Comparatori. Comparatori di uguaglianza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Comparatori. Comparatori di uguaglianza"

Transcript

1 Comparatori Scopo di un circuito comparatore é il confronto tra due codifiche binarie. Il confronto può essere effettuato per verificare l'uguaglianza oppure una relazione d'ordine del tipo "maggiore", "minore", ecc. Il caso di confronto per stabilire l'uguaglianza può essere risolto in maniera molto semplice ed indipendente dal codice usato, con l'unica ipotesi di avere una rappresentazione unica per ogni valore. I confronti per stabilire relazioni d'ordine invece devono necessariamente tener conto del codice utilizzato. Comparatori di uguaglianza Questi possono essere realizzati a partire dalla funzione elementare XNOR a due ingressi. Dalla tavola di verità di questa funzione vediamo che, interpretando l'uscita 0 come "falso" e l'uscita 1 come "vero", possiamo ottenere immediatamente in uscita il risultato del confronto per rilevare l'uguaglianza tra le due variabili di ingresso. Possiamo estendere il circuito in modo da operare il confronto tra due insiemi di variabili booleane, utilizzando una funzione del tipo XNOR per ogni coppia di variabili da confrontare, calcolando poi l'and tra i confronti di ogni cifra. Per esempio, in figura é illustrata la realizzazione di un circuito comparatore per rilevare l'uguaglianza tra due ingressi codificati ciascuno su 3 bit (usando ovviamente lo stesso codice per i due ingressi). Comparatori a>b per numeri in codice binario senza segno Cominciamo a considerare il caso di rappresentazioni di numeri senza segno su 2 bit. La seguente Mappa di Karnaugh descrive il funzionamento del circuito che vogliamo realizzare: \ b1 0 : 0 : 1 : 1 \ b0 0 : 1 : 0 : 1 a1 a0 \ : : : \ :-----:-----:-----+

2 0 0 0 : 0 : 0 : : 0 : 0 : : 1 : 0 : : 1 : 1 : :-----:-----: Un esempio di realizzazione di questa mappa é dato dalla funzione: u = a1 ( b1) + a0 ( b0) (a1+( b1)) La complessità della realizzazione tuttavia cresce molto in funzione del numero di bit delle codifiche da confrontare. Nel caso di confronto tra numeri codificati su 3 bit otteniamo la mappa: \ b2 0 : 0 : 0 : 0 : 1 : 1 : 1 : 1 \ b1 0 : 0 : 1 : 1 : 0 : 0 : 1 : 1 \ b0 0 : 1 : 0 : 1 : 0 : 1 : 0 : 1 a2 a1 a0 \ : : : : : : : \ :-----:-----:-----:-----:-----:-----: : 0 : 0 : 0 : 0 : 0 : 0 : : 0 : 0 : 0 : 0 : 0 : 0 : : 1 : 0 : 0 : 0 : 0 : 0 : : 1 : 1 : 0 : 0 : 0 : 0 : : 1 : 1 : 1 : 0 : 0 : 0 : : 1 : 1 : 1 : 1 : 0 : 0 : : 1 : 1 : 1 : 1 : 1 : 0 : : 1 : 1 : 1 : 1 : 1 : 1 : :-----:-----:-----:-----:-----:-----: Un esempio di realizzazione di questa mappa é dato dalla funzione: u = a2 ( b2) + a1 ( b1) (a2+( b2)) +a0 ( b0) (a2 (a1+( b1))+( b2) (a1+( b1)))

3 Si vede bene come l'estensione di questo circuito al caso di più di 3 bit di rappresentazione per i numeri da confrontare diventa improponibile (almeno dal punto di vista della derivazione manuale delle mappe e della funzione che realizza il circuito). L'alternativa consiste quindi nell'individuare un modulo base di confronto tra una coppia di cifre, e nel replicare tale modulo tante volte quante sono le cifre delle rappresentazioni binarie da confrontare. Il confronto deve partire dalla cifra più significativa: se le due rappresentazioni differiscono nella cifra più significativa, allora possiamo subito concludere se la relazione a>b é vera o falsa, senza bisogno di considerare le cifre successive. Solo se le cifre più significative delle due rappresentazioni a confronto sono uguali, allora ddobbiamo passare all'esame delle cifre successive per arrivare a concludere il valore di verità della relazione di confronto. Tale descrizione di massima di un algoritmo iterativo sulle cifre delle rappresentazioni può essere tradotta nella definizione di un modulo circuitale con 4 ingressi e due uscite, che realizza le operazioni di confronto su una singola cifra. Indichiamo con A e B le due variabili di ingresso al modulo corrispondenti alla cifra "corrente" da esaminare per le due rappresentazioni binarie; indichiamo con C e D due variabili di ingresso ausiliarie che ci riportano la codifica del risultato del confronto sulle cifre più significative. In particolare, stabiliamo di indicare con C=1 la condizione "i confronti precedenti non hanno portato nessun risultato definitivo", e con C=0 la condizione "l'esito del confronto é già noto a seguito del confronto delle cifre precedenti". Nel caso C=0, interpretiamo poi D=0 come risposta "no, a non é maggiore di b" ed invece D=1 come risposta "si, a>b". Indichiamo infine con E e R le due uscite che codificano l'esito del confronto. In particolare indicheremo con E=1 la condizione "neanche l'esame di questa cifra ci permette di dare una risposta definitiva", e con E=0 la condizione "la risposta é stata determinata"; in quest'ultimo caso R=0 significa "no", mentre R=1 significa "si, a>b". Il funzionamento del modulo viene definito mediante la seguente mappa: \ C 0 : 0 : 1 : 1 \ D 0 : 1 : 0 : 1 A B \ E R : E R : E R : E R \ :-----:-----: : 0 1 : 1 0 : : 0 1 : 0 0 : : 0 1 : 0 1 : : 0 1 : 1 0 : 1 0

4 :-----:-----: Tale mappa può essere realizzata in forma minima in logica a 3 livelli mediante le due funzioni: E = ( A) ( B) C + A B C R = A ( B) C + ( C) D Per esempio un circuito comparatore a 3 bit può essere realizzato connettendo tre repliche di tale modulo come illustrato in figura: Per esercizio, provare a realizzare un modulo comparatore per la relazione a>=b, ed a connetterne 4 repliche per ottenere un circuito comparatore a 4 bit. Lo stesso tipo di comparatore può essere utilizzato anche per il confronto tra numeri con segno in codice eccesso 2**(N-1). Nel caso di numeri con segno in codice complemento a 2 occorre invece invertire la cifra più significativa delle due rappresentazioni (il bit di segno). Complementatori a 2 La funzione di cambiamento di segno per un numero rappresentato in codice complemento a 2 su N bit può essere realizzata, oltre che (partendo dalla definizione) complementando a 1 e poi sommando la costante 1, anche mediante un algoritmo iterativo che esamina tutte le cifre della rappresentazione partendo da quella meno

5 significativa. L'algoritmo prevede due comportamenti diversi in funzione di una variabile di stato. Nello stato iniziale, si esamina la cifra corrente (partendo dalla meno significativa) e la si lascia invariata; se la cifra corrente é 1 allora si passa al secondo stato, altrimenti si rimane nello stato iniziale. Nel secondo stato si complementa la cifra corrente e si permane nel secondo stato. Tale algoritmo può essere realizzato mediante l'adozione di un modulo circuitale combinatorio a 2 ingressi (denominati I e C) e due uscite (denominate U e S), in grado di calcolare una cifra della rappresentazione del risultato. Il modulo "complementatore a 2" viene specificato mediante la seguente tavola di verità: c2: i c u s Ovviamente la realizzazione del dispositivo può essere ottenuta mediante una funzione XOR per l'uscita U ed una funzione OR per l'uscita S. Un circuito complementatore a 2 per rappresentazioni su N bit viene quindi ottenuto usando N copie del modulo realizzato come sopra specificato. L'ingresso I di ciascun modulo viene connesso ad una cifra della rappresentazione del numero da cambiare di segno. L'uscita U del modulo rappresenta la corrispondente cifra della rappresentazione del risultato. L'ingresso C del modulo corrispondente alla cifra meno significativa viene connesso al valore costante 0. L'ingresso C di tutti gli altri moduli viene connesso all'uscita S del modulo che calcola la cifra immediatamente precedente. Come nel caso del sommatore con ripple carry, questo circuito ha una complessità di realizzazione che cresce linearmente col numero di bit della rappresentazione del numero, ed un tempo di assestamento dei risultati in uscita a seguito di variazioni dei valori in ingresso che cresce anch'esso linearmente col numero di bit della rappresentazione. Moltiplicatori Anche nel caso di circuiti per la moltiplicazione tra numeri espressi in codice binario senza segno su N bit, una realizzazione in logica a tre livelli risulterebbe eccessivamente complessa per grandi valori di N. Vediamo quindi subito una realizzazione modulare. Il punto di partenza per una realizzazione modulare é il cosiddetto algoritmo di moltiplicazione per "somme e scorrimenti", versione binaria

6 del normale algoritmo di moltiplicazione cifra per cifra a cui siamo abituati nel sistema decimale. Cominciamo a considerare il caso semplificato di moltiplicazione di un operando A rappresentato su N cifre per un operando b rappresentato su una sola cifra binaria. L'operando b potrà assumere ovviamente solo i valori 0 e 1. Nel primo caso il risultato del prodotto sarà 0, mentre nel secondo caso il risultato sarà A. Tale risultato può essere ottenuto mediante un circuito combinatorio composto da N funzioni AND a 2 ingressi, ciascuna connessa ad una cifra diversa dell'operando A ed all'unica cifra dell'operando b. Ogni funzione AND produrrà in uscita una cifra del risultato del prodotto. Consideriamo ora il caso di un operando A espresso su N bit, ed un operando B espresso su due bit (ovvero B=b0+2 b1). Il prodotto A B può quindi essere decomposto in A b0 + A b1 2, dove l'operazione di moltiplicazione per 2 viene realizzata mediante lo "scorrimento" della rappresentazione del numero di una cifra verso sinistra, aggiungendo 0 come cifra meno significativa. Da questo possiamo arrivare a produrre uno schema di realizzazione di un circuito moltiplicatore tra due numeri rappresentati su N bit che fa uso solo di circuiti sommatori e di funzioni AND. Un tale moltiplicatore può essere istanziato al caso di N=3 come illustrato in figura a titolo di esempio: La complessità circuitale di un dispositivo di questo tipo cresce col quadrato del numero di bit delle rappresentazioni degli operandi (il numero di somme e di

7 moltiplicazioni per un bit cresce linearmente col numero di bit, e la realizzazione di ciascuno cresce linearmente col numero di bit). Dal punto di vista del tempo di assestamento, questo può crescere secondo N log(n), utilizzando uno schema di somma ad albero binario (si possono costruire degli alberi binari di sommatori di profondità logaritmica rispetto al numero di termini da sommare, ed ogni sommatore di tipo ripple carry richiede un tempo di assestamento che cresce linearmente col numero di bit).

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati

Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati e collegati Il Livello LogicoDigitale i Blocchi funzionali combinatori Circuiti integrati Un circuito integrato è una piastrina di silicio (o chip), quadrata o rettangolare, sulla cui superficie vengono realizzati

Dettagli

Componenti combinatori

Componenti combinatori Componenti combinatori Reti combinatorie particolari (5.., 5.3-5.8, 5.) Reti logiche per operazioni aritmetiche Decoder ed encoder Multiplexer Dispositivi programmabili: PROM e PLA Reti combinatorie particolari

Dettagli

PROVA INTRACORSO TRACCIA A Pagina 1 di 6

PROVA INTRACORSO TRACCIA A Pagina 1 di 6 PROVA INTRACORSO DI ELEMENTI DI INFORMATICA MATRICOLA COGNOME E NOME TRACCIA A DOMANDA 1 Calcolare il risultato delle seguenti operazioni binarie tra numeri interi con segno rappresentati in complemento

Dettagli

Le Mappe di Karnaugh.

Le Mappe di Karnaugh. Le Mappe di Karnaugh. Introduzione Le mappe di Karnaugh rappresentano un metodo grafico-sistematico per la semplificazione di qualsiasi funzione booleana. Questo metodo si basa su poche regole e se applicate

Dettagli

Sottrazione Logica. Sottrattore Parallelo

Sottrazione Logica. Sottrattore Parallelo Sottrazione Logica Il progetto digitale deve provvedere, con sofisticate macchine combinatorie, al supporto di tutte le operazioni aritmetiche; in questa puntata ci occupiamo dei dispositivi chiamati a

Dettagli

2.12 Esercizi risolti

2.12 Esercizi risolti Codifica dell'informazione 55 Lo standard IEEE prevede cinque cause di eccezione aritmetica: underflow, overflow, divisione per zero, eccezione per inesattezza, e eccezione di invalidità. Le eccezioni

Dettagli

1. Operazioni in logica binaria e porte logiche

1. Operazioni in logica binaria e porte logiche 1. Operazioni in logica binaria e porte logiche Espressione di un numero in base 10 (notare a pedice p.es del numero 21); 21 10 =210 1 +110 0 527,98 10 =5 10 2 +2 10 1 +7 10 0 +9 10 1 +8 10 2 407,563 10

Dettagli

Lezione 7 Sommatori e Moltiplicatori

Lezione 7 Sommatori e Moltiplicatori Architettura degli Elaboratori e delle Reti Lezione 7 Sommatori e Moltiplicatori Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 1/36 Sommario!

Dettagli

Indice. 1 Rappresentazione dei dati... 3

Indice. 1 Rappresentazione dei dati... 3 INSEGNAMENTO DI INFORMATICA DI BASE LEZIONE II CODIFICA DELL'INFORMAZIONE PROF. GIOVANNI ACAMPORA Indice 1 Rappresentazione dei dati... 3 1.1. Rappresentazione dei numeri... 3 1.1.1 Rappresentazione del

Dettagli

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche 3.1 LE PORTE LOGICHE E GLI OPERATORI ELEMENTARI 3.2 COMPORTAMENTO A REGIME E IN TRANSITORIO DEI CIRCUITI COMBINATORI I nuovi

Dettagli

PROGRAMMAZIONE MODULARE

PROGRAMMAZIONE MODULARE PROGRAMMAZIONE MODULARE ANNO SCOLASTICO 2013-2014 Indirizzo: ELETTROTECNICA - SIRIO Disciplina: ELETTRONICA Classe: 3^ Sezione: AES Numero di ore settimanali: 2 ore di teoria + 2 ore di laboratorio Modulo

Dettagli

Logica combinatoria. La logica digitale

Logica combinatoria. La logica digitale Logica combinatoria La logica digitale La macchina è formata da porte logiche Ogni porta riceve in ingresso dei segnali binari (cioè segnali che possono essere 0 o 1) e calcola una semplice funzione (ND,

Dettagli

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND.

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND. IPSI G. Plana Via Parenzo 46, Torino efinizione di Mintermine onsiderata una qualunque riga della tabella di verità in cui la funzione booleana di uscita Q vale, si definisce mintermine il prodotto logico

Dettagli

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri 1 Da base 2 a base 10 I seguenti esercizi richiedono di convertire in base 10 la medesima stringa binaria codificata rispettivamente

Dettagli

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it Lezione 2 Circuiti logici Mauro Piccolo piccolo@di.unito.it Bit e configurazioni di bit Bit: una cifra binaria (binary digit) 0 oppure 1 Sequenze di bit per rappresentare l'informazione Numeri Caratteri

Dettagli

Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno

Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno Algoritmo = Dati e Azioni Dati: Numeri (naturali, interi, reali, ) Caratteri alfanumerici (a, b, c, ) Dati logici (vero, falso) Vettori di elementi, matrici, ([1,2,3], [[1,1],[1,2], ]) Azioni o istruzioni:

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X.

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X. Algebra Di Boole L algebra di Boole è un ramo della matematica basato sul calcolo logico a due valori di verità (vero, falso). Con alcune leggi particolari consente di operare su proposizioni allo stesso

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2015/16 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

Introduzione ai microcontrollori

Introduzione ai microcontrollori Introduzione ai microcontrollori L elettronica digitale nasce nel 1946 con il primo calcolatore elettronico digitale denominato ENIAC e composto esclusivamente di circuiti a valvole, anche se negli anni

Dettagli

Architettura dei Calcolatori Algebra delle reti Logiche

Architettura dei Calcolatori Algebra delle reti Logiche Architettura dei Calcolatori Algebra delle reti Logiche Ing. dell Automazione A.A. 20/2 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali e informazione Algebra di commutazione Porta logica

Dettagli

Memorie ROM (Read Only Memory)

Memorie ROM (Read Only Memory) Memorie ROM (Read Only Memory) Considerando la prima forma canonica, la realizzazione di qualsiasi funzione di m variabili richiede un numero di porte AND pari al numero dei suoi mintermini e di prolungare

Dettagli

Esercitazione Informatica I AA 2012-2013. Nicola Paoletti

Esercitazione Informatica I AA 2012-2013. Nicola Paoletti Esercitazione Informatica I AA 2012-2013 Nicola Paoletti 4 Gigno 2013 2 Conversioni Effettuare le seguenti conversioni, tenendo conto del numero di bit con cui si rappresenta il numero da convertire/convertito.

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016 CLASSE 3 I Discip lina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata e sottoscritta dai docenti: cognome

Dettagli

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI Scienza ed industria hanno oggi costituito legami molto forti di collaborazione che hanno portato innovazione tecnologica sia a livello organizzativo-amministrativo

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

Operatori logici e porte logiche

Operatori logici e porte logiche Operatori logici e porte logiche Operatori unari.......................................... 730 Connettivo AND........................................ 730 Connettivo OR..........................................

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Variabili logiche e circuiti combinatori

Variabili logiche e circuiti combinatori Variabili logiche e circuiti combinatori Si definisce variabile logica binaria una variabile che può assumere solo due valori a cui si fa corrispondere, convenzionalmente, lo stato logico 0 e lo stato

Dettagli

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Fondamenti di Informatica per Meccanici Energetici - Biomedici 1 Sistemi di Numerazione Sistemi di Numerazione I sistemi di numerazione sono abitualmente posizionali. Gli elementi costitutivi di un sistema

Dettagli

Operazioni binarie fondamentali

Operazioni binarie fondamentali Operazioni binarie fondamentali Operazioni fondamentali: operazioni elementari sui bit. Sono definite le operazioni aritmetiche più le operazioni logiche (AND, OR, NOT). Le operazioni possono essere descritte

Dettagli

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche Esercitazione di Calcolatori Elettronici Ing. Battista Biggio Corso di Laurea in Ingegneria Elettronica Esercitazione 1 (Capitolo 2) Reti Logiche Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie

Dettagli

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario Esercitazione di Calcolatori Elettronici Prof. Gian Luca Corso di Laurea in Ingegneria Elettronica Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie Analisi e sintesi di reti sequenziali

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

Circuiti logici. Parte xxv

Circuiti logici. Parte xxv Parte xxv Circuiti logici Operatori logici e porte logiche....................... 729 Operatori unari....................................... 730 Connettivo AND...................................... 730

Dettagli

Tecnologie e Progettazione dei sistemi Informatici e di Telecomunicazioni Scheda Recupero Estivo Obiettivo

Tecnologie e Progettazione dei sistemi Informatici e di Telecomunicazioni Scheda Recupero Estivo Obiettivo Tecnologie e Progettazione dei sistemi Informatici e di Telecomunicazioni Scheda Recupero Estivo Classe IIIG Il recupero estivo nella materia sarà valutato con un test scritto, durante i giorni dedicati

Dettagli

Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013

Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013 Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013 In questo documento vengono illustrate brevemente le operazioni aritmetiche salienti e quelle logiche ad esse strettamente collegate.

Dettagli

Lezione 3. Sommario. Le operazioni aritmetiche binarie. L aritmetica binaria. La somma La sottrazione La moltiplicazione

Lezione 3. Sommario. Le operazioni aritmetiche binarie. L aritmetica binaria. La somma La sottrazione La moltiplicazione Lezione 3 Le operazioni aritmetiche binarie Sommario L aritmetica binaria La somma La sottrazione La moltiplicazione 1 Definizione Si indica con il termine bit più significativo il bit più a sinistra,

Dettagli

Reti sequenziali sincrone

Reti sequenziali sincrone Reti sequenziali sincrone Un approccio strutturato (7.1-7.3, 7.5-7.6) Modelli di reti sincrone Analisi di reti sincrone Descrizioni e sintesi di reti sequenziali sincrone Sintesi con flip-flop D, DE, T

Dettagli

Sommario. Addizione naturale

Sommario. Addizione naturale Sommario Introduzione Rappresentazione dei numeri interi positivi Rappresentazione dei numeri interi Operazioni aritmetiche Modulo e segno Addizione e sottrazione urale Addizione e sottrazione in complemento

Dettagli

Codifica binaria dei numeri relativi

Codifica binaria dei numeri relativi Codifica binaria dei numeri relativi Introduzione All interno di un calcolatore, è possibile utilizzare solo 0 e 1 per codificare qualsiasi informazione. Nel caso dei numeri, non solo il modulo ma anche

Dettagli

Fondamenti di Informatica 2. Le operazioni binarie

Fondamenti di Informatica 2. Le operazioni binarie Corso di per il corso di Laurea di Ingegneria Gestionale Le operazioni binarie Università degli Studi di Udine - A.A. 2010-2011 Docente Ing. Sandro Di Giusto Ph.D. 1 L'algebra binaria Il fatto di aver

Dettagli

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno Parte II Indice Operazioni aritmetiche tra valori rappresentati in binario puro somma sottrazione Rappresentazione di numeri con segno modulo e segno complemento a 2 esercizi Operazioni aritmetiche tra

Dettagli

Aritmetica dei Calcolatori 2

Aritmetica dei Calcolatori 2 Laboratorio di Architettura 13 aprile 2012 1 Operazioni bit a bit 2 Rappresentazione binaria con segno 3 Esercitazione Operazioni logiche bit a bit AND OR XOR NOT IN OUT A B A AND B 0 0 0 0 1 0 1 0 0 1

Dettagli

4. Operazioni aritmetiche con i numeri binari

4. Operazioni aritmetiche con i numeri binari I Numeri Binari 4. Operazioni aritmetiche con i numeri binari Contare con i numeri binari Prima di vedere quali operazioni possiamo effettuare con i numeri binari, iniziamo ad imparare a contare in binario:

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento

Dettagli

Codifica binaria dei numeri

Codifica binaria dei numeri Codifica binaria dei numeri Caso più semplice: in modo posizionale (spesso detto codifica binaria tout court) Esempio con numero naturale: con 8 bit 39 = Codifica in virgola fissa dei numeri float: si

Dettagli

Università degli Studi di Cassino Corso di Fondamenti di Informatica Codifica di dati e istruzioni. Anno Accademico 2010/2011 Francesco Tortorella

Università degli Studi di Cassino Corso di Fondamenti di Informatica Codifica di dati e istruzioni. Anno Accademico 2010/2011 Francesco Tortorella Corso di Fondamenti di Informatica Codifica di dati e istruzioni Anno Accademico 2010/2011 Francesco Tortorella La codifica dei dati e delle istruzioni La più piccola unità di informazione memorizzabile

Dettagli

Informatica Generale 02 - Rappresentazione numeri razionali

Informatica Generale 02 - Rappresentazione numeri razionali Informatica Generale 02 - Rappresentazione numeri razionali Cosa vedremo: Rappresentazione binaria dei numeri razionali Rappresentazione in virgola fissa Rappresentazione in virgola mobile La rappresentazione

Dettagli

Codifica binaria e algebra di Boole

Codifica binaria e algebra di Boole Codifica binaria e algebra di Boole Corso di Programmazione A.A. 2008/09 G. Cibinetto Contenuti della lezione Codifica binaria dell informazione Numeri naturali, interi, frazionari, in virgola mobile Base

Dettagli

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando lgebra booleana e circuiti logici a cura di: Salvatore Orlando rch. Elab. - S. Orlando lgebra & Circuiti Elettronici I calcolatori operano con segnali elettrici con valori di potenziale discreti sono considerati

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Logica e codifica binaria dell informazione

Logica e codifica binaria dell informazione Politecnico di Milano Corsi di Laurea in Ingegneria Matematica e Ingegneria Fisica Dipartimento di Elettronica ed Informazione Logica e codifica binaria dell informazione Anno Accademico 2002 2003 L. Muttoni

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE. Lez2 Informatica Sc. Giuridiche Op. aritmetiche/logiche arch.

Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE. Lez2 Informatica Sc. Giuridiche Op. aritmetiche/logiche arch. Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE Comunicazione importante dalla prossima settimana, la lezione del venerdì si terrà: dalle 15:00 alle 17.15 in aula 311 l orario

Dettagli

I Sistemi di numerazione e la rappresentazione dei dati

I Sistemi di numerazione e la rappresentazione dei dati I Sistemi di numerazione e la rappresentazione dei dati LA RAPPRESENTAZIONE DELLE INFORMAZIONI (1) Per utilizzare un computer è necessario rappresentare in qualche modo le informazioni da elaborare e il

Dettagli

Parte 1. Vettori di bit - AA. 2012/13 1.1

Parte 1. Vettori di bit - AA. 2012/13 1.1 1.1 Parte 1 Vettori di bit 1.2 Notazione posizionale Ogni cifra assume un significato diverso a seconda della posizione in cui si trova Rappresentazione di un numero su n cifre in base b: Posizioni a n

Dettagli

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR Università degli Studi di Cagliari Corso di Laurea in Ingegneria Biomedica, Chimica, Elettrica e Meccanica FONDAMENTI DI INFORMATICA 1 http://www.diee.unica.it/~marcialis/fi1 A.A. 2010/2011 Docente: Gian

Dettagli

Calcolatori Elettronici A a.a. 2008/2009. RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin

Calcolatori Elettronici A a.a. 2008/2009. RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin Calcolatori Elettronici A a.a. 2008/2009 RETI SEQUENZIALI: ESERCIZI Massimiliano Giacomin 1 Esercizio 1: implementazione di contatori Un contatore è un dispositivo sequenziale che aggiorna periodicamente

Dettagli

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Anno Accademico 2013/2014 Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Prof. Riccardo Torlone Università di Roma Tre Semplici elementi alla base di sistemi complessi Riccardo Torlone - Corso

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

Rappresentazione delle informazioni

Rappresentazione delle informazioni Rappresentazione delle informazioni Abbiamo informazioni (numeri, caratteri, immagini, suoni, video... ) che vogliamo rappresentare (e poter elaborare) in un calcolatore. Per motivi tecnologici un calcolatore

Dettagli

CAPITOLO 1 CIRCUITI COMBINATORI

CAPITOLO 1 CIRCUITI COMBINATORI 1 CAPITOLO 1 CIRCUITI COMBINATORI Con questo capitolo iniziamo lo studio dell elettronica digitale, partendo dalle porte logiche che costituiscono i circuiti digitali più elementari. In altre parole, un

Dettagli

Corso di Laurea in Informatica Architetture degli Elaboratori

Corso di Laurea in Informatica Architetture degli Elaboratori Corso di Laurea in Informatica Architetture degli Elaboratori Corsi A e B Esonero del 25 maggio 2005 Esercizio 1 (punti 3) Una scheda di memoria di un telefono cellulare mette a disposizione 8Mbyte di

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

La somma. Esempio: Il prodotto. Esempio:

La somma. Esempio: Il prodotto. Esempio: La somma L algoritmo della operazione di somma non cambia qualunque sia la base considerata. Naturalmente, le regole da imparare nel caso di una base b sono relative alle sole b 2 posssibili combinazioni

Dettagli

Sistemi di numerazione: generalità

Sistemi di numerazione: generalità Sistemi di numerazione: generalità Nel corso della storia sono stati introdotti diversi sistemi di numerazione, dettati di volta in volta dalle specifiche esigenze dei vari popoli. Poiché ogni numero maggiore

Dettagli

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici L1 LOGICA FONDAMENTI DI LOGICA DIGITALE 1 Concetti di logica: teoremi fondamentali dell'algebra booleana Sistema binario Funzioni logiche Descrizione algebrica delle reti logiche e le tavole della verità

Dettagli

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( )

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( ) Algebra di Boole L algebra di Boole prende il nome da George Boole, matematico inglese (1815-1864), che pubblicò un libro nel 1854, nel quale vennero formulati i principi dell'algebra oggi conosciuta sotto

Dettagli

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2. http://digilander.libero.it/rosario.cerbone

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2. http://digilander.libero.it/rosario.cerbone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2 Prof. Rosario Cerbone rosario.cerbone@libero.it http://digilander.libero.it/rosario.cerbone a.a. 2007-2008 Logica Combinatoria una rete combinatoria

Dettagli

LE RETI COMBINATORIE

LE RETI COMBINATORIE 2-1 CAPITOLO II LE RETI COMBINATORIE 2.1 INTRODUZIONE Le reti combinatorie sono reti logiche caratterizzate dal fatto che lo stato dell'uscita all'istante t dipende solo dallo stato delle entrate allo

Dettagli

Storia dell informatica

Storia dell informatica Storia dell informatica INFORMATICA INFORMATICA INTRODUZIONE PERCHE' I COMPUTER? LIMITI DELLE CAPACITA' ELABORATIVE UMANE. VELOCITA' LIMITATA 2. PESANTI LIMITI ALLA COMPLESSITA DEI PROBLEMI AFFRONTABILI

Dettagli

Capitolo 1 - Numerazione binaria

Capitolo 1 - Numerazione binaria Appunti di Elettronica Digitale Capitolo - Numerazione binaria Numerazione binaria... Addizione binaria... Sottrazione binaria... Moltiplicazione binaria... Divisione binaria... Complementazione... Numeri

Dettagli

A L'operatore NOT si scrive con una linea sopra la lettera indicante la variabile logica A ; 0 1 1 0. NOT di A =

A L'operatore NOT si scrive con una linea sopra la lettera indicante la variabile logica A ; 0 1 1 0. NOT di A = ALGEBRA DI BOOLE L'algebra di Boole è un insieme di regole matematiche; per rappresentare queste regole si utilizzano variabili logiche, funzioni logiche, operatori logici. variabili logiche: si indicano

Dettagli

Reti combinatorie: Codificatori

Reti combinatorie: Codificatori Reti combinatorie: Codificatori P. Marincola (Rev..2) Come si ricorderà, i decodificatori hanno essenzialmente il compito di convertire un codice binario a n bit in un codice -su-m, dovem =2 n. In molte

Dettagli

Logica binaria. Porte logiche.

Logica binaria. Porte logiche. Logica binaria Porte logiche. Le porte logiche sono gli elementi fondamentali su cui si basa tutta la logica binaria dei calcolatori. Ricevono in input uno, due (o anche più) segnali binari in input, e

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Università degli Studi di Messina Facolta di Ingegneria - 98100 Messina Tel. (090) 393229 - Fax (090) 393502 Fondamenti di Informatica Ing. delle Tecnologie Industriali Docente: Ing. Mirko Guarnera 1 Sistemi

Dettagli

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Docente: Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi 089-963334 ALGEBRA DI COMMUTAZIONE Lo scopo di questa algebra

Dettagli

11010010 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 210

11010010 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 210 Il sistema BINARIO e quello ESADECIMALE. Il sistema di numerazione binario è particolarmente legato ai calcolatori in quanto essi possono riconoscere solo segnali aventi due valori: uno alto e uno basso;

Dettagli

Cenni di logica & algebra booleana

Cenni di logica & algebra booleana Cenni di algebra booleana e dei sistemi di numerazione Dr. Carlo Sansotta - 25 2 Parte Cenni di logica & algebra booleana 3 introduzione L elaboratore elettronico funziona secondo una logica a 2 stati:

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

SISTEMA DI RAPPRESENTAZIONE BINARIA DEI NUMERI E. Giordani

SISTEMA DI RAPPRESENTAZIONE BINARIA DEI NUMERI E. Giordani SISTEMA DI RAPPRESENTAZIONE BINARIA DEI NUMERI E. Giordani LEMS- Laboratorio Elettronico per la Musica Sperimentale Conservatorio di Musica G. Rossini- Pesaro,QWURGX]LRQH Tutti i FDOFRODWRUL HOHWWURQLFL

Dettagli

l angolo di Mr A.KEER UNITA

l angolo di Mr A.KEER UNITA l angolo di Mr A.KEER UNITA Aritmetico Logica La rassegna delle macchine combinatorie destinate al supporto delle operazioni aritmetiche non può prescindere dalle ALU, sofisticate macchine plurifunzionali,

Dettagli

6 ARITMETICA: ALGORITMI E CIRCUITI. Mariagiovanna Sami. Franco Fummi 6.1 INTRODUZIONE. Università di Verona. Politecnico di Milano

6 ARITMETICA: ALGORITMI E CIRCUITI. Mariagiovanna Sami. Franco Fummi 6.1 INTRODUZIONE. Università di Verona. Politecnico di Milano 6 6 1 6.1 INTRODUZIONE...2 6.2 LA RAPPRESENTAZIONE DEI NUMERI...3 6.2.1 I NUMERI INTERI POSITIVI...4 6.2.2 I NUMERI RELATIVI...4 6.2.3 I NUMERI REALI...5 6.2.4 CODICI BIUNIVOCI E CODICI RIDONDANTI...6

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione La Codifica dell informazione (parte 1) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente:

Dettagli

Architettura degli Elaboratori Implementazione di funzioni booleane

Architettura degli Elaboratori Implementazione di funzioni booleane Architettura degli Elaboratori Implementazione di funzioni booleane Giacomo Fiumara giacomo.fiumara@unime.it Anno Accademico 2012-2013 1 / 34 Introduzione /1 Ogni funzione booleana può essere implementata

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli