sigmoidale; - funzione esponenziale concava; - funzione logaritmica. Per rendere il problema (9) trattabile, possibile rimpiazzare la norma l 0 con la norma l 1.

47 Formulazione ottenuta mediante Funzione Esponenziale Concava Sostituendo la funzione gradino con una funzione esponenziale concava, otteniamo il seguente problema di programmazione concava: min w,γ,y,z,v s.t. (1 λ)( et y m + et z k Aw + eγ + e y Bw eγ + e z v w v y 0, z 0 ) + λ n (1 ε αv i ) i=1 (11) con λ [0, 1).

48 Algoritmo di Frank-Wolfe Problema da risolvere min f(x) x P (12) P R n poliedro non vuoto f : R n R concava, continuamente differenziabile, limitata inferiormente su P

49 Algoritmo di Frank-Wolfe Frank-Wolfe con passo unitario (FW1) 1. Sia x 0 R n il punto iniziale; 2. Per k = 0, 1,..., se x k / arg min x P f(xk ) T x calcola una soluzione x k+1 di altrimenti ESCI. min x P f(xk ) T x Proposizione 1 L algoritmo di Frank-Wolfe con passo unitario converge a un vertice stazionario del problema (12) in un numero finito di iterazioni. [O.L. Mangasarian, Applied Mathematics and Parallel Computing, 1996]

50 Algoritmo di Frank-Wolfe Frank-Wolfe con passo unitario (FW1) 1. Sia x 0 R n il punto iniziale; 2. Per k = 0, 1,..., se x k / arg min x P f(xk ) T x calcola una soluzione x k+1 di altrimenti ESCI. min x P f(xk ) T x Proposizione 1 L algoritmo di Frank-Wolfe con passo unitario converge a un vertice stazionario del problema (12) in un numero finito di iterazioni. [O.L. Mangasarian, Applied Mathematics and Parallel Computing, 1996]

51 Spider: Informazioni Utili Software per Machine Learning in Matlab Contiene una serie di tool per la Feature Selection disponbile al sito:

52 Spider: Programmi per Feature Selection featsel: tool per effettuare il ranking delle variabili secondo uno specifico criterio rfe: eliminazione ricorsiva delle feature fsv: feature selection basata sull approssimazione della norma zero mediante formulazione esponenziale concava

53 Scaricare Lezioni lezioni disponbili al sito: rinaldi/didattica

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14 SVM Veronica Piccialli Roma 11 gennaio 2010 Università degli Studi di Roma Tor Vergata 1 / 14 SVM Le Support Vector Machines (SVM) sono una classe di macchine di che derivano da concetti riguardanti la

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 8 Support Vector Machines Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com http://www.onairweb.com/corsopr

Dettagli

Computazione per l interazione naturale: macchine che apprendono

Computazione per l interazione naturale: macchine che apprendono Computazione per l interazione naturale: macchine che apprendono Corso di Interazione Naturale! Prof. Giuseppe Boccignone! Dipartimento di Informatica Università di Milano! boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Uno standard per il processo KDD

Uno standard per il processo KDD Uno standard per il processo KDD Il modello CRISP-DM (Cross Industry Standard Process for Data Mining) è un prodotto neutrale definito da un consorzio di numerose società per la standardizzazione del processo

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Support Vector Machines introduzione. Vittorio Maniezzo Università di Bologna

Support Vector Machines introduzione. Vittorio Maniezzo Università di Bologna 7 Support Vector Machines introduzione Vittorio Maniezzo Università di Bologna 1 SVM - introduzione Le SV machinessono state sviluppate negli AT&T Bell Laboratoriesda Vapnike colleghi (Boseret al., 1992,

Dettagli

Database. Si ringrazia Marco Bertini per le slides

Database. Si ringrazia Marco Bertini per le slides Database Si ringrazia Marco Bertini per le slides Obiettivo Concetti base dati e informazioni cos è un database terminologia Modelli organizzativi flat file database relazionali Principi e linee guida

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Metodi incrementali. ² Backpropagation on-line. ² Lagrangiani aumentati

Metodi incrementali. ² Backpropagation on-line. ² Lagrangiani aumentati Metodi incrementali ² Backpropagation on-line ² Lagrangiani aumentati 1 Backpropagation on-line Consideriamo un problema di addestramento di una rete neurale formulato come problema di ottimizzazione del

Dettagli

(a cura di Francesca Godioli)

(a cura di Francesca Godioli) lezione n. 12 (a cura di Francesca Godioli) Ad ogni categoria della variabile qualitativa si può assegnare un valore numerico che viene chiamato SCORE. Passare dalla variabile qualitativa X2 a dei valori

Dettagli

Barriere assorbenti nelle catene di Markov e una loro applicazione al web

Barriere assorbenti nelle catene di Markov e una loro applicazione al web Università Roma Tre Facoltà di Scienze M.F.N Corso di Laurea in Matematica a.a. 2001/2002 Barriere assorbenti nelle catene di Markov e una loro applicazione al web Giulio Simeone 1 Sommario Descrizione

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

e-dva - eni-depth Velocity Analysis

e-dva - eni-depth Velocity Analysis Lo scopo dell Analisi di Velocità di Migrazione (MVA) è quello di ottenere un modello della velocità nel sottosuolo che abbia dei tempi di riflessione compatibili con quelli osservati nei dati. Ciò significa

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Computazione per l interazione naturale: Modelli dinamici

Computazione per l interazione naturale: Modelli dinamici Computazione per l interazione naturale: Modelli dinamici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Pro e contro delle RNA

Pro e contro delle RNA Pro e contro delle RNA Pro: - flessibilità: le RNA sono approssimatori universali; - aggiornabilità sequenziale: la stima dei pesi della rete può essere aggiornata man mano che arriva nuova informazione;

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati Informatica 3 Informatica 3 LEZIONE 10: Introduzione agli algoritmi e alle strutture dati Modulo 1: Perchè studiare algoritmi e strutture dati Modulo 2: Definizioni di base Lezione 10 - Modulo 1 Perchè

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Insiemi di livello e limiti in più variabili

Insiemi di livello e limiti in più variabili Insiemi di livello e iti in più variabili Insiemi di livello Si consideri una funzione f : A R, con A R n. Un modo per poter studiare il comportamento di una funzione in più variabili potrebbe essere quello

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenziali e logaritmi Corso di accompagnamento in matematica Lezione 4 Sommario 1 La funzione esponenziale Proprietà Grafico 2 La funzione logaritmo Grafico Proprietà 3 Equazioni / disequazioni esponenziali

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Fondamenti dei linguaggi di programmazione

Fondamenti dei linguaggi di programmazione Fondamenti dei linguaggi di programmazione Aniello Murano Università degli Studi di Napoli Federico II 1 Riassunto delle lezioni precedenti Prima Lezione: Introduzione e motivazioni del corso; Sintassi

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Posizionamento di antenne È dato un insieme A di possibili siti in cui installare antenne, a ciascuno

Dettagli

Backpropagation in MATLAB

Backpropagation in MATLAB Modello di neurone BACKPROPAGATION Backpropagation in MATLAB Prof. Beatrice Lazzerini Dipartimento di Ingegneria dell Informazione Via Diotisalvi 2, 56122 Pisa La funzione di trasferimento, che deve essere

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Data mining: classificazione DataBase and Data Mining Group of Politecnico di Torino

Data mining: classificazione DataBase and Data Mining Group of Politecnico di Torino DataBase and Data Mining Group of Database and data mining group, Database and data mining group, DataBase and Data Mining Group of DataBase and Data Mining Group of So dati insieme di classi oggetti etichettati

Dettagli

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 All inizio

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Modelli di Programmazione Lineare e Programmazione Lineare Intera

Modelli di Programmazione Lineare e Programmazione Lineare Intera Modelli di Programmazione Lineare e Programmazione Lineare Intera 1 Azienda Dolciaria Un azienda di cioccolatini deve pianificare la produzione per i prossimi m mesi. In ogni mese l azienda ha a disposizione

Dettagli

Verifica di ipotesi e intervalli di confidenza nella regressione multipla

Verifica di ipotesi e intervalli di confidenza nella regressione multipla Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo

Dettagli

Introduzione al Calcolo Scientifico

Introduzione al Calcolo Scientifico Introduzione al Calcolo Scientifico Corso di Calcolo Numerico, a.a. 2008/2009 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Introduzione al Calcolo Scientifico

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

IL CONCETTO DI FUNZIONE

IL CONCETTO DI FUNZIONE IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione

Dettagli

Preprocessamento dei Dati

Preprocessamento dei Dati Preprocessamento dei Dati Raramente i dati sperimentali sono pronti per essere utilizzati immediatamente per le fasi successive del processo di identificazione, a causa di: Offset e disturbi a bassa frequenza

Dettagli

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice.

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice. Convalida: attività volta ad assicurare che il SW sia conforme ai requisiti dell utente. Verifica: attività volta ad assicurare che il SW sia conforme alle specifiche dell analista. Goal: determinare malfunzionamenti/anomalie/errori

Dettagli

Ottimizzazione delle interrogazioni (parte I)

Ottimizzazione delle interrogazioni (parte I) Ottimizzazione delle interrogazioni I Basi di Dati / Complementi di Basi di Dati 1 Ottimizzazione delle interrogazioni (parte I) Angelo Montanari Dipartimento di Matematica e Informatica Università di

Dettagli

Macchine sequenziali

Macchine sequenziali Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali Lezione 14 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Automa a Stati Finiti (ASF) E una prima astrazione di

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

I motori di ricerca. Che cosa sono. Stefania Marrara Corso di Sistemi Informativi

I motori di ricerca. Che cosa sono. Stefania Marrara Corso di Sistemi Informativi I motori di ricerca Stefania Marrara Corso di Sistemi Informativi a.a 2002/2003 Che cosa sono Un motore di ricerca è uno strumento per mezzo del quale è possibile ricercare alcuni termini (parole) all

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

IL TEST DI ACCESSO AI CORSI DI STUDIO TRIENNALI DI PSICOLOGIA

IL TEST DI ACCESSO AI CORSI DI STUDIO TRIENNALI DI PSICOLOGIA AI CORSI DI STUDIO TRIENNALI DI PSICOLOGIA Claudio Barbaranelli Sapienza Università di Roma, Dipartimento di Psicologia 1 OUTLINE - Le prove del test - Il bando: localizzazione e contenuti - La difficoltà

Dettagli

Introduzione all Information Retrieval

Introduzione all Information Retrieval Introduzione all Information Retrieval Argomenti della lezione Definizione di Information Retrieval. Information Retrieval vs Data Retrieval. Indicizzazione di collezioni e ricerca. Modelli per Information

Dettagli

REALIZZARE UN BUSINESS PLAN CON MICROSOFT EXCEL 2007

REALIZZARE UN BUSINESS PLAN CON MICROSOFT EXCEL 2007 REALIZZARE UN BUSINESS PLAN CON MICROSOFT EXCEL 2007 INTRODUZIONE Uno degli elementi più importanti che compongono un Business Plan è sicuramente la previsione dei risultati economico-finanziari. Tale

Dettagli

Tecniche di analisi multivariata

Tecniche di analisi multivariata Tecniche di analisi multivariata Metodi che fanno riferimento ad un modello distributivo assunto per le osservazioni e alla base degli sviluppi inferenziali - tecniche collegate allo studio della dipendenza

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale Esperienze di Apprendimento Automatico per il corso di lippi@dsi.unifi.it Dipartimento Sistemi e Informatica Università di Firenze Dipartimento Ingegneria dell Informazione Università di Siena Introduzione

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

La grafica. La built-in funzione grafica plot. x spezzata poligonale. discretizzato

La grafica. La built-in funzione grafica plot. x spezzata poligonale. discretizzato La grafica. Il Matlab possiede un ambiente grafico abbastanza potente paragonabile a software grafici operanti in altri contesti. In questo corso ci limiteremo ad illustrare solo una funzione grafica,

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Computational Game Theory

Computational Game Theory Computational Game Theory Vincenzo Bonifaci 24 maggio 2012 5 Regret Minimization Consideriamo uno scenario in cui un agente deve selezionare, più volte nel tempo, una decisione tra un insieme di N disponibili:

Dettagli

Page 1. Evoluzione. Intelligenza Artificiale. Algoritmi Genetici. Evoluzione. Evoluzione: nomenclatura. Corrispondenze natura-calcolo

Page 1. Evoluzione. Intelligenza Artificiale. Algoritmi Genetici. Evoluzione. Evoluzione: nomenclatura. Corrispondenze natura-calcolo Evoluzione In ogni popolazione si verificano delle mutazioni. Intelligenza Artificiale In un ambiente che varia, le mutazioni possono generare individui che meglio si adattano alle nuove condizioni. Questi

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22

Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22 Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Calcolo differenziale e approssimazioni, formula di Taylor Docente: Anna Valeria Germinario Università di Bari

Dettagli

Sistemi Operativi 1. Mattia Monga. a.a. 2008/09. Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi.

Sistemi Operativi 1. Mattia Monga. a.a. 2008/09. Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi. 1 Mattia Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi.it a.a. 2008/09 1 c 2009 M.. Creative Commons Attribuzione-Condividi allo stesso modo 2.5 Italia

Dettagli

Codifiche a lunghezza variabile

Codifiche a lunghezza variabile Sistemi Multimediali Codifiche a lunghezza variabile Marco Gribaudo marcog@di.unito.it, gribaudo@elet.polimi.it Assegnazione del codice Come visto in precedenza, per poter memorizzare o trasmettere un

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Incident Management. Obiettivi. Definizioni. Responsabilità. Attività. Input

Incident Management. Obiettivi. Definizioni. Responsabilità. Attività. Input Incident Management Obiettivi Obiettivo dell Incident Management e di ripristinare le normali operazioni di servizio nel piu breve tempo possibbile e con il minimo impatto sul business, garantendo il mantenimento

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

Configuration Management

Configuration Management Configuration Management Obiettivi Obiettivo del Configuration Management è di fornire un modello logico dell infrastruttura informatica identificando, controllando, mantenendo e verificando le versioni

Dettagli

Indagini statistiche attraverso i social networks

Indagini statistiche attraverso i social networks Indagini statistiche attraverso i social networks Agostino Di Ciaccio Dipartimento di Scienze Statistiche Università degli Studi di Roma "La Sapienza" SAS Campus 2012 1 Diffusione dei social networks Secondo

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Funzioni con dominio in R n

Funzioni con dominio in R n 0.1 Punti e vettori di R n Politecnico di Torino. Funzioni con dominio in R n Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto Molto spesso risulta che una quantita

Dettagli

Problem Management. Obiettivi. Definizioni. Responsabilità. Attività. Input

Problem Management. Obiettivi. Definizioni. Responsabilità. Attività. Input Problem Management Obiettivi Obiettivo del Problem Management e di minimizzare l effetto negativo sull organizzazione degli Incidenti e dei Problemi causati da errori nell infrastruttura e prevenire gli

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

Comparatori. Comparatori di uguaglianza

Comparatori. Comparatori di uguaglianza Comparatori Scopo di un circuito comparatore é il confronto tra due codifiche binarie. Il confronto può essere effettuato per verificare l'uguaglianza oppure una relazione d'ordine del tipo "maggiore",

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico On AIR s.r.l. Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 4 Reti neurali per la classificazione Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA Ing. Simone SCARDAPANE Circuiti e Algoritmi per l Elaborazione dei Segnali Anno Accademico 2012/2013 Indice della Lezione 1. Analisi delle Componenti Principali 2. Auto-Associatori 3. Analisi delle Componenti

Dettagli

Change Management. Obiettivi. Definizioni. Responsabilità. Attività. Input. Funzioni

Change Management. Obiettivi. Definizioni. Responsabilità. Attività. Input. Funzioni Change Management Obiettivi Obiettivo del Change Management è di assicurarsi che si utilizzino procedure e metodi standardizzati per una gestione efficiente ed efficace di tutti i cambiamenti, con lo scopo

Dettagli

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 10 Correttezza A. Miola Novembre 2007 http://www.dia.uniroma3.it/~java/fondinf1/ Correttezza 1 Contenuti Introduzione alla correttezza

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Fare Efficienza Energetica attraverso l automazione degli edifici

Fare Efficienza Energetica attraverso l automazione degli edifici Fare Efficienza Energetica attraverso l automazione degli edifici Grazie alla rapida diffusione di tecnologie intelligenti a buon mercato la gestione efficiente degli edifici è ormai diventata uno standard

Dettagli