Feature Selection per la Classificazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Feature Selection per la Classificazione"

Transcript

1 1 1 Dipartimento di Informatica e Sistemistica Sapienza Università di Roma Corso di Algoritmi di Classificazione e Reti Neurali 20/11/2009, Roma

2 Outline Feature Selection per problemi di Classificazione Classificazione e Feature Selection Metodi per la Feature Selection Modelli Lineari Spider Info

3 Apprendimento Supervisionato Consideriamo una dipendenza funzionale g : X Y ed un insieme di coppie di valori (Training Set): T = {(x i, y i ) x i X, y i Y and i = 1,...,m} GOAL: Estrarre una stima ĝ di g

4 Apprendimento Supervisionato Consideriamo una dipendenza funzionale g : X Y ed un insieme di coppie di valori (Training Set): T = {(x i, y i ) x i X, y i Y and i = 1,...,m} GOAL: Estrarre una stima ĝ di g

5 Apprendimento Supervisionato Consideriamo una dipendenza funzionale g : X Y ed un insieme di coppie di valori (Training Set): T = {(x i, y i ) x i X, y i Y and i = 1,...,m} GOAL: Estrarre una stima ĝ di g

6 Problemi di Classificazione Spazio di Input diviso in k sottoinsiemi X 1,...,X k X tali che Spazio di Output Y = {1,...,k} X i X j = i, j = 1,...,k, i j GOAL: Assegnare ciascun vettore di input x al sottoinsieme a cui appartiene Classificazione Binaria: due insiemi X 1, X 2 X, tali che X 1 X 2 = +1 se x X 1 g(x) = (1) 1 se x X 2

7 Problemi di Classificazione Spazio di Input diviso in k sottoinsiemi X 1,...,X k X tali che Spazio di Output Y = {1,...,k} X i X j = i, j = 1,...,k, i j GOAL: Assegnare ciascun vettore di input x al sottoinsieme a cui appartiene Classificazione Binaria: due insiemi X 1, X 2 X, tali che X 1 X 2 = +1 se x X 1 g(x) = (1) 1 se x X 2

8 Problemi di Classificazione Spazio di Input diviso in k sottoinsiemi X 1,...,X k X tali che Spazio di Output Y = {1,...,k} X i X j = i, j = 1,...,k, i j GOAL: Assegnare ciascun vettore di input x al sottoinsieme a cui appartiene Classificazione Binaria: due insiemi X 1, X 2 X, tali che X 1 X 2 = +1 se x X 1 g(x) = (1) 1 se x X 2

9 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

10 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

11 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

12 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

13 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

14 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

15 Approssimazione di g Quattro classi di Macchine per Apprendimento: 1) Perceptron 2) MultiLayer Perceptron Networks (MLPN) 3) Radial Basis Function Networks (RBFN) 4) Support Vector Machines (SVM) Stima ĝ di g con buone capacità di generalizzazione. Una Macchina per Apprendimento generalizza bene quando ha la capacità di calcolare correttamente l input-output mapping per dati di test non inclusi nel training set.

16 Generalizzazione GENERALIZZAZIONE strettamente connessa con COMPLESSITÀ Overfitting ĝ troppo complessa approssimazione non buona di g sul Test Set Underfitting ĝ troppo semplice approssimazione non buona di g sul Training Set GOAL: Trovare complessità ottimale per ĝ (i.e. il modello più semplice che garantisce buone performance sui dati di training)

17 Generalizzazione GENERALIZZAZIONE strettamente connessa con COMPLESSITÀ Overfitting ĝ troppo complessa approssimazione non buona di g sul Test Set Underfitting ĝ troppo semplice approssimazione non buona di g sul Training Set GOAL: Trovare complessità ottimale per ĝ (i.e. il modello più semplice che garantisce buone performance sui dati di training)

18 Generalizzazione GENERALIZZAZIONE strettamente connessa con COMPLESSITÀ Overfitting ĝ troppo complessa approssimazione non buona di g sul Test Set Underfitting ĝ troppo semplice approssimazione non buona di g sul Training Set GOAL: Trovare complessità ottimale per ĝ (i.e. il modello più semplice che garantisce buone performance sui dati di training)

19 Procedure di Cross-Validation - k-fold Cross-Validation: 1) Training Set diviso in k distiti segmenti T 1,..., T k ; 2) Funzione ĝ costruita mediante un algoritmo d apprendimento utilizzando i dati da k 1 segmenti; 3) Performance testate utilizzando i segmenti rimanenti; 4) Processo iterato per ognuna delle k possibili scelte per il segmento omesso dal processo di training, e calcolo della media sui k risultati. - Leave-one-out: k uguale al numero dei dati di training GOAL: Valutare le capacità di generalizzazione di ĝ

20 Procedure di Cross-Validation - k-fold Cross-Validation: 1) Training Set diviso in k distiti segmenti T 1,..., T k ; 2) Funzione ĝ costruita mediante un algoritmo d apprendimento utilizzando i dati da k 1 segmenti; 3) Performance testate utilizzando i segmenti rimanenti; 4) Processo iterato per ognuna delle k possibili scelte per il segmento omesso dal processo di training, e calcolo della media sui k risultati. - Leave-one-out: k uguale al numero dei dati di training GOAL: Valutare le capacità di generalizzazione di ĝ

21 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

22 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

23 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

24 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

25 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

26 Curse of Dimensionality informazione contenuta nelle feature (i.e. componenti di x i contenute nel Training Set) Feature divise in tre gruppi: 1. feature irrilevanti 2. feature ridondanti 3. feature rilevanti Feature rilevanti non note a priori, molte feature incluse nel modello per descrivere al meglio il dominio. Elevato numero di features e limitato numero di esempi di training. Curse of dimensionality : dati molto sparsi e rappresentazione del fenomeno non adeguata. Costruzione di una buona approssimazione ĝ mediante un numero limitato di feature.

27 Feature Selection Definizione Processo per selezionare un sottoinsieme minimo di features, garantendo buone performance e una stima accurata di g sul Training Set Motivazioni: 1. riduzione dei dati 2. miglioramento della predizione 3. comprensione dei dati

28 Feature Selection in Pratica Scelta del Sottoinsieme di Features In uno spazio n-dimensionale, i metodi di feature selection cercano di trovare il migliore sottoinsieme, tra i 2 n sottoinsiemi candidati, in accordo con uno specifico criterio Problema Ricerca troppo costosa quando n diventa grande Soluzione Procedura per prevenire la ricerca esaustiva

29 Feature Selection in Pratica Scelta del Sottoinsieme di Features In uno spazio n-dimensionale, i metodi di feature selection cercano di trovare il migliore sottoinsieme, tra i 2 n sottoinsiemi candidati, in accordo con uno specifico criterio Problema Ricerca troppo costosa quando n diventa grande Soluzione Procedura per prevenire la ricerca esaustiva

30 Feature Selection in Pratica Scelta del Sottoinsieme di Features In uno spazio n-dimensionale, i metodi di feature selection cercano di trovare il migliore sottoinsieme, tra i 2 n sottoinsiemi candidati, in accordo con uno specifico criterio Problema Ricerca troppo costosa quando n diventa grande Soluzione Procedura per prevenire la ricerca esaustiva

31 Approcci Basati sul Machine Learning Suddivisi in tre diverse classi: 1. Filter: selezionano un sottoinsieme di variabili in fase di preprocessamento, senza tener conto del predittore utilizzato. 2. Wrapper: utilizzano una determinata macchina per l apprendimento come black box per determinare il potere predittivo di un sottoinsieme di variabili. 3. Metodi Embedded: Selezione delle variabili come parte del processo di training.

32 Metodi Filter Indipendenti dal predittore utilizzato per la classificazione Performance valutate solo sulla base di metriche calcolate direttamente dai dati Meno costosi dei metodi Wrapper

33 Metodi Filter: Funzione di Scoring Funzione di Scoring dato un sottoinsieme di variabili S, e un insieme di training D, la funzione di scoring F(S) calcola la rilevanza del sottoinsieme S per la classificazione. Funzione di Scoring Utilizzando questi indici per le singole feature x j con j = 1,..., n, possiamo ordinare le variabili: F(x j1 ) F(x j2 ) F(x jn ). Scelta Feature Le feature con un valore basso della funzione di scoring vengono scartate

34 Metodi Filter: Funzione di Scoring Funzione di Scoring dato un sottoinsieme di variabili S, e un insieme di training D, la funzione di scoring F(S) calcola la rilevanza del sottoinsieme S per la classificazione. Funzione di Scoring Utilizzando questi indici per le singole feature x j con j = 1,..., n, possiamo ordinare le variabili: F(x j1 ) F(x j2 ) F(x jn ). Scelta Feature Le feature con un valore basso della funzione di scoring vengono scartate

35 Un esempio di Funzione di Scoring: F-Score F-Score dato un insieme di vettori di training x i, con i = 1,..., m, indichiamo il numero di istanze positive e negative rispettivamente con n + e n. Il valore F-score viene calcolato come segue: F(i) = ( x (+) i x i ) 2 + ( x ( ) 1 n+ n + 1 k=1 (x(+) x (+) ) k,i i n 1 i x i ) 2 n k=1 (x( ) k,i x ( ) i ) 2 Significato numeratore indica la discriminazione tra le due classi il denominatore indica la discriminazione per singola classe maggiore l indice, maggiore la possibilità che la variabile considerata sia capace di discriminare.

36 Un esempio di Funzione di Scoring: F-Score F-Score dato un insieme di vettori di training x i, con i = 1,..., m, indichiamo il numero di istanze positive e negative rispettivamente con n + e n. Il valore F-score viene calcolato come segue: F(i) = ( x (+) i x i ) 2 + ( x ( ) 1 n+ n + 1 k=1 (x(+) x (+) ) k,i i n 1 i x i ) 2 n k=1 (x( ) k,i x ( ) i ) 2 Significato numeratore indica la discriminazione tra le due classi il denominatore indica la discriminazione per singola classe maggiore l indice, maggiore la possibilità che la variabile considerata sia capace di discriminare.

37 F-Score: Problema F-score non rivela la mutua informazione tra le feature

38 Metodi Wrappers Utilizza le performance di predizione di un classificatore per determinare l importanza di un sottoinsieme di variabili Necessaria una strategia di ricerca efficiente (ricerca esaustiva possibile solo se numero di variabili limitato) Costo dipende dal metodo di ricerca utilizzato

39 Strategie di Ricerca Greedy Metodi Greedy Rappresentano una classe di strategie di ricerca molto efficiente dal punto di vista computazionale Forward Selection Comincia dall insieme vuoto e include progressivamente nuove variabili Backward Elimination Comincia dall insieme completo delle feature e elimina progressivamente le variabili meno promettenti

40 Strategie di Ricerca Greedy Metodi Greedy Rappresentano una classe di strategie di ricerca molto efficiente dal punto di vista computazionale Forward Selection Comincia dall insieme vuoto e include progressivamente nuove variabili Backward Elimination Comincia dall insieme completo delle feature e elimina progressivamente le variabili meno promettenti

41 Metodi Embedded Incorporano la feature selection come parte del processo di training Problema formulato come segue: min g(w, X, Y) w R n (2) s.t. w 0 s 0 g misura le performance del classificatore selezionato, descritto dal vettore di parametri w, e dal training set (X, Y). Norma l 0 formulata come segue: w 0 = card{w i : w i 0}

42 Metodi Embedded II Problema (2) riscritto come segue: min w R n g(w, X, Y) + λs(w) (3) con λ > 0, s approssimazione di w 0. alcuni embedded methods aggiungono o rimuovono in maniera iterativa le features dai dati per approssimare una soluzione del problema (3).

43 Modelli Lineari per la Feature Selection Consideriamo due insiemi A e B in R n di m e k punti rispettivamente A e B sono rappresentati dalle matrici A R m n e B R k n : ogni punto rappresenta una riga della matrice. Vogliamo costruire un iperpiano di separazione: P = {x x R n, x T w = γ}, (4) eliminando il maggior numero di componenti possibili di w. L iperpiano di separazione P determina due semispazi aperti: - {x x R n, x T w > γ} contenente principalmente punti di A; - {x x R n, x T w < γ} contenente principalmente punti di B.

44 Modelli Lineari per la Feature Selection II Vogliamo soddisfare le seguenti disuguaglianze: Versione normalizzata: Aw > eγ, Bw < eγ (5) Aw γ + e, Bw eγ e. (6) Nelle applicazioni reali dati linearmente separabili sono difficili da trovare. Cerchiamo di soddisfare le (6), in senso approssimato: 1 min f(w, γ) = min w,γ w,γ m ( Aw + eγ + e) k (Bw eγ + e)+ 1 (7) Norma l 1 definita come segue: x 1 = n x i i=1

45 Definizione del problema Formulazione (7) equivalente alla seguente formulazione: min w,γ,y,z s.t. e T y m + et z k Aw + eγ + e y Bw eγ + e z y 0, z 0 (8) questo problema di programmazione lineare, o equivalentemente la (7), definisce un iperpiano P che soddisfa le (6) in maniera approssimata. Nella feature selection vogliamo eliminare il maggior numero possibile di elementi di w, dunque introduciamo il seguente problema: min w,γ,y,z (1 λ)( et y m + et z k ) + λ w 0 s.t. Aw + eγ + e y λ [0, 1) Bw eγ + e z y 0, z 0 (9)

46 Approssimazione della norma-zero Formulazione (9) equivalente alla seguente formulazione: min w,γ,y,z,v (1 λ)( et y m + et z k ) + λ n s(v i ) i=1 s.t. Aw + eγ + e y λ [0, 1) Bw eγ + e z v w v y 0, z 0 (10) con s : R R + funzione gradino tale che s(t) = 1 per t > 0 e s(t) = 0 per t 0. Funzione gradino discontinua, tipicamente rimpiazzata da una funzione smooth: - funzione sigmoidale; - funzione esponenziale concava; - funzione logaritmica. Per rendere il problema (9) trattabile, possibile rimpiazzare la norma l 0 con la norma l 1.

47 Formulazione ottenuta mediante Funzione Esponenziale Concava Sostituendo la funzione gradino con una funzione esponenziale concava, otteniamo il seguente problema di programmazione concava: min w,γ,y,z,v s.t. (1 λ)( et y m + et z k Aw + eγ + e y Bw eγ + e z v w v y 0, z 0 ) + λ n (1 ε αv i ) i=1 (11) con λ [0, 1).

48 Algoritmo di Frank-Wolfe Problema da risolvere min f(x) x P (12) P R n poliedro non vuoto f : R n R concava, continuamente differenziabile, limitata inferiormente su P

49 Algoritmo di Frank-Wolfe Frank-Wolfe con passo unitario (FW1) 1. Sia x 0 R n il punto iniziale; 2. Per k = 0, 1,..., se x k / arg min x P f(xk ) T x calcola una soluzione x k+1 di altrimenti ESCI. min x P f(xk ) T x Proposizione 1 L algoritmo di Frank-Wolfe con passo unitario converge a un vertice stazionario del problema (12) in un numero finito di iterazioni. [O.L. Mangasarian, Applied Mathematics and Parallel Computing, 1996]

50 Algoritmo di Frank-Wolfe Frank-Wolfe con passo unitario (FW1) 1. Sia x 0 R n il punto iniziale; 2. Per k = 0, 1,..., se x k / arg min x P f(xk ) T x calcola una soluzione x k+1 di altrimenti ESCI. min x P f(xk ) T x Proposizione 1 L algoritmo di Frank-Wolfe con passo unitario converge a un vertice stazionario del problema (12) in un numero finito di iterazioni. [O.L. Mangasarian, Applied Mathematics and Parallel Computing, 1996]

51 Spider: Informazioni Utili Software per Machine Learning in Matlab Contiene una serie di tool per la Feature Selection disponbile al sito:

52 Spider: Programmi per Feature Selection featsel: tool per effettuare il ranking delle variabili secondo uno specifico criterio rfe: eliminazione ricorsiva delle feature fsv: feature selection basata sull approssimazione della norma zero mediante formulazione esponenziale concava

53 Scaricare Lezioni lezioni disponbili al sito: rinaldi/didattica

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Preprocessamento dei Dati

Preprocessamento dei Dati Preprocessamento dei Dati Raramente i dati sperimentali sono pronti per essere utilizzati immediatamente per le fasi successive del processo di identificazione, a causa di: Offset e disturbi a bassa frequenza

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Configuration Management

Configuration Management Configuration Management Obiettivi Obiettivo del Configuration Management è di fornire un modello logico dell infrastruttura informatica identificando, controllando, mantenendo e verificando le versioni

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testualilezione

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testualilezione Text mining ed analisi di dati codificati in linguaggio naturale Analisi esplorative di dati testualilezione 2 Le principali tecniche di analisi testuale Facendo riferimento alle tecniche di data mining,

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Problem Management. Obiettivi. Definizioni. Responsabilità. Attività. Input

Problem Management. Obiettivi. Definizioni. Responsabilità. Attività. Input Problem Management Obiettivi Obiettivo del Problem Management e di minimizzare l effetto negativo sull organizzazione degli Incidenti e dei Problemi causati da errori nell infrastruttura e prevenire gli

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Dati importati/esportati

Dati importati/esportati Dati importati/esportati Dati importati Al workspace MATLAB script Dati esportati file 1 File di testo (.txt) Spreadsheet Database Altro Elaborazione dati Grafici File di testo Relazioni Codice Database

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Sistemi Operativi 1. Mattia Monga. a.a. 2008/09. Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi.

Sistemi Operativi 1. Mattia Monga. a.a. 2008/09. Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi. 1 Mattia Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi.it a.a. 2008/09 1 c 2009 M.. Creative Commons Attribuzione-Condividi allo stesso modo 2.5 Italia

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

Neural Trader: utilizzo di reti neurali per il trading di scommesse

Neural Trader: utilizzo di reti neurali per il trading di scommesse Neural Trader: utilizzo di reti neurali per il trading di scommesse Mario Arrigoni Neri A. Introduzione Il trading di scommesse sportive è una attività relativamente nuova, che si presenta per la prima

Dettagli

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizione di uno schema Dato uno schema relazionale R={A1,A2, An} una sua decomposizione

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli Prefazione Non è facile definire che cosa è un problema inverso anche se, ogni giorno, facciamo delle operazioni mentali che sono dei metodi inversi: riconoscere i luoghi che attraversiamo quando andiamo

Dettagli

white paper La Process Intelligence migliora le prestazioni operative del settore assicurativo

white paper La Process Intelligence migliora le prestazioni operative del settore assicurativo white paper La Process Intelligence migliora le prestazioni operative del settore assicurativo White paper La Process Intelligence migliora le prestazioni operative del settore assicurativo Pagina 2 Sintesi

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale.

Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale. Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale. L analisi modale è un approccio molto efficace al comportamento dinamico delle strutture, alla verifica di modelli di calcolo

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Informatica. Scopo della lezione

Informatica. Scopo della lezione 1 Informatica per laurea diarea non informatica LEZIONE 1 - Cos è l informatica 2 Scopo della lezione Introdurre le nozioni base della materia Definire le differenze tra hardware e software Individuare

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Cenni su algoritmi, diagrammi di flusso, strutture di controllo

Cenni su algoritmi, diagrammi di flusso, strutture di controllo Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni

Dettagli

Matlab: Funzioni. Informatica B. Daniele Loiacono

Matlab: Funzioni. Informatica B. Daniele Loiacono Matlab: Funzioni Informatica B Funzioni A cosa servono le funzioni? 3 x = input('inserisci x: '); fx=1 for i=1:x fx = fx*x if (fx>220) y = input('inserisci y: '); fy=1 for i=1:y fy = fy*y A cosa servono

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

di4g: Uno strumento di clustering per l analisi integrata di dati geologici

di4g: Uno strumento di clustering per l analisi integrata di dati geologici di4g: Uno strumento di clustering per l analisi integrata di dati geologici Alice Piva 1, Giacomo Gamberoni 1, Denis Ferraretti 1, Evelina Lamma 2 1 intelliware snc, via J.F.Kennedy 15, 44122 Ferrara,

Dettagli

Università di Venezia Corso di Laurea in Informatica. Marco Fusaro KPMG S.p.A.

Università di Venezia Corso di Laurea in Informatica. Marco Fusaro KPMG S.p.A. Università di Venezia Corso di Laurea in Informatica Laboratorio di Informatica Applicata Introduzione all IT Governance Lezione 5 Marco Fusaro KPMG S.p.A. 1 CobiT: strumento per la comprensione di una

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli