FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas"

Transcript

1 FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

2 In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre analizziamo il concetto di continuità di una funzione in un punto e classifichiamo i diversi punti di discontinuità. Della maggior parte degli esercizi presentiamo un grafico completo della funzione (anche se non ci occupiamo per il momento di studiare in dettaglio la funzione stessa) in modo da avere un riscontro grafico dell andamento della funzione nei punti di discontinuità. E bene precisare fin da ora che possedere e svolgere gli esercizi di questa dispensa non è condizione né necessaria né sufficiente per il superamento dell esame stesso. Questa dispensa non sostituisce il libro di testo adottato, ne sostituisce le esercitazioni svolte dal docente. Questa dispensa è solo di supporto a tutti coloro che vogliano approfondire la loro preparazione all esame con ulteriori esercizi oltre quelli del libro di testo suggerito dal docente. Ringrazio anticipatamente tutti coloro che vorranno segnalarmi eventuali errori e quanti vorranno comunicarmi suggerimenti per migliorare il lavoro. R.A. 8

3 RICHIAMI Le funzioni elementari Si dividono in due classi:. Funzioni algebriche Sono costituite da quelle funzioni dove il legame tra e y è di tipo algebrico. Possono essere cosi suddivise: a) Funzioni razionali intere b) Funzioni razionali fratte c) Funzioni irrazionali. Funzioni trascendenti Sono costituite da quelle funzioni dove il legame tra e y non è di tipo algebrico. Possono essere cosi suddivise: a) Funzioni goniometriche b) Funzioni esponenziali c) Funzioni logaritmiche Dominio o campo di esistenza Assegnata una funzione è necessario determinare l insieme dei valori della variabile indipendente che definisce la funzione. Ricordiamo il dominio delle funzioni elementari.. Funzioni algebriche a) Le funzioni razionali intere sono definite in tutto il campo reale b) Le funzioni razionali fratte sono definite per tutti quei valori che NON annullano il denominatore ( ) ( ) P f ( ) C.E. Q { / Q( ) } c) Il dominio delle funzionali irrazionali dipende dall indice della radice, distinguiamo quindi due casi. 8

4 Se l indice della radice è un numero pari il campo di esistenza è dato da tutti quei valori della che rendono il radicando maggiore o uguale a zero. f n ( ) con indice pari C.E. { / Q( ) } ( ) Q Se l indice è dispari, le funzioni irrazionali sono definite su tutto il campo reale. ( ) con indice dispari C.E. R n f ( ) Q.. Funzioni trascendenti a) Le funzioni goniometriche come seno e coseno sono definite in tutto l asse reale, mentre tangente e cotangente sono definite per tutti quei valori che non annullano il denominatore. Le funzioni inverse sono definite come segue: f f ( ) arcsin C.E. : { / } ( ) arccos C.E. : { / } f ( ) arctan C.E. : R f ( ) arc cot C.E. : R b) Le funzioni esponenziali sono definite in tutto l asse reale. c) La funzione logaritmica è definita per tutti i valori della che rendono l argomento (del logaritmo) strettamente positivo. f a ( ) log C.E., ( ) 85

5 CONTINUITA La nozione di continuità di una funzione in un punto (o in un intervallo) è strettamente legata alla definizione di ite. Ricordiamo infatti che una funzione è continua in un punto quando il ite della funzione in quel punto è uguale al valore che la funzione assume nel punto stesso, in formule: f ( ) f ( ) In modo equivalente possiamo anche scrivere: f ( ) f ( ) f ( ) Un funzione si dirà continua in un intervallo quando è continua in ciascun punto dell intervallo. Analizziamo la continuità delle funzioni elementari.. Funzioni algebriche a) Le funzioni razionali intere sono continue in tutto il domino di definizione (quindi su tutto l asse reale) b) Le funzioni razionali fratte sono continue per tutti quei valori che NON annullano il denominatore, cioè sono continue in tutto il loro campo di esistenza. c) Il dominio delle funzionali irrazionali sono continue in tutto il loro dominio di definizione, a prescindere dall indice.. Funzioni trascendenti a) Le funzioni goniometriche come seno e coseno sono continue in tutto l asse reale, mentre tangente e cotangente sono continue per tutti quei valori che non annullano il denominatore. Le funzioni inverse sono continue in tutto il loro dominio di esistenza. b) Le funzioni esponenziali sono continue in tutto il loro campo di esistenza, ovvero su tutto l asse reale. c) La funzione logaritmica è continua per tutti i valori della che rendono l argomento (del logaritmo) strettamente positivo. 86

6 87 In conclusione possiamo dire che le funzioni elementari sono continue in tutto il loro insieme di definizione. Esercizi Determinare il campo di esistenza delle seguenti funzioni: log ) ( f soluzione Si tratta di una funzione logaritmica fratta. Il dominio si ottiene imponendo che: < < < quindi: ( ) ( ),,.E. C. log ) ( f Si tratta di una funzione logaritmica fratta. Il dominio si ottiene imponendo che:

7 < < < < < (si osservi che la condizione è già contenuta nelle precedenti) quindi: 5,.E. C. Osservazione La disequazione poteva anche essere risolta nel modo seguente: 5 ottiene : binomio si di quadrati e sviluppando i membri i quadrato ambo elevando al < < <. ( ) 5 log ) ( f Si tratta di una funzione logaritmica irrazionale (con indice pari). Il campo di esistenza si ottiene imponendo: 5 5 la seconda disequazione e contenuta nella prima quindi può essere omessa. Si ha: ( ) < 5 e 5 5 5

8 Risolvendo separatamente i due sistemi si trova: 5 5 ( ) < 5 il primo sistema non ammette soluzione, mentre il secondo ha per soluzione quindi: C.E., Classificazione dei punti di discontinuità Se una funzione non è continua in un punto si dice allora discontinua. I diversi punti di discontinuità che può assumere un funzione in un punto vengono classificati come segue:. Discontinuità di prima specie o a salto Una funzione presenta una discontinuità di prima specie o a salto quando il ite destro e il ite sinistro esistono finiti ma diversi tra di loro. f ( ) f ( ). Discontinuità di seconda specie Una funzione presenta una discontinuità di seconda specie quando almeno uno dei due ite (destro o sinistro) o non esiste oppure è infinito. Si possono presentare le seguenti situazioni: 89

9 f ( ) non esiste oppure f ( ) non esiste può anche capitare che non esistano entrambi. f ( ) oppure f ( ) può anche capitare che entrambi siano infiniti.. Discontinuità di terza specie o einabile Una funzione presenta una discontinuità di terzo specie quando i iti destro e sinistro esisto finiti uguali tra di loro ma diversi dal valore che la funzione assume in quel punto oppure la funzione non è definita in quel punto. In tal caso è possibile ridefinire la funzione attribuendole nel punto in cui non è definita il valore del ite, si dice allora che la funzione è stata prolungata con continuità. f ( ) oppure f ( ) f ( ) f ( ) finiti finiti ma f f ( ) ( ) non esiste Osservazione E opportuno osservare che certi testi suddividono la classificazione dei punti di discontinuità in quattro casi distinguendo tra la possibilità che il ite non esiste da quella in cui il ite della funzione è infinito. Noi utilizzeremo la classificazione classica. Esempi. Data la funzione f ( ) e determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è esponenziale fratta, il dominio è ( ) (, ) Calcoliamo ora il ite destro e sinistro nel punto.,. 9

10 e e La discontinuità è einabile in quanto il ite destro e sinistro esistono finiti ed uguali ma la funzione non è definita nel punto. Come è possibile einare la discontinuità? Basta ridefinire la funzione come segue: g ( ) f ( ) e per per E stato sufficiente assegnare alla funzione, nel punto di discontinuità, il valore del ite. La funzione ottenuta prolungando g f ( ) e nell origine è continua infatti: ( ) g( ) g( ). Data la funzione f ( ) arctan determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è goniometrica fratta, il dominio è ( ) (, ) Calcoliamo ora il ite destro e sinistro nel punto. arctan,. arctan La discontinuità è di prima specie in quanto il ite destro e sinistro esistono finiti ma diversi fra loro. Il salto si ottiene calcolando la differenza tra i due iti, il risultato è. Il seguente grafico mostra il comportamento della funzione nell intorno dell origine. 9

11 Data la funzione f ( ) determinare il campo di ( ) esistenza e classificare gli eventuali punti di discontinuità. La funzione è irrazionale (con indice pari) fratta, il dominio si ottiene imponendo: ( ) C.E. (, ] [, ) (, ).. Calcoliamo ora il ite destro e sinistro nel punto ( ) ( ) La discontinuità è di seconda specie in quanto il ite destro e sinistro sono infiniti. Il seguente grafico mostra l andamento della funzione. Osservare il comportamento della funzione nel punto di ascissa. 9

12 Data la funzione f ( ) arctan determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è goniometrica fratta, il dominio è,,. Calcoliamo ora il ite destro e sinistro nel punto. arctan 6 5 arctan 6 La discontinuità è di prima specie in quanto il ite destro e sinistro esistono finiti ma diversi fra loro. Il salto si ottiene calcolando la differenza tra i due iti, il risultato è. 9

13 Il seguente grafico mostra il comportamento della funzione nell intorno del punto Data la funzione f ( ) determinare il campo di 5 6 esistenza e classificare gli eventuali punti di discontinuità. La funzione è razionale fratta, il dominio si ottiene imponendo: (,) (,) ( ) 5 6 C.E.,. Calcoliamo ora il ite destro e sinistro nei punti e Osservazione Spesso per calcolare il ite di funzioni fratta è conveniente scomporre in fattori il denominatore, questo permette di determinare più semplicemente il segno. 9

14 In entrambi i punti la discontinuità è di seconda specie in quanto il ite destro e sinistro sono infiniti. Il seguente grafico mostra l andamento della funzione. Osservare il comportamento della funzione nel punto di ascissa e nel punto di ascissa Data la funzione f ( ) sin determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è goniometrica fratta, il dominio è: (,) ( ) C.E.,. Calcoliamo ora il ite destro e sinistro nel punto. sin sin Osservazione 95

15 Per calcolare i iti abbiamo tenuto conto del fatto che il ite del prodotto tra una quantità infinitesima e una itata è uguale a zero. La discontinuità è einabile in quanto il ite destro e sinistro esistono finiti ed uguali ma la funzione non è definita in quel punto. Il seguente grafico mostra l andamento della funzione Poiché la discontinuità è di specie possiamo prolungare (la funzione) con continuità, ridefinendo la funzione come segue: g ( ) sin E stato sufficiente assegnare alla funzione, nel punto di discontinuità, il valore del ite. La funzione ottenuta prolungando f ( ) sin nell origine è continua infatti: g ( ) g( ) g( ). 7. Data la funzione f ( ) determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. 96

16 La funzione è esponenziale irrazionale (con indice pari) fratta, il dominio si ottiene imponendo che: C.E. [,) (, ). Calcoliamo ora il ite destro e sinistro nel punto. La discontinuità è di specie in quanto almeno uno dei due iti è infinito. 8. Data la funzione f ( ) sin determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è goniometrica fratta, il dominio è: (,) ( ) C.E.,.. Calcoliamo ora il ite destro e sinistro nel punto. sin non esiste sin non esiste La discontinuità è di seconda specie in quanto il ite destro e sinistro esistono non esistono. Il seguente grafico mostra l andamento della funzione. 97

17 Data la funzione f ( ) cos determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è goniometrica fratta, il dominio è: (,) ( ) C.E.,.. Calcoliamo ora il ite destro e sinistro nel punto. cos non esiste cos non esiste La discontinuità è di seconda specie in quanto il ite destro e sinistro non esistono (infatti la funzione assegnata compie oscillazioni sempre più ampie in un intorno del punto di ascissa ). Il seguente grafico mostra l andamento della funzione (le zone nere evidenziano le infinite oscillazioni della funzione in prossimità del punto). 98

18 Data la funzione f ( ) 5 determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è razionale fratta, il dominio è ( ) (, ),. Si osservi che la funzione può anche essere scritta come segue: f ( ) 5 7 < Calcoliamo ora il ite destro e sinistro nel punto. 5 5 ( ) ( 7) 7 99

19 La discontinuità è di prima specie in quanto il ite destro e sinistro esistono finiti ma diversi fra loro. Il salto si ottiene calcolando la differenza tra i due iti, il risultato è. Il seguente grafico mostra il comportamento della funzione nell intorno dell origine Data la funzione f ( ) cos( ) sin determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è goniometrica fratta, il dominio è: (,) (,) ( ) C.E.,.. Calcoliamo ora il ite destro e sinistro nei punti e. cos ( ) sin non esiste

20 cos ( ) sin non esiste cos ( ) sin cos ( ) sin Nei punti di ascissa e si ha una discontinuità è di seconda specie in quanto il ite destro e sinistro non esistono (infatti la funzione assegnata compie oscillazioni sempre più ampie in un intorno del punto di ascissa ) oppure sono infiniti come succede per il secondo punto. Il seguente grafico mostra l andamento della funzione (le zone nere evidenziano le infinite oscillazioni della funzione in prossimità del punto) Data la funzione f ( ) determinare il campo di ( 6) esistenza e classificare gli eventuali punti di discontinuità. La funzione è razionale fratta, il dominio si ottiene imponendo:

21 ( 6) scomponendo in fattori si ha : ( )( )( )( ) C.E. (, ) (, ) (,) (,) (,) (, ) Calcoliamo ora il ite destro e sinistro nei punti,,, e. ( 6) ( 6) In si ha una discontinuità di specie ( 6) ( 6) In si ha una discontinuità di specie, ( 6) ( 6) In si ha una discontinuità di specie, ( 6) ( 6) In si ha una discontinuità di specie, ( 6) ( 6) In si ha una discontinuità di specie. In tutti i punti la discontinuità è di seconda specie in quanto il ite destro e sinistro sono infiniti. Il seguente grafico mostra l andamento della funzione.

22 Data la funzione 6 arctan ) ( f determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è goniometrica fratta, il dominio è ( ) ( ) ( ),,,. Calcoliamo ora il ite destro e sinistro nei punti ±. 6 6 arctan 6 6 arctan 6 6 arctan

23 arctan 6 6 La discontinuità in entrambi i punti è di prima specie in quanto il ite destro e sinistro esistono finiti ma diversi fra loro. Il salto si ottiene calcolando la differenza tra i due iti, il risultato è, in entrambi i punti. Il grafico della funzione è il seguente: Data la funzione f ( ) determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è esponenziale irrazionale (con indice pari) fratta, il dominio si ottiene imponendo che: C.E. [, ) (, ). Calcoliamo ora il ite destro e sinistro nel punto. La discontinuità è di specie in quanto uno dei due iti è infinito.

24 9 5. Data la funzione f ( ) log determinare il campo di esistenza e classificare gli eventuali punti di discontinuità. La funzione è logaritmica fratta, il dominio si ottiene imponendo: 9 < - < < da cui segue che: (, ) (,) (,) ( ) C.E.,.. Calcoliamo ora il ite destro e sinistro nel punto. 9 log 9 log La discontinuità è di seconda specie in quanto il ite destro e sinistro esistono infiniti. Si osservi che nel punto è possibile calcolare solo il ite sinistro poiché la funzione non è definita a destra del punto, mentre nel punto è possibile calcolare solo un ite destro poiché la funzione non è definita a sinistra del punto. In particolare si ha: 9 log 9 log Il seguente grafico mostra l andamento della funzione: 5

25 cos 6. Data la funzione f ( ) determinare il campo di sin esistenza e classificare gli eventuali punti di discontinuità. La funzione è goniometrica fratta, il dominio si ottiene imponendo: 5 sin sin k e k 6 6 Calcoliamo il ite destro e sinistro in corrispondenza dei due punti: k 6 cos sin k 6 cos sin cos sin 5 k 6 cos sin 5 k 6 In entrambi i punti la funzione presenta discontinuità di specie. Il seguente grafico mostra il comportamento della funzione nell intervallo, : [ ] 6

26 Esercizi proposti Determinare il campo di esistenza e classificare gli eventuali punti di discontinuità delle seguenti funzioni:. f ( ) 7. 5 f ( ) log 6. f ( ) arctan (. f ) cos( ) sin f ( ) ( ) f ( ) cos 7

27 7. f ( ) log 8. f ( ) e 9. f ( ) arccos Soluzioni. C.E. (,) (,) (, ), punti di discontinuità di specie. C.E. (, 5) (,) (, ) ( 5, ) discontinuità di specie. C.E.,, discontinuità di specie. C.E. (,) (,) (, ), discontinuità di specie 5. C.E. (-, ] [,) (, ) discontinuità di specie 6. C.E. (,) (, ) discontinuità di specie 7. C.E. -, la funzione è continua nel campo di esistenza 8. C.E. (,) (, ) discontinuità di specie 9. C.E. -, la funzione è continua nel dominio 8

In base alla definizione di limite, la definizione di continuità può essere data come segue:

In base alla definizione di limite, la definizione di continuità può essere data come segue: Def. Sia f una funzione a valori reali definita in un intervallo I (itato o ilitato) e sia un punto interno all intervallo I. Si dice che f è continua nel punto se: ( )= ( ) Una funzione f è continua in

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Limiti e forme indeterminate

Limiti e forme indeterminate Limiti e forme indeterminate Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Ottobre 04. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto.5378303507,

Dettagli

Appunti e generalità sulle funzioni reali di variabili reali.

Appunti e generalità sulle funzioni reali di variabili reali. Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

Formule trigonometriche

Formule trigonometriche Formule trigonometriche C. Enrico F. Bonaldi 1 Formule trigonometriche In trigonometria esistono delle formule fondamentali che permettono di calcolare le funzioni goniometriche della somma di due angoli

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Considerazioni preliminari sul dominio

Considerazioni preliminari sul dominio L'argomento di cui ci occupiamo in questa lezione è un must nello studio dell'analisi Matematica: vogliamo proporre una guida completa sul dominio di funzioni reali di variabile reale, e mostrare quali

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552 Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0940855 La funzione: y = cos x DEFINIZIONE Si dice funzione coseno di un angolo nel cerchio trigonometrico, la

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Le Derivate delle Funzioni Elementari

Le Derivate delle Funzioni Elementari Capitolo 4 Le Derivate delle Funzioni Elementari In questo Capitolo impareremo a trovare la formula per la funzione derivata di una funzione elementare, cioè di una funzione costruita con ingredienti di

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Sviluppi di Taylor Esercizi risolti

Sviluppi di Taylor Esercizi risolti Esercizio 1 Sviluppi di Taylor Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx ln1

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Logaritmi ed esponenziali

Logaritmi ed esponenziali Logaritmi ed esponenziali definizioni, proprietà ITIS Feltrinelli anno scolastico 2007-2008 A cosa servono i logaritmi I logaritmi rendono possibile trasformare prodotti in somme, quozienti in differenze,

Dettagli

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE IMMATRICOLAZIONI AL PRIMO ANNO DEI CORSI DI LAUREA TRIENNA- LI IN INGEGNERIA DEL POLITECNICO DI BARI - A.A. 2015/2016 Sommario REGOLAMENTO TEST DI AMMISSIONE...

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione POLITECNICO di BARI - A.A. 0/03 Corso di Laurea in INGEGNERIA Informatica e dell Automazione Problema Sia f :[0, +[! R una funzione continua. La funzione composta g() =f(kk) è c o n t i n u a? Problema

Dettagli

EQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO VALORE AOLUTO EQUAZIONI CON VALORE AOLUTO Esercizi DIEQUAZIONI CON VALORE AOLUTO Esercizi Prof. Giulia Cagnetta ITI Marconi Domodossola (VB) *EQUAZIONI CON VALORE AOLUTO Data una qualsiasi espressione

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO 9 PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO Il capitolo che sta per iniziare presenta alcuni argomenti dall aspetto un po arido. Tuttavia, nelle facoltà

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

LIMITI DI FUNZIONI SALVATORE MODICA

LIMITI DI FUNZIONI SALVATORE MODICA LIMITI DI FUNZIONI SALVATORE MODICA Sommario. Definizioni ed esempi Approssimazione al limite Risultati sui limiti: I Esempi ed esercizi: I Risultati sui limiti: II Esempi ed esercizi: II. DEFINIZIONI

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli