Dimensione: px
Iniziare la visualizzazioe della pagina:

Download ""

Transcript

1 Cosa richiede il progetto Mat-A.l.p.i Didattica laboratoriale in un ottica argomentativa Attività che mirano alla riflessione e all argomentazione 1

2 Materiale a cui ispirarsi Propria esperienza didattica CD di mat-estate e Msf Prove Invalsi Siti di interesse da linkare 2

3 Possibili attività Di recupero Di rinforzo/ potenziamento Di approfondimento Tenendo conto che la classe quarta è quella del consolidamento e dell acquisizione di nuove conoscenze/ esperienze 3

4 Dalle indicazioni nazionali

5 1 L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di ricorrere a una calcolatrice. 5

6 Suggerimenti Nota storica per catturare l attenzione se non fatta prima L alunno deve conoscere proprietà, criteri di divisibilità ma, soprattutto, il significato delle parole che usa ( riflessione) perché in questo contesto la matematica è strumento di calcolo Utile far descrivere ai compagni il procedimento utilizzato per risolvere il calcolo (argomentazione scritta e orale) 6

7 2 Riconosce e rappresenta forme del piano e dello spazio, relazioni e strutture che si trovano in natura o che sono state create dall uomo. 7

8 Suggerimenti Partire da esempi concreti( piastrelle, foglie, oggetti di uso comune) chiedendo di riconoscerne la forma e di rappresentarla su un foglio quadrettato. Per le rappresentazioni spaziali si può, ad esempio, smontare una scatola e poi rimontarla (sviluppo di un cubo e di un parallelepipedo) invitando a riflettere sulla forma delle facce con descrizione. 8

9 3 Descrive, denomina e classifica figure in base a caratteristiche geometriche, ne determina misure, progetta e costruisce modelli concreti di vario tipo. 9

10 Suggerimenti Fornire materiale eterogeneo, ma coerente e chiedere di formare sottoinsiemi con le caratteristiche volute( riflessione). Chiedere, inoltre, la descrizione dei criteri utilizzati per la formazione dei vari gruppi Far progettare una pavimentazione con poligoni assegnati chiedendo di motivare il perché certi poligoni non possono essere assemblati tra loro( argomentazione) 10

11 4 Utilizza strumenti per il disegno geometrico (riga, compasso, squadra) e i più comuni strumenti di misura (metro, goniometro...). 11

12 Suggerimenti L alunno deve conoscere gli strumenti di misura e il loro funzionamento( accertarsi che questo prerequisito sia posseduto!!!) Proporre un insieme di oggetti da misurare e, a lavoro ultimato, far riflettere sugli errori commessi che sicuramente ci saranno. Utile ricordare che la misura vera corrisponde alla media aritmetica delle misurazioni effettuate. Argomentare sull introduzione del sistema metrico decimale e sui sistemi che lo hanno preceduto. 12

13 5 Ricerca dati per ricavare informazioni e costruisce rappresentazioni (tabelle e grafici). Ricava informazioni anche da dati rappresentati in tabelle e grafici. 13

14 Suggerimenti Far cercare su giornali grafici relativi a qualche articolo interessante, o/e tabelle riferite a fenomeni coinvolgenti da cui sia possibile procedere a rappresentazioni grafiche opportune. Proporre esempi diversi facendo notare che esistono rappresentazioni grafiche bellissime, ma distorcenti!( riflessione). Utile il computer se possibile. Leggere il grafico sempre! (argomentare) 14

15 6 Riconosce e quantifica, in casi semplici, situazioni di incertezza. 15

16 Suggerimenti Proporre di giocare con i dadi per far intuire la regola di calcolo della probabilità in senso classico ed approfittarne per far capire che il valore della probabilità è compreso tra zero e uno, estremi inclusi( riflessione). Provocare i bambini con esempi che non siano riferiti a dadi o carte per far intuire che il discorso sulla probabilità è molto più ampio e che pertanto lo si affronterà anche negli anni a venire( argomentare sulla probabilità soggettiva). 16

17 7 Legge e comprende testi che coinvolgono aspetti logici e matematici. 17

18 Suggerimenti Far leggere qualche cosa di interessante, passi di storia della matematica, ma non solo per esempio gli antichi giochi o problemi di Fra Luca Pacioli Riflessioni e argomentazioni saranno spontanee! 18

19 8 Riesce a risolvere facili problemi in tutti gli ambiti di contenuto, mantenendo il controllo sia sul processo risolutivo, sia sui risultati. Descrive il procedimento seguito e riconosce strategie di soluzione diverse dalla propria. 19

20 Suggerimenti 1 Qui entrano in gioco diversi fattori tra cui la comprensione del testo, l indicazione delle operazioni da eseguire in ordine logico, la corretta esecuzione dei calcoli e la coerenza dei risultati rispetto ai dati di partenza. L argomentazione della risposta e la ricerca di soluzioni alternative, se esistono, completano il processo 20

21 Suggerimenti 2 Far lavorare i bambini in gruppo per far loro creare situazioni problematiche che prendano spunto dalla realtà quotidiana, o da interessi personali. Cogliere l occasione per far capire che la matematica si presta a fornire comodi mezzi per analizzare, discutere e risolvere non soltanto i problemi che stanno sul sussidiario, ma anche i problemi della vita! 21

22 9 Costruisce ragionamenti formulando ipotesi, sostenendo le proprie idee e confrontandosi con il punto di vista di altri. 22

23 Suggerimenti 1 E utile il lavoro di gruppo ben organizzato e non banale, oppure un sorta di gioco in cui ciascun bambino presenta un proprio problema da risolvere ai compagni.. Segue la possibilità per il docente di valutare non soltanto l apprendimento matematico, ma anche quello linguistico, nel frattempo tra i bambini c è il confronto tra pari 23

24 Suggerimenti 2 Con l occasione ricordare che anticamente( dal 1500 al 1900) i grandi matematici usavano sfidarsi sulle pubbliche piazze Riferire di Tartaglia che va citato come esempio a tutti i bambini in quanto autodidatta, per la sua infanzia infelice. 24

25 10 Riconosce e utilizza rappresentazioni diverse di oggetti matematici (numeri decimali, frazioni, percentuali, scale di riduzione,...). 25

26 Suggerimenti Per riconoscere e utilizzare occorre conoscere i vari argomenti e saperli manipolare, quindi accertarsi che i prerequisiti sussistano altrimenti procedere ad un ripasso/ rinforzo Proporre attività che richiedano l utilizzo di differenti registri e, a soluzione ultimata, procedere alle comparazioni; ne seguirà un dibattito che richiederà riflessione e argomentazione. 26

27 11 Sviluppa un atteggiamento positivo rispetto alla matematica, attraverso esperienze significative, che gli hanno fatto intuire come gli strumenti matematici che ha imparato ad utilizzare siano utili per operare nella realtà. 27

28 Suggerimenti L atteggiamento positivo nei confronti della disciplina è possibile solo se il bambino ha fiducia nelle proprie capacità, anche se non eccelse. Ciò si verifica quando è accompagnato nel processo di apprendimento con amore, nel rispetto dei suoi tempi e del suo stile. Molto utile ogni tanto richiamare aspetti storici per catturare l attenzione e ricordare come molte scoperte che hanno fatto il progresso dell uomo siano state possibili solo grazie alla matematica. 28

29 Competenze di base in matematica -fonti Raccomandazione del Parlamento Europeo e del Consiglio Indicazioni Nazionali per il Curricolo 2007,

30 Competenze specifiche Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali Rappresentare, confrontare ed analizzare figure geometriche, individuandone varianti, invarianti, situazioni reali; Rilevare dati significativi, analizzarli, interpretarli, sviluppare ragionamenti sugli stessi, utilizzando consapevolmente rappresentazioni grafiche e strumenti di calcolo; Riconoscere e risolve problemi di vario genere, individuando le strategie appropriate, giustificando il procedimento seguito e utilizzando in modo consapevole i linguaggi specifici 30

31 Conoscenze Gli insiemi numerici: rappresentazioni, operazioni, ordinamento I sistemi di numerazione.operazioni e proprietà Frazioni e frazioni equivalenti Sistemi di numerazione diversi nello spazio e nel tempo Figure geometriche piane Piano e coordinate cartesiani Misure di grandezza; perimetro e area dei poligoni. Trasformazioni geometriche elementari e loro invarianti Misurazione e rappresentazione in scala Le fasi risolutive di un problema e loro rappresentazioni con diagrammi Principali rappresentazioni di un oggetto matematico Tecniche risolutive di un problema che utilizzano frazioni, proporzioni, percentuali, formule geometriche Unità di misura diverse Grandezze equivalenti Frequenza, media, percentuale Elementi essenziali di logica 31

32 Abilitàfine classe quinta Numeri Leggere, scrivere, confrontare numeri decimali. Eseguire le quattro operazioni con sicurezza, valutando l opportunità di ricorrere al calcolo mentale, scritto o con la calcolatrice a seconda delle situazioni. Eseguire la divisione con resto fra numeri naturali; individuare multipli e divisori di un numero. Stimare il risultato di una operazione. Operare con le frazioni e riconoscere frazioni equivalenti. 32

33 Segue abilitànumeri Utilizzare numeri decimali, frazioni e percentuali per Interpretare i numeri interi negativi in contesti concreti. Rappresentare i numeri conosciuti sulla retta e utilizzare scale graduate in contesti significativi per le scienze e per la tecnica. Conoscere sistemi di notazione dei numeri che sono o sono stati in uso in luoghi, tempi e culture diverse dalla nostra. 33

34 Abilitàfine classe quinta Spazio e figure Descrivere, denominare e classificare figure geometriche, identificando elementi significativi e simmetrie, anche al fine di farle riprodurre da altri. Riprodurre una figura in base a una descrizione, utilizzando gli strumenti opportuni (carta a quadretti, riga e compasso, squadre, software di geometria). Utilizzare il piano cartesiano per localizzare punti. Costruire e utilizzare modelli materiali nello spazio e nel piano come supporto a una prima capacità di visualizzazione. Riconoscere figure ruotate, traslate e riflesse. Confrontare e misurare angoli utilizzando proprietà e strumenti 34

35 Segue abilitàspazio e figure Utilizzare e distinguere fra loro i concetti di perpendicolarità, parallelismo, orizzontalità, verticalità. Riprodurre in scala una figura assegnata (utilizzando, ad esempio, la carta a quadretti). Determinare il perimetro di una figura utilizzando le più comuni formule o altri procedimenti. Determinare l area di rettangoli e triangoli e di altre figure per scomposizione o utilizzando le più comuni formule. Riconoscere rappresentazioni piane di oggetti tridimensionali, identificare punti di vista diversi di uno stesso oggetto (dall alto, di fronte, ecc.) 35

36 Relazioni, dati e previsioni Rappresentare relazioni e dati e, in situazioni significative, utilizzare le rappresentazioni per ricavare informazioni, formulare giudizi e prendere decisioni. Usare le nozioni di media aritmetica e di frequenza. Rappresentare problemi con tabelle e grafici che ne esprimono la struttura. Utilizzare le principali unità di misura per lunghezze, angoli, aree, volumi/capacità, intervalli temporali, masse, pesi e usarle per effettuare misure e stime. Passare da un unità di misura a un'altra, limitatamente alle unità di uso più comune, anche nel contesto del sistema monetario. 36

37 Segue dati e previsioni In situazioni concrete, di una coppia di eventi intuire e cominciare ad argomentare qual è il più probabile, dando una prima quantificazione nei casi più semplici, oppure riconoscere se si tratta di eventi ugualmente probabili. Riconoscere e descrivere regolarità in una sequenza di numeri o di figure. 37

38 Traccia di lavoro da- MAT-ESTATE; Msf 38

39 Tp1 (primo traguardo selezionato) L alunno utilizza con sicurezza le procedure del calcolo scritto e mentale con i numeri naturali operando in contesti significativi legati anche ad eventi reali valutando l opportunità di ricorrere alla calcolatrice. Riflessione! 39

40 Attività Tp1 E1 E2 E3 Tp1.1 x x Tp1.2 x x x Tp1.3 x x Tp1.4 x x Tp1.5 x x x Tp1.6 x x x Tp1.7 x x Tp1. 8 x x 40

41 E1-E2-E3 Interpretare e usare in modo appropriato il significato dei numeri, i modi per rappresentarli e il significato della notazione posizionale. Interpretare e usare consapevolmente il significato delle operazioni. Operare tra numeri in modo consapevole sia mentalmente, sia per iscritto, sia con strumenti. 41

42 Tp2 Riconosce e risolve facili problemi di vario genere analizzando la situazione con la consapevolezza che in molti casi i problemi possono essere affrontati con strategie diverse ed ammettere più soluzioni. Argomentare sul confronto delle soluzioni!!!! 42

43 Attività Tp2 E28 E29 E30 Tp2.1 x x Tp2.2 x x x Tp2.3 x x Tp2.4 x x Tp2.5 x x Tp2.6 x x x 43

44 E28-E29-E30 Riconoscere e rappresentare situazioni problematiche Impostare, discutere e comunicare strategie di risoluzione Risolvere problemi posti da altri 44

45 Tp3 Utilizza rappresentazioni di dati adeguate e in situazioni significative ne finalizza l uso per ricavare informazioni Informazioni da comunicare!!! 45

46 Attività T p 3 E1 E10 E11 E12 E17 E16 E21 E23 E28 E29 E30 Tp3..1 x x x x x x x Tp3.2 x x x x x x x x Tp3.3 x x x x Tp3.4 x x x x x x x 46

47 E10-E11-E12-E16-E17-E21-E23 Individuare relazioni tra elementi e rappresentarle Classificare e ordinare in base a determinate proprietà Utilizzare lettere e formule per generalizzare o per astrarre Reperire, organizzare e rappresentare dati Effettuare valutazioni di probabilità di eventi Produrre congetture, testare, validare le congetture prodotte Giustificare affermazioni con semplici concatenazioni di proposizioni 47

48 Tp4 Costruisce ragionamenti attraverso concatenazioni di affermazioni con esempi e contro esempi adeguati utilizzandoli anche per sostenere le proprie tesi e riconoscendone gli eventuali limiti. 48

49 Attività Tp4 E23 E28 E29 E24 Tp4.1 x x x x Tp4.2 x x x Tp4.3 x x x 49

50 E24 Misurare grandezze..con 10 sottopunti! Vedi documentazione 50

51 Tp5 Percepisce e rappresenta forme, relazioni e strutture utilizzando in particolare strumenti per il disegno geometrico ( riga, compasso,squadra) e i più comuni strumenti di misura. Descrive e classifica figure in base a caratteristiche geometriche e utilizza modelli concreti di vario tipo anche costruiti e progettati in gruppo. 51

52 attività T p 5 Tp5.1 x x E3 E5 E8 E24 E26 E29 E6 E30 Tp5.2 x x Tp5.3 x x Tp5.4 x x x x x Tp5.5 x x x Tp5.6 x x x x Tp5.7 x x x x x Tp5.8 x x x 52

53 E5-E6-E8-E24 Esplorare, descrivere e rappresentare lo spazio Riconoscere e descrivere le principali figure piane e solide Determinare misure di grandezze geometriche Misurare grandezze 53

54 Da Msf invito all argomentazione 54

55 Il carnevale Cinque cugini, tre femmine e due maschi, s incontrano a una festa in maschera. Le tre ragazze hanno scelto la maschera di strega, di principessa, di fata e i ragazzi hanno scelto di mascherarsi da moschettiere e da cavaliere. Dei cinque, per prima arriva una ragazza e per ultimo un ragazzo. La strega arriva dopo il cavaliere. In quale ordine arrivano alla festa i cinque cugini? Scrivete nell ordine d arrivo le loro maschere ed illustrate il vostro ragionamento.(acc ) 55

56 Il salvadanaio di Elena Elena ha messo 40 monete nel suo salvadanaio. Oggi lo vuota e si mette a giocare con le monete da 1 e solo con quelle. Se fa 3 pile di uguale altezza le rimangono 2 monete da 1. Se fa 4 pile di uguale altezza le rimane 1 moneta da 1. Se fa 5 pile di uguale altezza le rimangono 4 monete da 1. Quante monete da 1 possiede Elena? Giustificare la risposta. ( acc ) 56

57 In servizio Nella mia città i tram che partono dal Castello impiegano 35 minuti per arrivare alla Cattedrale. Arrivati, fanno una sosta di 10 minuti e poi tornano al Castello impiegando lo stesso tempo dell'andata. Dopo 5 minuti ripartono sulla stessa linea per la Cattedrale. Dal Castello parte un tram ogni 5 minuti. Quanti sono i tram necessari, come minimo, per garantire una partenza ogni 5 minuti? Giustificate la risposta.(acc ) 57

58 L ora del tè Per cronometrare il tempo d'infusione possiede tre clessidre: una clessidra si svuota in 3 minuti una clessidra si svuota in 4 minuti una clessidra si svuota in 5 minuti. Le clessidre sono inserite tutte nello stesso supporto e, quindi, si girano tutte insieme. Spiegate come può misurare esattamente 2 minuti con questa tripla clessidra.(acc ) 58

59 Sacchi d oro Un pirata possiede 10 sacchi, ognuno dei quali contiene lo stesso numero di monete d oro. Sfortunatamente uno dei sacchi è pieno di monete false; queste sono più leggere di quelle vere ma apparentemente non sono distinguibili. Il pirata ha a disposizione una bilancia a due piatti; egli sa che con tre pesate al massimo può identificare il sacco con le monete false. Spiegate come può fare.(acc ) 59

60 Ed ora a voi la scelta! Ricordando che: 1. le conoscenze matematiche mettono in stretto rapporto il pensare con il fare. 2. Lo strumento matematico è adatto per la descrizione scientifica del mondo e per affrontare problemi della vita quotidiana. 3. La costruzione del pensiero matematico è un processo lungo e progressivo nel quale conoscenze, abilità, competenze e atteggiamenti vengono ritrovati, intrecciati, consolidati e sviluppati a più riprese. 4. Il processo richiede l acquisizione progressiva del linguaggio matematico.. 5. Le attività proposte devono essere questioni autentiche e significative legate alla vita quotidiana, non semplici esercizi ripetitivi Tratto dagli annali della Pubblica Istruzione

61 Lavoro di gruppo 61

62 Passi 1. Pensare al traguardo raggiungibile con esiti declinati 2. Scegliere l ambito( Numeri, Spazio e figure, Relazioni, Dati e previsioni) 3. Tenere presente gli stili di apprendimento degli alunni( visivo verbale, uditivo, cinestetico) e le loro modalità di lavoro 4. Quale finalità? ( recupero,potenziamento, approfondimento) 5. Il quesito va testato prima di utilizzarlo ai fini valutativi. 62

63 Schematicamente Traguardo Esiti Quesito recupero Quesito potenziamento Quesito approfondimento 63

64 Requisiti del quesito Deve rispondere alle esigenze del progetto: pensare ad un attività laboratoriale volta a favorire la riflessione e lo stimolo all argomentazione. Specificarne i contenuti in termini di conoscenze, abilità e competenze. Proporre eventuali modifiche per costruire ulteriore conoscenza.., in questo modo l apprendimento sarà favorito!.( Bruno D Amore) 64

65 Esempio : traguardo Tp.? Descrive, denomina e classifica figure in base a caratteristiche geometriche, ne determina misure, progetta e costruisce modelli concreti di vario tipo. Esiti? Declinarli!! 65

66 Conoscenze Figure geometriche piane Trasformazioni geometriche elementari e loro invarianti 66

67 Abilità( da scegliere tra queste previste per fine classe quinta) Spazio e figure Descrivere, denominare e classificare figure geometriche, identificando elementi significativi e simmetrie, anche al fine di farle riprodurre da altri. Riprodurre una figura in base a una descrizione, utilizzando gli strumenti opportuni (carta a quadretti, riga e compasso, squadre, software di geometria). Utilizzare il piano cartesiano per localizzare punti. Costruire e utilizzare modelli materiali nello spazio e nel piano come supporto a una prima capacità di visualizzazione. Riconoscere figure ruotate, traslate e riflesse. Confrontare e misurare angoli utilizzando proprietà e strumenti 67

68 Segue abilitàspazio e figure Utilizzare e distinguere fra loro i concetti di perpendicolarità, parallelismo, orizzontalità, verticalità. Riprodurre in scala una figura assegnata (utilizzando, ad esempio, la carta a quadretti). Determinare il perimetro di una figura utilizzando le più comuni formule o altri procedimenti. Determinare l area di rettangoli e triangoli e di altre figure per scomposizione o utilizzando le più comuni formule. Riconoscere rappresentazioni piane di oggetti tridimensionali, identificare punti di vista diversi di uno stesso oggetto (dall alto, di fronte, ecc.) 68

69 Competenza specifica Rappresentare, confrontare ed analizzare figure geometriche, individuandone varianti, invarianti, situazioni reali. 69

70 Possibili spunti Fornire materiale eterogeneo, ma coerente e chiedere di formare sottoinsiemi con le caratteristiche volute( riflessione). Chiedere, inoltre, la descrizione dei criteri utilizzati per la formazione dei vari gruppi Far progettare una pavimentazione con poligoni assegnati chiedendo di motivare il perché certi poligoni non possono essere assemblati tra loro( argomentazione) 70

71 Da matematica senza frontiere Lv = logico verbale U3 = recupero Q3 = manualità e/o riflessione sulle operazioni ed anche sulle scelte operative effettuate T1 = geometria nel piano e nello spazio A3 = raffigurazioni, costruzioni, trasformazioni Risposta: JC Al punto! JA08910 Pieghiamo!

72 Ed ora a voi la scelta senza dimenticare l aspetto ludico. Buon lavoro! 72

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

PROGETTO EM.MA PRESIDIO

PROGETTO EM.MA PRESIDIO PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del GLI ASSI CULTURALI Nota rimessa all autonomia didattica del docente e alla programmazione collegiale del La normativa italiana dal 2007 13 L Asse dei linguaggi un adeguato utilizzo delle tecnologie dell

Dettagli

ITALIANO - ASCOLTARE E PARLARE

ITALIANO - ASCOLTARE E PARLARE O B I E T T I V I M I N I M I P E R L A S C U O L A P R I M A R I A E S E C O N D A R I A D I P R I M O G R A D O ITALIANO - ASCOLTARE E PARLARE Ascoltare e comprendere semplici consegne operative Comprendere

Dettagli

Dalle scatole alle figure piane. Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015

Dalle scatole alle figure piane. Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015 Dalle scatole alle figure piane Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015 Dalle Indicazioni nazionali per il curricolo Le conoscenze matematiche contribuiscono alla formazione

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009 Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/

Dettagli

la rilevazione degli apprendimenti INVALSI

la rilevazione degli apprendimenti INVALSI I quadri di riferimento: Matematica Il Quadro di Riferimento (QdR) per le prove di valutazione dell'invalsi di matematica presenta le idee chiave che guidano la progettazione delle prove, per quanto riguarda:

Dettagli

Valutare gli apprendimenti degli alunni stranieri

Valutare gli apprendimenti degli alunni stranieri MPI - USP di Padova Comune di Padova Settore Servizi Scolastici Centro D.A.R.I. Una scuola per tutti Percorso di formazione per docenti Valutare gli apprendimenti degli alunni stranieri I parte a cura

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

La prova di matematica nelle indagini IEA TIMSS e

La prova di matematica nelle indagini IEA TIMSS e PIANO DI INFORMAZIONE E FORMAZIONE SULL INDAGINE OCSE-PISA E ALTRE RICERCHE NAZIONALI E INTERNAZIONALI Seminario provinciale rivolto ai docenti del Primo Ciclo La prova di matematica nelle indagini IEA

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Il mondo in cui viviamo

Il mondo in cui viviamo Il mondo in cui viviamo Il modo in cui lo vediamo/ conosciamo Dalle esperienze alle idee Dalle idee alla comunicazione delle idee Quando sono curioso di una cosa, matematica o no, io le faccio delle domande.

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

IL CURRICOLO D ITALIANO COME LINGUA STARNIERA

IL CURRICOLO D ITALIANO COME LINGUA STARNIERA IL CURRICOLO D ITALIANO COME LINGUA STARNIERA INDICE INTRODUZIONE scuola media obiettivo generale linee di fondo : mete educative e mete specifiche le abilità da sviluppare durante le sei sessioni alcune

Dettagli

FORMAT DELL UNITÀ DI APPRENDIMENTO. Scuola secondaria 1 grado S.Ricci di Belluno classe 2. ULSS n.1 Belluno PERSONALE AZIENDA ULSS N.

FORMAT DELL UNITÀ DI APPRENDIMENTO. Scuola secondaria 1 grado S.Ricci di Belluno classe 2. ULSS n.1 Belluno PERSONALE AZIENDA ULSS N. FORMAT DELL UNITÀ DI APPRENDIMENTO Scuola secondaria 1 grado S.Ricci di Belluno classe 2 ULSS n.1 Belluno Autori: PERSONALE AZIENDA ULSS N. 1 BELLUNO: Dr.ssa Mel Rosanna Dirigente medico SISP (Dipartimento

Dettagli

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R.

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. LA MATEMATICA PER LE ALTRE DISCIPLINE Prerequisiti e sviluppi universitari a cura di G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. ZAN Unione Matematica Italiana 2006 Ho continuato

Dettagli

Giovanna Mayer. Ordinamento dei numeri e retta numerica. Nucleo: Numeri

Giovanna Mayer. Ordinamento dei numeri e retta numerica. Nucleo: Numeri Giovanna Mayer Nucleo: Numeri Introduzione Tematica: Si propongono attività e giochi per sviluppare in modo più consapevole la capacità di confrontare frazioni, confrontare numeri decimali e successivamente

Dettagli

RICERCA-AZIONE. l insegnamento riflessivo. Caterina Bortolani-2009

RICERCA-AZIONE. l insegnamento riflessivo. Caterina Bortolani-2009 RICERCA-AZIONE ovvero l insegnamento riflessivo Gli insegnanti sono progettisti.. riflettono sul contesto nel quale devono lavorare sugli obiettivi che vogliono raggiungere decidono quali contenuti trattare

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

CURRICOLI SCUOLA DELL INFANZIA LA CONOSCENZA DEL MONDO Ordine, misura, spazio, tempo, natura

CURRICOLI SCUOLA DELL INFANZIA LA CONOSCENZA DEL MONDO Ordine, misura, spazio, tempo, natura CURRICOLI SCUOLA DELL INFANZIA LA CONOSCENZA DEL MONDO Ordine, misura, spazio, tempo, natura TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE Il bambino raggruppa e ordina secondo criteri diversi, confronta

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

Istituto Tecnico Industriale Statale Luigi di Savoia Chieti. Contratto Formativo. Disciplina TECNOLOGIA e TECNICHE DI RAPPRESENTAZIONE GRAFICA

Istituto Tecnico Industriale Statale Luigi di Savoia Chieti. Contratto Formativo. Disciplina TECNOLOGIA e TECNICHE DI RAPPRESENTAZIONE GRAFICA Istituto Tecnico Industriale Statale Luigi di Savoia Chieti Contratto Formativo Corso I.T.I.S. Classe I sez.a CH Disciplina TECNOLOGIA e TECNICHE DI RAPPRESENTAZIONE GRAFICA Docenti : DITURI LUIGI e INGELIDO

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

QUALE MATEMATICA NELLA SCUOLA DELL INFANZIA. Scuola dell Infanzia Don Milani Anni 2006/2007/2008 Ins. Barbara Scarpelli

QUALE MATEMATICA NELLA SCUOLA DELL INFANZIA. Scuola dell Infanzia Don Milani Anni 2006/2007/2008 Ins. Barbara Scarpelli QUALE MATEMATICA NELLA SCUOLA DELL INFANZIA Scuola dell Infanzia Don Milani Anni 2006/2007/2008 Ins. Barbara Scarpelli ESPERIENZE MATEMATICHE A PARTIRE DA TRE ANNI QUALI COMPETENZE? L avventura della matematica

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Rilevazione degli apprendimenti PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

La fattoria delle quattro operazioni

La fattoria delle quattro operazioni IMPULSIVITÀ E AUTOCONTROLLO La fattoria delle quattro operazioni Introduzione La formazione dei bambini nella scuola di base si serve di numerosi apprendimenti curricolari che vengono proposti allo scopo

Dettagli

Francesca CAPRA Teresina MAFFIOLETTI BAIMA

Francesca CAPRA Teresina MAFFIOLETTI BAIMA I.C. CORIO SCUOLA PRIMARIA C.A.Anglesio di ROCCA CANAVESE Progetto di lettura Francesca CAPRA Teresina MAFFIOLETTI BAIMA CLASSE SECONDA PERCHè UN PROGETTO DI SPERI MENTAZI ONE Gruppo di lavoro I.N. CURRICOLO

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Lo sviluppo delle abilità logico-matematiche. nei bambini in età prescolare

Lo sviluppo delle abilità logico-matematiche. nei bambini in età prescolare Istituto di Riabilitazione ANGELO CUSTODE PARLARE E CONTARE ALLA SCUOLA DELL INFANZIA Lo sviluppo delle abilità logico-matematiche nei bambini in età prescolare Dott.ssa Liana Belloni Dott.ssa Claudia

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Generale Matematica e Complementi Classi: 2 Biennio Quarta I Docenti della Disciplina Salerno, lì 12 settembre 2014 Finalità della Disciplina

Dettagli

BAMBINI E ROBOT. Giusy Dompé, Laura Gullino, Lucia Papalia, Luisa Pezzuto

BAMBINI E ROBOT. Giusy Dompé, Laura Gullino, Lucia Papalia, Luisa Pezzuto BAMBINI E ROBOT Giusy Dompé, Laura Gullino, Lucia Papalia, Luisa Pezzuto Docenti di Scuola dell Infanzia e di Scuola Primaria Circolo Didattico Beinasco - Gramsci www.beinascogramsci.it Introduzione La

Dettagli

Approfondimento N 2. Scuola primaria

Approfondimento N 2. Scuola primaria Approfondimento N 2 Scuola primaria, Nuclei tematici e Obiettivi di apprendimento al termine della classe quinta Italiano L'allievo partecipa a scambi comunicativi (conversazione, discussione di classe

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

LICEO CLASSICO C. CAVOUR DISCIPLINA : FISICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA

LICEO CLASSICO C. CAVOUR DISCIPLINA : FISICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA 1. OBIETTIVI SPECIFICI DELLA DISCIPLINA PROGRAMMAZIONE PER COMPETENZE Le prime due/tre settimane sono state dedicate allo sviluppo di un modulo di allineamento per

Dettagli

Ri...valutando: azione e ricerca per il miglioramento

Ri...valutando: azione e ricerca per il miglioramento Il team di ricerca Mario Ambel (Responsabile) Anna Curci Emiliano Grimaldi Annamaria Palmieri 1. Progetto finalizzato alla elaborazione e validazione di un modellostandard - adattabile con opportune attenzioni

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Introduzione del numero zero

Introduzione del numero zero Introduzione del numero zero E arrivato il momento di introdurre lo zero L'insegnante inizierà un discorso, sulla quantità degli oggetti in classe, formulando delle domande mirate al confronto dello zero

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

Piano annuale per la Classe 4^ A

Piano annuale per la Classe 4^ A Istituto Comprensivo N.2 - Arzachena Scuola Primaria di Abbiadori Piano annuale per la Classe 4^ A ANCORA IN VIAGGIO a.s. 204/2015 Insegnanti: Depperu Anna Maria, Melino Vittorina, Peddis Giuliana, Angius

Dettagli

TITOLO VALORE DI RIFERIMENTO.

TITOLO VALORE DI RIFERIMENTO. Istituto Comprensivo di Iseo a.s. 2012/2013 Progetto Di Casa nel Mondo - Competenze chiave per una cittadinanza sostenibile Gruppo lavoro Dott. Massetti Scuola Primaria Classi Terze TITOLO: I prodotti

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare 1 Argomento interdisciplinare Tecnologia-Matematica Libro consigliato: Disegno Laboratorio - IL MANUALE DI TECNOLOGIA _G.ARDUINO_LATTES studiare da pag.19.da 154 a 162 Unità aggiornata: 7/2012 2 Sono corpi

Dettagli

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO QUESTIONARIO SUGLI STILI DI APPRENDIMENTO Le seguenti affermazioni descrivono alcune abitudini di studio e modi di imparare. Decidi in quale misura ogni affermazione si applica nel tuo caso: metti una

Dettagli

INTEGRAZIONE DEGLI ALUNNI STRANIERI

INTEGRAZIONE DEGLI ALUNNI STRANIERI SCUOLA SECONDARIA DI PRIMO GRADO MASTRO GIORGIO PROGETTO DI INTEGRAZIONE DEGLI ALUNNI STRANIERI Classi Prime - Seconde - Terze Anno scolastico 2012-2013 SCUOLA SECONDARIA DI PRIMO GRADO MASTRO GIORGIO

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Come realizzare una buona presentazione (traduzione libera a cura della redazione di EpiCentro)

Come realizzare una buona presentazione (traduzione libera a cura della redazione di EpiCentro) Come realizzare una buona presentazione (traduzione libera a cura della redazione di EpiCentro) Quando si realizzano dei documenti visivi per illustrare dati e informazioni chiave, bisogna sforzarsi di

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

Programmazione educativo-didattica didattica anno scolastico 2014-2015 TECNOLOGIA CLASSE PRIMA PRIMARIA

Programmazione educativo-didattica didattica anno scolastico 2014-2015 TECNOLOGIA CLASSE PRIMA PRIMARIA Istituto Maddalena di Canossa Corso Garibaldi 60-27100 Pavia Scuola dell Infanzia Scuola Primaria Scuola Secondaria di 1 grado Programmazione educativo-didattica didattica anno scolastico 2014-2015 TECNOLOGIA

Dettagli

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica).

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica). 3.4. I LIVELLI I livelli sono strumenti a cannocchiale orizzontale, con i quali si realizza una linea di mira orizzontale. Vengono utilizzati per misurare dislivelli con la tecnica di livellazione geometrica

Dettagli

CAMPO DI ESPERIENZA IL SE E L ALTRO SCUOLA DELL INFANZIA ANNI 3

CAMPO DI ESPERIENZA IL SE E L ALTRO SCUOLA DELL INFANZIA ANNI 3 IL SE E L ALTRO ANNI 3 Si separa facilmente dalla famiglia. Vive serenamente tutti i momenti della giornata scolastica. E autonomo. Stabilisce una relazione con gli adulti e i compagni. Conosce il nome

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Risultati delle prove di ingresso delle classi prime e raffigurazione del profilo medio delle conoscenze e abilità degli allievi.

Risultati delle prove di ingresso delle classi prime e raffigurazione del profilo medio delle conoscenze e abilità degli allievi. Risultati delle prove di ingresso delle classi prime e raffigurazione del profilo medio delle abilità degli allievi. I risultati sono stati raccolti in un foglio elettronico e visualizzati con grafici,

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

Istituto S.Vincenzo Erba Scuola primaria paritaria parificata LETTURA, SCRITTURA, LA DIDATTICA DEL FARE

Istituto S.Vincenzo Erba Scuola primaria paritaria parificata LETTURA, SCRITTURA, LA DIDATTICA DEL FARE Istituto S.Vincenzo Erba Scuola primaria paritaria parificata LETTURA, SCRITTURA, TEATRO LA DIDATTICA DEL FARE 1 BISOGNI Sulla scorta delle numerose riflessioni che da parecchi anni aleggiano sulla realtà

Dettagli

Definizione e struttura della comunicazione

Definizione e struttura della comunicazione Definizione e struttura della comunicazione Sono state date molteplici definizioni della comunicazione; la più semplice e comprensiva è forse questa: passaggio di un'informazione da un emittente ad un

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Svolgimento del gioco. Un gioco di Matthias Cramer per 2-5 persone dai 10 anni

Svolgimento del gioco. Un gioco di Matthias Cramer per 2-5 persone dai 10 anni Un gioco di Matthias Cramer per 2-5 persone dai 10 anni Anno 1413 Il nuovo re d'inghilterra, Enrico V di Lancaster persegue gli ambiziosi progetti di unificare l'inghilterra e di conquistare la corona

Dettagli

Mario Polito IARE: Press - ROMA

Mario Polito IARE: Press - ROMA Mario Polito info@mariopolito.it www.mariopolito.it IMPARARE A STUD IARE: LE TECNICHE DI STUDIO Come sottolineare, prendere appunti, creare schemi e mappe, archiviare Pubblicato dagli Editori Riuniti University

Dettagli

La didattica personalizzata: utopia o realtà?

La didattica personalizzata: utopia o realtà? La didattica personalizzata: utopia o realtà? L integrazione di qualità è anche la qualità positiva per tutti gli attori coinvolti nei processi di integrazione, non solo per l alunno in difficoltà. Se

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

E possibile costruire una mentalità matematica?

E possibile costruire una mentalità matematica? E possibile costruire una mentalità matematica? Prof. F. A. Costabile 1. Introduzione La matematica è più di una tecnica. Apprendere la matematica significa conquistare l attitudine ad un comportamento

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Allegato A. Il profilo culturale, educativo e professionale dei Licei

Allegato A. Il profilo culturale, educativo e professionale dei Licei Allegato A Il profilo culturale, educativo e professionale dei Licei I percorsi liceali forniscono allo studente gli strumenti culturali e metodologici per una comprensione approfondita della realtà, affinché

Dettagli

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it 186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it Premessa Durante una mia visita al Palazzo Ducale di Mantova, nell ammirare i tanti capolavori che custodisce,

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

VIAGGIANDO CON LA NATURA

VIAGGIANDO CON LA NATURA VIAGGIANDO CON LA NATURA Il progetto intende, attraverso l esplorazione del mondo naturale (terra, acqua, aria e fuoco) sistematizzare le conoscenze per comprendere l organizzazione dell ecosistema naturale.

Dettagli

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49 INDICE Unità 0 LINGUAGGI MATEMATICI, 1 Il libro prosegue nel CD Il linguaggio degli insiemi, 2 1 GLI INSIEMI E LA LORO RAPPRESENTAZIONE, 2 Gli insiemi, 2 Insieme vuoto, finito e infinito, 3 La rappresentazione

Dettagli

Dov è la saggezza che abbiamo perso in conoscenza? Dov è la conoscenza che abbiamo perso in informazione?

Dov è la saggezza che abbiamo perso in conoscenza? Dov è la conoscenza che abbiamo perso in informazione? Scrive Thomas Eliot: Dov è la saggezza che abbiamo perso in conoscenza? Dov è la conoscenza che abbiamo perso in informazione? Interrogativi integrati da: Dov è l informazione che abbiamo perso nei dati?

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

CAPIRE LE F R A Z I O N I

CAPIRE LE F R A Z I O N I CAPIRE LE F R A Z I O N I di Ennio Monachesi SITO www.monachesi.it F R A Z I O N I Parte di un intero Di 5/5 (intero) prendo 2 quinti Numero razionale 2/5 = 2 : 5 = 0, 4 Operatore Rapporto Intero 5/5 =

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009

Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009 Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009 Il buon nome - Chiavi di risposta e classificazione degli item Item Risposta corretta Ambito di valutazione Processi

Dettagli

Gli strumenti per una didattica inclusiva

Gli strumenti per una didattica inclusiva STRUMENTI PER UNA DIDATTICA INCLUSIVA Ottilia Gottardi CTI Monza Est Gli strumenti per una didattica inclusiva Ottilia Gottardi CTI Monza Est PRINCIPI della PEDAGOGIA INCLUSIVA Tutti possono imparare;

Dettagli

Esempi di utilizzazione dell ADVP

Esempi di utilizzazione dell ADVP Esempi di utilizzazione dell ADVP G. Cappuccio Ipssar P. Borsellino ESERCIZIO DI REALIZZAZIONE IL VIAGGIO Guida per l insegnante Questo esercizio è un modo pratico per coinvolgere l alunno nel progetto

Dettagli