B C D E A B D E A B C E A B E A B D A B E A B C A B B D A B B A B B C A B

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "B C D E A B D E A B C E A B E A B D A B E A B C A B B D A B B A B B C A B"

Transcript

1 same di Teoria dei Segnali Ing. Informatica, lettronica e Telecomunicazioni 8 settembre 6 sercizio Si consideri di dover ordinare i nomi di 5 persone, indicate come,,, ed. Nell ordinamento di devono rispettare i seguenti vincoli:. deve sempre precedere ;. non può essere primo; 3. non può essere secondo. ssumendo che tutte le sequenze (ordinate) possibili siano equiprobabili, qual è la probabilità che una sequenza abbia come primo nome? Siccome tutte le sequenze ordinate sono equiprobabili, l esperimento di interesse può essere caratterizzato con uno spazio campione uniforme e la probabilità di un qualsiasi evento si può scrivere come il rapporto fra il numero di casi favorevoli a quell evento ed il numero di casi totale. Iniziamo con il determinare il numero di casi totale, cioè il numero di possibili sequenze ordinate. Per fare questo costruiamo l albero delle scelte relativo all esperimento in questione. Tale albero è mostrato in Figura, e la sua struttura si deriva come segue, procedendo per livelli di profondità crescente (le foglie corrispondono al livello 5). Sottoalbero regolare (4! foglie) Livello di profondità Figura : lbero delle scelte per ordinamento delle parole nell sercizio. livello le scelte possibili sono, e. Infatti: (i) non può essere scelto, perchè questo sarebbe in contrasto con il secondo vincolo; (ii) non può essere scelto, in quanto dovrebbe seguirlo e questo violerebbe il primo vincolo. Nel caso in cui la lettera scelta sia, tutti i vincoli sono rispettati, e di conseguenza il sottoalbero che parte da è pieno, cioè avrà 4! foglie (principio di analisi combinatoria). Notando che, per motivi di simmetria, i due sottoalberi che si sviluppano da e devono avere lo stesso numero di foglie, allora nel seguito ci concentriamo solo sul sottoalbero che si sviluppa da. livello non possono essere scelti e, in quanto (i) scegliendo si violerebbe il terzo vincolo, mentre (ii) scegliendo si violerebbe, successivamente, il primo vincolo. Quindi, a livello si hanno foglie. livello 3, non è possibile scegliere, siccome si violerebbe il primo vincolo ai livelli successivi. Rimangono quindi 4 foglie.

2 livello 4, non è possibile selezionare in quei sottoalberi dove non è ancora stato scelto. Sopravvivono 6 foglie. Tale numero di foglie si conserva anche a livello 5. Riassumendo, siccome il sottoalbero che parte da a livello ha 4! = 4 foglie e ognuno dei due sottoalberi che partono da e a livello hanno 6 foglie, il numero totale di foglie è 36. Siccome il numero di sottosequenze con al primo posto corrisponde al numero di foglie del sottoalbero che si sviluppa da a livello, si può concludere che la probabilità cercata è 4 36 = 3. sercizio on riferimento a Figura, scelto un punto a caso P sulla circonferenza di raggio unitario, si ricavi la funzione densità di probabilità (PF) della variabile aleatoria Y = lunghezza della corda tra il punto P ed il punto di coordinate (, ). P Y θ Figura : Punto P sulla circonferenza di raggio unitario e corda, di lunghezza Y, fra il punto P ed il punto della circoferenza sul semiasse positivo di nell sercizio. Indicando con θ l angolo, in senso antiorario rispetto al semiasse positivo orizzontale, il punto P ha coordinate (cos Θ, sin Θ), dove Θ è una variabile uniformemente distribuita in [ π, π). La variabile aleatoria Y può essere espressa come segue: Y = ( cosθ) + sin θ = cosθ cosθ = = sinx dove X Θ/ e si è utilizzata una nota proprietà trigonometrica. Ovviamente X è una variabile aleatoria uniformemente distribuita in [ π/, π/). Per determinare le statistiche di Y analizziamo la trasformazione Y = g(x) dove g() sin. Se < o >, l equzione = g() non ha soluzioni, e quindi f Y () =. Se < <, l equazione = g() presenta le due soluzioni, = ±asin(/). Siccome ( g (, ) = cos, = sin, = ) segue che f Y () = = i= f X ( i ) g ( i ) /π ( ) = π ( ). Il grafico di f Y () è mostrato in Figura 3 sercizio 3 Nel piano (, ) è assegnato il dominio indicato in Figura 4. Si consideri una coppia di variabili aleatorie X e Y con densità di probabilità congiunta costante sul dominio e nulla altrove.. eterminare le funzioni densità di probabilità marginali f X () ed f Y (), e tracciarne il grafico.. Verificare se X e Y sono indipendenti oppure no.

3 4 3.5 f Y () Figura 3: PF di Y nell sercizio Figura 4: ominio della funzione densità di probabilità congiunta delle due variabili aleatorie X e Y nell sercizio alcolare ov[x, Y ]. Per costruzione, la PF congiunta di X ed Y può essere espressa come segue: se (, ) f XY (, ) = rea() altrove se (, ) = altrove. eterminiamo per prima la PF di X. Per simmetria, siccome possiamo concludere che f X ( ) = f X (), limitiamoci a studiare il comportamento di f X () per > : f X () = per < < e > 3; f X () = f X () = 3 d = ( )/ per < < ; d = (3 )/ per < < 3. La PF di X si può quindi scrivere, in modo compatto, come segue: < < f X () = 3 < < 3 altrove ed il suo grafico è mostrato in Figura 5. Per quanto riguarda la PF di Y, questa è non nulla solo se < <, nel qual caso si ha, sfruttando la simmetria della PF congiunta: 3 f Y () = d = ( ). + 3

4 .7.6 f X () Figura 5: PF di X nell sercizio 3. La PF di Y è mostrata in Figura 6..5 f Y () Figura 6: PF di Y nell sercizio 3. ssendo f X ()f Y () f XY (, ), segue che X ed Y non sono indipendenti.. Ricordiamo preliminarmente che ov[x, Y ] = [XY ] [X][Y ] = [XY ] dove, nel secondo passaggio, si è sfruttato il fatto che la PF di X è pari, e quindi [X] =. Si ha: ov[x, Y ] = [XY ] = dd. () ssendo il dominio pari e la funzione integranda (cioè ) dispari, segue immediatamente che l integrale ad ultimo membro di () è zero, cioè ov[x, Y ] =. Si conclude quindi che X ed Y sono incorrelate. 4

5 sercizio 4 Siano date due variabili aleatorie X ep() ed Y ep() indipendenti. Si consideri Z = X + Y, e si calcoli [Z] e Var[Z]. Per linearità dell operatore valor medio, si ha: [Z] = [X ] + [Y ]. Ricordiamo che la funzione generatrice dei momenti (MGF) di una variabile aleatoria esponenziale a parametro µ è data da µ/(µ s). i conseguenza, la derivata n-ma di tale MGF si può scrivere come φ (n) (s) = n!µ (µ s). Per il teorema dei momenti, n+ si ha: essendo il parametro di X. ssendo [Y ] = /, segue che dove ssendo X ed Y indipendenti, si ha: La varianza cercata è quindi: [X ] = φ () X () = µ = [Z] = + = 5. Var[Z] = Var[X ] + Var[Y ] Var[Y ] = [Y ] ([Y ]) = φ () Y () [φ() Y ()] = ( ) = 4 Var[X ] = [X 4 ] ([X ]) = φ (4) X () [φ() X ()] = 4! = 4 4 =. Var[Z] = + 4 =

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004 Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni luglio 4 Esercizio Un sacchetto A contiene caramelle ai gusti fragola, limone e lampone. Un sacchetto B contiene caramelle

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Esercitazione 6 maggio 04 Calcolo delle Probabilità Davide Petturiti e-mail: davide.petturiti@sbai.uniroma.it web: https://sites.google.com/site/davidepetturiti Esercizio. Siano X e Y due variabili aleatorie

Dettagli

Matematica II - ING ELT Appello del 30/1/2009. Nome e cognome:... Recupero I parte Recupero II parte Scritto completo

Matematica II - ING ELT Appello del 30/1/2009. Nome e cognome:... Recupero I parte Recupero II parte Scritto completo Matematica II - ING ELT Appello del 3/1/29 Nome e cognome:.............................................. Scegliere una delle opzioni sottostanti Matricola:.............. ecupero I parte ecupero II parte

Dettagli

CP110 Probabilità: Esame 30 gennaio Testo e soluzione

CP110 Probabilità: Esame 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2010-11, II semestre 30 gennaio, 2012 CP110 Probabilità: Esame 30 gennaio 2012 Testo e soluzione 1. (5 pts) Un gioco consiste in n prove ripetute, tali

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

Corsi di Laurea in Ingegneria Meccanica e Informatica Anno Accademico 2015/2016 Meccanica Razionale

Corsi di Laurea in Ingegneria Meccanica e Informatica Anno Accademico 2015/2016 Meccanica Razionale Corsi di Laurea in Ingegneria Meccanica e Informatica Anno Accademico 15/16 Meccanica Razionale Nome... N. Matricola... Ancona, 7 giugno 16 1. Un corpo rigido piano è formato da due aste AC e BC, di ugual

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 2018

Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 2018 Corso di laurea in Ingegneria civile - ambientale - edile Esame di Analisi matematica II Prova scritta del 29 giugno 28 Esercizio Si consideri la successione di funzioni {f n } n N + definita da f n (x)

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/02/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina)

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina) Calcolo delle probabilità (3/7/00). La distribuzione di probabilità di un numero aleatorio X non negativo soddisfa la condizione P (X > x + y X > y) = P (X > x), x > 0, y > 0. Inoltre la previsione di

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni Prof. Mario Barbera [parte ] Variabili aleatorie Esempio: sia dato l esperimento: Scegliere un qualunque giorno non festivo della settimana, per verificare casualmente

Dettagli

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 16 febbraio 2007

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 16 febbraio 2007 Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicaioni 6 febbraio 7 Eserciio C un vecchio mao di carte (che dovrebbe avere 5 carte), da cui forse manca il tre di cuori. Essendo

Dettagli

Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A )

Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A ) Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A.-) Es. La variabile aleatoria ha densità di probabilità uniorme nell intervallo [,]. Trovare valor medio e varianza di. La densità di probabilità

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

Metodi Matematici Probabilità e Statistica. Correzione Compitino del

Metodi Matematici Probabilità e Statistica. Correzione Compitino del Metodi Matematici Probabilità e Statistica Correzione Compitino del.4.04 nota: Una sola risposta è esatta. 4 punti per una risposta esatta, -2 per una sbagliata, 0 per una non data. Gli esercizi sono divisi

Dettagli

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - I appello, 6/6/2016

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - I appello, 6/6/2016 ANNO ACCADEMICO 05/0 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - I appello, //0 Esercizio. Le carte di un mazzo da 0, composto solo delle carte da a 5, vengono distribuite (5 a testa) ai quattro giocatori

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 0 gennaio 007 Primo esercizio. È assegnato il numero complesso z = + i. (a) Posto z = + i, determinare la forma trigonometrica

Dettagli

Traccia della soluzione degli esercizi del Capitolo 3

Traccia della soluzione degli esercizi del Capitolo 3 Traccia della soluzione degli esercizi del Capitolo 3 Esercizio 68 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π, cioè f X ( = π ( π, π (. Posto Y = cos(x, trovare la distribuzione di

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Analisi Matematica 2. Prove Parziali A.A. 2012/2017

Analisi Matematica 2. Prove Parziali A.A. 2012/2017 Analisi 2 Polo di Savona Analisi Matematica 2 Prove Parziali A.A. 2012/2017 1- PrPzAmT.TEX [] Analisi 2 Polo di Savona Prima Prova parziale 23/11/2011 Prima Prova parziale 23/11/2011 Si consideri la funzione

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

1. Si scelga a caso un punto X dell intervallo [0, 2], con distribuzione uniforme di densità. f X (x) = [0,2](x)

1. Si scelga a caso un punto X dell intervallo [0, 2], con distribuzione uniforme di densità. f X (x) = [0,2](x) Esercizi di Calcolo delle Probabilità della 3 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio.. Sia (X, Y ) un vettore aleatorio bidimensionale con densità uniforme

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 24 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 24 luglio 2017 Testi 1 Scritto del sesto appello, luglio 7 Testi Prima parte, gruppo.. Determinare i punti di massimo e minimo assoluti della funzione f( := 3 e relativamente alla semiretta, specificando se non ne esistano..

Dettagli

Foglio di esercizi 4-12 Aprile 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella

Foglio di esercizi 4-12 Aprile 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella Esercizio. Foglio di esercizi 4 - Aprile 9 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella Un punto viene scelto a caso uniformemente nel cerchio di raggio 3 centrato nell origine. Dette

Dettagli

1. Siano A, E eventi incompatibili, e sia B E, con P (A) = 1 5, P (B) = 3 10, P (E) = 1 2.

1. Siano A, E eventi incompatibili, e sia B E, con P (A) = 1 5, P (B) = 3 10, P (E) = 1 2. CALCOLO DELLE PROBABILITA - 5 gennaio 005 Ing. Elettronica : 4, Nettuno :. Siano A, E eventi incompatibili, e sia B E, con P (A) = 5, P (B) = 0, P (E) =. Dimostrare che tale assegnazione è coerente, determinando

Dettagli

Esercizio 1. Un punto viene scelto a caso nel cerchio di raggio R > 0 con distribuzione uniforme.

Esercizio 1. Un punto viene scelto a caso nel cerchio di raggio R > 0 con distribuzione uniforme. Esercizi settimana 8 Esercizi applicati Esercizio. Un punto viene scelto a caso nel cerchio di raggio R > con distribuzione uniforme. (i) qual è la probabilità che il punto disti dall'origine più di r,

Dettagli

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows. Immettere Nome utente b## (##

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

1.- Una scatola contiene 5 palline (bianche o nere, con al più una pallina nera). Considerato

1.- Una scatola contiene 5 palline (bianche o nere, con al più una pallina nera). Considerato CALCOLO DELLE PROBABILITA - 14 gennaio 2006 Elettronica I o mod.: Es.1 4. Nettuno: Es.1 3. V.O.: Es.1 6. 1.- Una scatola contiene 5 palline (bianche o nere, con al più una pallina nera). Considerato l

Dettagli

Richiami di Teoria della probabilità (I)

Richiami di Teoria della probabilità (I) Richiami di Teoria della probabilità (I) ESPERIMENTO: ogni operazione il cui risultato non può essere predetto con certezza EVENTO: è il risultato di un esperimento Eventi semplici e composti Eventi disgiunti

Dettagli

Funzioni di 2 variabili

Funzioni di 2 variabili Funzioni di 2 variabili 1 eterminare l insieme di definizione di ciascuna delle seguenti funzioni precisando se tali insiemi sono aperti, chiusi, itati. F (x, y) = 1 sin x cos y F (x, y) = arctan sin xy

Dettagli

Primo Parziale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale

Primo Parziale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale Primo Parziale del Corso di Analisi Matematica 4. Calcolare la soluzione generale dell equazione differenziale 5 + 3 4 + 3 3 + =. Soluzione: Sostituendo = e λ si arriva all equazione caratteristica λ 5

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizi - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizio. X e Y sono v.a. sullo stesso spazio di probabilità (Ω, E, P). X segue la distribuzione geometrica modificata di parametro p

Dettagli

Esercizi settimana 9. Esercizi applicati. Esercizio 1. Sia f denita da. f(t) = 0 t 0, con α, θ > 0. Si calcoli il tasso istantaneo di guasto denito da

Esercizi settimana 9. Esercizi applicati. Esercizio 1. Sia f denita da. f(t) = 0 t 0, con α, θ > 0. Si calcoli il tasso istantaneo di guasto denito da 1 Esercizi settimana 9 Esercizi applicati Esercizio 1. Sia f denita da f(t) = { αθ α (θ+t) α+1 t >, t, con α, θ >. Si calcoli il tasso istantaneo di guasto denito da e si dica se r è crecente. r(t) :=

Dettagli

PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI. x x 2 + y 2 dxdy, tan(x + y) x + y. (x y) log (x + y) dxdy,

PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI. x x 2 + y 2 dxdy, tan(x + y) x + y. (x y) log (x + y) dxdy, PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI VALENTINA CASARINO Esercizi per il corso di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli

Dettagli

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4,

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4, Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 04/05 Prova di Esonero Maggio 05 degli esercizi proposti Siano G, E, E tre variabili aleatorie gaussiane indipendenti, rispettivamente

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016

Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016 Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016 Esercizi possibili di probabilità e statistica Notazioni: U(a, b) è la distribuzione di probabilità uniforma nell intervallo (a,

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014 Prove scritte dell esame di Analisi Matematica II a.a. 3/4 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 9 giugno 4. (8 punti) Risolvere il problema

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 29-2, II semestre 25 maggio, 2 CP Probabilità: Esonero 2 Testo e soluzione . (7 pt) Siano T, T 2 variabili esponenziali indipendenti, di parametri λ =

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

MATEMATICA E STATISTICA CORSO A III APPELLO 7 Luglio 2009

MATEMATICA E STATISTICA CORSO A III APPELLO 7 Luglio 2009 MATEMATICA E STATISTICA CORSO A III APPELLO 7 Luglio 2009 Soluzioni 1. Calcola quanto vale, in forma decimale, il reciproco del numero 1 2 log 10 4 4. Cominciamo col semplificare il numero di cui vogliamo

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof. L.Morato) Esercizi Parte III: variabili aleatorie dipendenti e indipendenti,

Dettagli

f(x, y, z) = xye z (x, y, z) R 3 : x > 0, y > 0, z 1 < x 2 + y 2 < z } 0 < z < 2 x < 1 y < 1

f(x, y, z) = xye z (x, y, z) R 3 : x > 0, y > 0, z 1 < x 2 + y 2 < z } 0 < z < 2 x < 1 y < 1 ANALISI MATEMATICA II Corso di Laurea in Fisica quadriennale Traccia di soluzione della prova scritta del 2 gennaio 24 Durata della prova scritta: 2 ore. Lo studente può svolgere fino a 3 esercizi tra

Dettagli

Nome e cognome:... Matricola...

Nome e cognome:... Matricola... Nome e cognome:................................................... Matricola................. CALCOLO DELLE PROBABILITA - 0/07/008 CdS in Economia e Finanza - Cds in Informatica - Cds SIGAD Motivare dettagliatamente

Dettagli

Esercizio: pendolo sferico. Soluzione

Esercizio: pendolo sferico. Soluzione Esercizio: pendolo sferico Si consideri un punto materiale di massa m vincolato a muoversi senza attrito sulla superficie di una sfera di raggio R e soggetto alla forza di gravita. Ridurre il moto alle

Dettagli

Analisi Matematica III 16 Gennaio (x 1) 2 + y2

Analisi Matematica III 16 Gennaio (x 1) 2 + y2 Analisi Matematica III 6 Gennaio 7. ( punti) Calcolare il seguente integrale triplo ( e z + y(x ) + dove = {(x, y, z) R 3 : (x ) + y 4 + z }. y + (x ) + y 4 + z ) dxdz, Il dominio di integrazione è un

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016

Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016 Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016 Esercizi possibili di probabilità e statistica Notazioni: U(a, b) è la distribuzione di probabilità uniforma nell intervallo (a,

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 2014 2015 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi

Dettagli

Soluzione del Il campo è irrotazionale, come si verifica facilmente poiché xy (1 xy) log(1 xy) y 1 xy. y 1 xy. y < 1 x per x > 0,

Soluzione del Il campo è irrotazionale, come si verifica facilmente poiché xy (1 xy) log(1 xy) y 1 xy. y 1 xy. y < 1 x per x > 0, Soluzione del..15 1. Il campo è irrotazionale, come si verifica facilmente poiché ( ) xy (1 xy) log(1 xy) = ( ) xy log(1 xy) y 1 xy y 1 xy ( ) x = x x y x 1 xy (1 xy). Il campo è definito dove 1 xy >,

Dettagli

Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio Esercizio 1

Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio Esercizio 1 Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio 2015 Nome e cognome: Matricola: c I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. 8994

Dettagli

Esercizi di Matematica A.A. 2017/2018

Esercizi di Matematica A.A. 2017/2018 C.d.L. in Produzioni Animali - Scuola di Agraria e Medicina Veterinaria - Università di Bologna Cod. corso 65965 Esercizi di Matematica A.A. 2017/2018 Insiemistica Dati: A = {1, 2,, 4, 5} B = {1, 5, 7,

Dettagli

Esame di Stato 2018/19 Soluzione Quesiti seconda prova

Esame di Stato 2018/19 Soluzione Quesiti seconda prova 1 Esame di tato 2018/19 oluzione Quesiti seconda prova Alessandro Gambini 1, Elisa Garagnani 2, and Giovanni Organtini 3 1 Università di Bologna 2 Istituto di Istruzione uperiore Archimede 3 apienza Università

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 6/02/2017

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 6/02/2017 Corso di Laurea in Ingegneria Informatica e Automatica (M-Z Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 6/02/2017 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gioco del

Dettagli

V. c. multidimensionali e distribuzioni di funzioni di v.c.

V. c. multidimensionali e distribuzioni di funzioni di v.c. Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Introduzione al modello Uniforme

Introduzione al modello Uniforme Introduzione al modello Uniforme Esempio: conversione Analogico/Digitale Errore di quantizzazione Ampiezza Continua Discreta x () t x ( t ) q Tempo Discreto Continuo Segnale Analogico ( ) x t k t t Segnale

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 10 settembre 2012 Matricola: Nome:

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 10 settembre 2012 Matricola: Nome: Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 10 settembre 2012 Matricola: ESERCIZIO 1. Facendo uso solamente della definizione di spazio di probabilità, dell additività

Dettagli

(e it + e 5 2 it + e 3it )

(e it + e 5 2 it + e 3it ) CALCOLO DELLE PROBABILITÀ - 13 gennaio 1999 1. Siano A, B, C eventi, con P (A) = 0.3, P (B) = 0.5, P (C) = 0.7, e per i quali è noto che i relativi costituenti sono C 1 = A c B c C c, C 2 = AB c C c, C

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 16/06/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Cinque lettere

Dettagli

1 Esercizi tutorato 1/4

1 Esercizi tutorato 1/4 Esercizi tutorato 1/ 1 1 Esercizi tutorato 1/ Esercizio 11 Siano X e Y due va discrete indipendenti di distribuzione geometrica con parametro p [0, 1] (i) Si calcoli la legge di X + Y, è una legge nota?

Dettagli

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 1. Dati gli eventi A,B,C, ognuno dei quali implica il successivo, e tali che P (A) è metà della probabilità di B, che a sua volta ha probabilità metà di quella

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 2017-18, I semestre 26 Giugno 2018 Scritto del 26-6 -18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 T. Totale

Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Analisi e Geometria 1 COMPITO A Docenti: F. Colombo, G. Mola, E. Munarini 11/11/2008 Ing. Industriale Cognome: Nome: Matricola: Punteggi: Es.1 = 6 punti, Es.2 = 12 punti,

Dettagli

La teoria delle code

La teoria delle code La teoria delle code 3 marzo 205 Ing. foglietta.chiara@gmail.com Università degli Studi di Cassino e del Lazio Meridionale Agenda Reti di Aperte Reti di Aperte Sistema M/M/ I 2 Reti di Aperte Una coda

Dettagli

COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A

COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A Esercizio 1 Determinare il dominio della seguente funzione: COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D Fila A (a) f (, ln( + 4 Esercizio Calcolare le derivate parziali delle

Dettagli

Università di Pisa Geometria e Algebra Lineare per Ingegneria Aerospaziale, Ingegneria Meccanica, Ingegneria della Sicurezza

Università di Pisa Geometria e Algebra Lineare per Ingegneria Aerospaziale, Ingegneria Meccanica, Ingegneria della Sicurezza Scritto n.1 del 2010 Esercizio 1. Discutere il seguente sistema reale h x + y + h z = h 2 x + (1 h) z = 3 h 2 h x + y + h z = h h 2 Esercizio 2. Risolvere exp 2 z + ( 1 + i 3) expz + z ( exp 2 z + ( 1

Dettagli

Analisi 2 Fisica e Astronomia

Analisi 2 Fisica e Astronomia Analisi Fisica e Astronomia Appello scritto del 8 Luglio 0. Soluzione Esercizio 7 pti Sia α > 0 un parametro e consideriamo la curva piana γ : [0, ] R γt = t cos, t sin, se t 0, ], e γ0 = 0, 0. t α t α

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

Analisi Matematica II 14 Giugno 2019

Analisi Matematica II 14 Giugno 2019 Analisi Matematica II 14 Giugno 2019 Cognome: Nome: Matricola: 1. (10 punti) Si determinino i sottoinsiemi del piano in cui valgano, rispettivamente, continuità, derivabilità e differenziabilità della

Dettagli

ESERCIZI 121. P 1 z 1 y x. a) P 2. Figura 12.25: Sistema discusso nell esercizio 41.

ESERCIZI 121. P 1 z 1 y x. a) P 2. Figura 12.25: Sistema discusso nell esercizio 41. ESERCIZI 121 Esercizio 41 Un sistema meccanico è costituito da 3 punti 0, 1 e 2 di massa m vincolati a muoversi sulla superficie di un cilindro circolare retto di raggio r = 1. Si scelga un sistema di

Dettagli

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio -

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio - AMA Ing.Edile - Prof. Colombo 1 Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it I numeri complessi. Richiami di teoria. 1.1 Numeri complessi. Un numero complesso è un espressione della

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (3/09/011) Università di Verona - Laurea in Biotecnologie - A.A. 010/11 1 Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O, P-Z)

Dettagli

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati:

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: ANALISI Soluzione esercizi 2 gennaio 212 12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: (x, y) R 2 : x < y} (x, y) R 2 : 2 x 3} (x, y) R 2 : x 2 +

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

1) i) Rappresentare sia attraverso disequazioni, sia attraverso un disegno, il dominio della funzione

1) i) Rappresentare sia attraverso disequazioni, sia attraverso un disegno, il dominio della funzione Università di Milano - Bicocca Corso di laurea di primo livello in Scienze statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informazioni Matematica II.7.8 SOLUZIONE

Dettagli

C = {C 1 = A B c H, C 2 = A c B H, C 3 = A B c H c, C 4 = A c B H c } ; P (C 1 ) = 21/100, P (C 2 ) = 9/100, P (C 3 ) = 49/100, P (C 4 ) = 21/100.

C = {C 1 = A B c H, C 2 = A c B H, C 3 = A B c H c, C 4 = A c B H c } ; P (C 1 ) = 21/100, P (C 2 ) = 9/100, P (C 3 ) = 49/100, P (C 4 ) = 21/100. CALCOLO DELLE PROBABILITÀ - 20 gennaio 2007 Motivare dettagliatamente le risposte su fogli allegati Elettronica: Es.1 4. Nettuno: Es.1 3. 1. Si effettuano due estrazioni con restituzione da un lotto contenente

Dettagli

Politecnico di Bari - A.A. 2012/2013 Corso di Laurea in Ingegneria Elettrica Esame di ANALISI MATEMATICA - 3 Luglio 2013.

Politecnico di Bari - A.A. 2012/2013 Corso di Laurea in Ingegneria Elettrica Esame di ANALISI MATEMATICA - 3 Luglio 2013. Esame di ANALISI MATEMATICA - 3 Luglio 2013 (1) Studiare il carattere della serie numerica n 1( 1) n F 0 (n), dove F (x) = Z x 0 log(1 + e t2 ) dt (x 1). (6 punti) log(1 + e t2 ) (2) ata la funzione f(x,

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 18/09/2013

Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 18/09/2013 Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 18/09/013 COGNOME e NOME... N. MATRICOLA... Prima di uscire dall aula, CONSEGNARE QUESTI FOGLI indipendentemente

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1 1) Studiare la seguente serie di funzioni en ( 1) n n x n 2) Studiare la seguente serie di funzioni ( 1) n n + 1 2e n xn 3) Studiare la seguente serie di funzioni 3n [ln x]n 1 2n 4) Studiare la seguente

Dettagli

CP110 Probabilità: Esame 2 settembre Testo e soluzione

CP110 Probabilità: Esame 2 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2010-11, II semestre 2 settembre, 2011 CP110 Probabilità: Esame 2 settembre 2011 Testo e soluzione 1. (5 pts) Nel gioco dello Yahtzee si lanciano cinque

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

CALCOLO DELLE PROBABILITÀ

CALCOLO DELLE PROBABILITÀ CALCOLO DELLE PROBABILITÀ - gennaio 000 Elettronici: nn. 4 Informatici: nn. 6. Un lotto contiene pezzi buoni ed un solo pezzo difettoso. Si effettuano tre estrazioni senza restituzione, e sia E i = pezzo

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Docente: Analisi e Geometria 1 Prima Prova 22 Novembre 2016 Compito F Cognome: Nome: Matricola:

Docente: Analisi e Geometria 1 Prima Prova 22 Novembre 2016 Compito F Cognome: Nome: Matricola: Es. 1 Es. 2 Es. Teoria: Totale Numero di iscrizione alla prova scritta: Docente: Analisi e Geometria 1 Prima Prova 22 Novembre 2016 Compito F Cognome: Nome: Matricola: Punteggi: Es.1: 7; Es.2: 7; Es.:

Dettagli

Scritto di Analisi Vettoriale ( ) proff. F. De Marchis, F. Lanzara, E. Montefusco

Scritto di Analisi Vettoriale ( ) proff. F. De Marchis, F. Lanzara, E. Montefusco COGNOM, NOM e MATRICOLA: Scritto di Analisi Vettoriale 8..18) proff. F. De Marchis, F. Lanzara,. Montefusco DOCNT: De Marchis Lanzara Montefusco Se ammesso, sosterrò la prova orale: questo appello in un

Dettagli

Esonero AM220, 2019, con Soluzioni

Esonero AM220, 2019, con Soluzioni Esonero AM22, 29, con oluzioni Ogni risposta va accuratamente motivata. Non si possono usare: libri, appunti, congegni elettronici, etc.. ia := { (x, y, z) R 3, tali che x 2 + y 2 4, z = x 2 + y 2 }. ia

Dettagli

DISTRIBUZIONI BINOMIALE, POISSON E NORMALE Indice degli esercizi

DISTRIBUZIONI BINOMIALE, POISSON E NORMALE Indice degli esercizi DISTRIBUZIONI BINOMIALE, POISSON E NORMALE Indice degli esercizi 1 Distribuzione di Poisson 1.1 Soluzione dell'esercizio 1 2 Sulla distribuzione normale 2.1 Soluzione dell'esercizio 2 3 Distribuzione binomiale

Dettagli

Correzione terzo compitino, testo B

Correzione terzo compitino, testo B Correzione terzo compitino, testo B 4 maggio 00 Parte Esercizio.. Procederemo per esclusione, mostrando come alcune funzioni della lista non possano avere il grafico in figura. La prima cosa che possiamo

Dettagli

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017 Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria Primo Appello 13 Luglio 017 Cognome: Nome: Matricola: Es.1: 11 punti Es.: 6 punti Es.3: 7 punti Es.: 8 punti Totale

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

ANALISI MATEMATICA II 6 luglio 2010 Versione A

ANALISI MATEMATICA II 6 luglio 2010 Versione A ANALISI MATEMATICA II 6 luglio 2 Versione A Nome Cognome: Matricola Codice corso Docente: Corso di Laurea: Analisi II 75 cr. Analisi D Analisi II V.O. Analisi C es. 23 es. 245 es 24 es. es. 3 pinti b c

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli