COMPORTAMENTO DI MODELLI TENSINTEGRI ACCOPPIATI DI STRUTTURE CELLULARI BEHAVIOR OF COUPLED TENSEGRITY CELL MODELS

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COMPORTAMENTO DI MODELLI TENSINTEGRI ACCOPPIATI DI STRUTTURE CELLULARI BEHAVIOR OF COUPLED TENSEGRITY CELL MODELS"

Transcript

1 Vol. 38 (2014), N. 2, pp ISSN: COMPORTAMENTO DI MODELLI TENSINTEGRI ACCOPPIATI DI STRUTTURE CELLULARI BEHAVIOR OF COUPLED TENSEGRITY CELL MODELS Daniela Seppia *, Angelo Biagioni, Adriano Alippi Dipartimento di scienze di base e applicate per l ingegneria - Università di Roma La Sapienza * Indirizzo dell autore di riferimento Corresponding author s address: Via D. Cucchiari , Roma, Italia (Ricevuto il 24/09/2014, accettato il 28/10/2014) RIASSUNTO I sistemi tensegrity sono costituiti da una serie discontinua di componenti compressi inseriti in un continuum di componenti tesi. Numerose sono le analogie strutturali e fenomenologiche tra cellula e modelli tensegrity, i quali risultano utili per approfondire come l applicazione di forze meccaniche regoli il comportamento cellulare. A tal proposito si sono studiati i modi propri vibrazionali di un icosaedro tensegrale e di un sistema di due icosaedri accoppiati, verificando la natura non lineare dei modelli. L approccio utilizzato è sia sperimentale che analitico e i paramenti scelti per caratterizzare i modelli consentono il confronto diretto tra i risultati ottenuti con entrambi i metodi. ABSTRACT Tensegrity systems are commonly described as an ensemble of compression-resistant struts that do not physically touch one another, but are interconnected by a continuous series of tension elements. There are many structural and phenomenological similarities between cell and tensegrity models. Therefore the theory of tensegrity is often used to work out how mechanical forces rule cell behavior. Eigenmodes of a tensegrity icosahedron and two coupled ones have been studied and their non-linear nature has been demonstrated. The approach is both experimental and analytical, and the parameters characterizing the models allow direct comparison between the results obtained with both methods. Parole chiave: tensegrity cellulare, tensegrity multimodulare, analisi agli elementi finiti (FEM). Keywords: cellular tensegrity, multimodular tensegrity, Finite Element Method (FEM). Associazione Italiana di Acustica, 2014

2 1. Introduzione I sistemi tensegrali (tensegrity) sono strutture in auto-equilibrio stabile comprendenti una serie discontinua di componenti compressi (aste) posizionati all interno di una rete continua di componenti in tensione (cavi) che delineano il sistema spazialmente definendone la forma. Il fatto che gli elementi in compressione siano isolati caratterizza i sistemi tensintegri rispetto alle più comuni strutture che funzionano per massa cioè per resistenza caratteristica del materiale (es. arco di pietra), basate su una continua compressione di elementi pesanti. Nascosta nella definizione di struttura tensintegra vi è la sua proprietà fondamentale, ovvero l esistenza di uno stato di pre-sollecitazione (prestress) che consente al sistema di ritrovare il proprio equilibrio anche dopo l applicazione di forze esterne, secondo la cosiddetta proprietà di ricerca di forma e di tornare nella configurazione iniziale una volta eliminata la perturbazione. L architettura contemporanea ha rappresentato il primo ambito di applicazione della teoria tensegrale con la realizzazione di costruzioni stabili in qualsiasi posizione, molto leggere e in grado di offrire una grande resistenza ai carichi esterni. In breve tempo queste strutture hanno trovato applicazione anche in altri settori scientifici, come per esempio l anatomia e la biologia, costituendo un interessante strumento per l analisi del comportamento di una vasta gamma di sistemi naturali come proteine, virus, cellule e persino il sistema muscolo scheletrico. In questo, le ossa costituiscono le componenti in compressione mentre muscoli, tendini e legamenti, gli elementi in tensione prestressati. Infatti, i principi in base ai quali gli elementi fondamentali della materia organica partecipano al processo di auto-assemblaggio, dando origine a strutture più stabili e caratterizzate da proprietà diverse da quelle dei componenti di partenza, possono essere considerati analoghi a quelli su cui si fonda il concetto stesso della tensegrità [1]. In base a tali considerazioni, ricopre un ruolo fondamentale lo studio del comportamento dinamico degli elementi tensegrali di base (es. T-icosaedro), attraverso l individuazione per essi dei modi propri di vibrazione, propedeutici alla comprensione del comportamento dei reticoli tensegrali più complessi. I principi su cui si fonda la teoria tensegrale, infatti, sono validi a qualsiasi scala, permettendo la rappresentazione di sistemi complessi (es. tessuti, organi, biofilm) generati dall accoppiamento di strutture-base (es. cellula). 2. Modello tensegrale della cellula Le cellule sono strutture estremamente complesse ed organizzate in grado di rispondere a stimoli interni ed esterni, come variazioni di temperatura, del ph o dei livelli di ormoni o nutrienti. Le teorie cellulari attuali concordano nell affermare che le cellule eucariote contengono un intricata rete molecolare, il citoscheletro, all interno del proprio citoplasma che conferisce alla cellula resistenza meccanica, rendendola capace di resistere a distorsioni di forma [2]. Il citoscheletro è un sistema molto dinamico, che permette alle cellule di cambiare la loro forma e di muoversi attraverso strutture specializzate quali pseudopodi, ciglia o flagelli, permettendo anche il movimento di alcuni organuli citoplasmatici che svolgono particolari funzioni essenziali alla sopravvivenza della cellula. Le componenti fondamentali della complessa rete di strutture filamentose che costituisce il citoscheletro sono i microfilamenti, i filamenti intermedi e i microtubuli. Proprio il citoscheletro rappresenta il punto di contatto tra teoria tensegrale e comportamento cellulare. Vol. 38, N. 2, p. 28

3 Infatti, grazie agli studi del biologo cellulare Donald E. Ingber si è compreso che variazioni strutturali dei vari componenti cellulari comportano una modificazione globale della forma e del comportamento cellulare; per esempio, una diminuzione di rigidezza e densità della matrice extracellulare (ECM) determina una forma più rotondeggiante della cellula ma soprattutto influenza la crescita e la differenziazione cellulare (Tab. 1). Questo avviene secondo il processo della meccanotrasduzione che descrive proprio la capacità della cellula di rilevare e rispondere agli stimoli meccanici con risposte di tipo biochimico. Inoltre, un incremento di tensione nei microfilamenti può comportare un appiattimento della cellula; di conseguenza anche l esistenza di uno stato di stress interno (prestress) condiziona la deformabilità cellulare. Tab. 1 - Controllo della crescita e differenziazione della cellula attraverso l alterazione delle caratteristiche meccaniche (rigidezza e densità) dell ECM, tratto da [3] Control of cell growth and differentiation through the alteration of the ECM mechanical properties (stiffness and density) taken from [3] ECM Gel ECM Coating Malleable Rigid Low Density High Density Growth Differentiation Sulla base di queste considerazioni, Ingber costruì un modello fisico precompresso, dunque tensegrale, e verificò che il suo comportamento, in condizione di ancoraggio su substrato con diverse caratteristiche, poteva considerarsi analogo a quello di una cellula. Il modello di tensegrity cellulare proposto da Ingber prevede che le forze di trazione esercitate dai cavi della struttura tensegrale siano dovute ai microfilamenti ed ai filamenti intermedi e che siano bilanciate dalle forze originatesi dagli elementi che resistono a compressione. Ovvero i centri di adesione alla matrice cellulare e i microtubuli, che agiscono come montanti interni [4]. L applicazione della teoria tensegrale permette di descrivere in termini meccanici l organizzazione e la funzione degli elementi contrattile e tensivo del citoplasma, ma suggerisce anche l ipotesi che la struttura del citoscheletro possa essere modificata alterando le forze fisiche che si trasmettono sulla superficie cellulare. Poiché gli enzimi che intervengono nella crescita cellulare sono attaccati al citoscheletro, variare le proprietà di quest ultimo può influenzare le reazioni biochimiche che avvengono a livello cellulare, permettendo anche alle cellule di intraprendere programmi genetici differenti. Vol. 38, N. 2, p. 29

4 3. Tensegrity multimodulare Il modello tensegrale rimane valido a qualsiasi scala e per questo risulta utile descrivere la cellula come composta da numerosi, più piccoli, moduli tensegrity autostabilizzati collegati tra loro secondo il modello tensegrale (Fig. 1). Infatti, le cellule sono meccanicamente accoppiate all ambiente formando una sorta di catena cinematica che risponde a sollecitazioni meccaniche esterne. Un esempio è la cellula eucariota cioè dotata di nucleo, nella quale il modello tensegrale della cellula contiene un nucleo tensegrale collegato con la superficie cellulare attraverso una serie di elementi tesi. Attraverso il citoscheletro, la comunicazione meccanica raggiunge anche il nucleo; questa serie di connessioni agisce cambiando la forma della cellula e quindi le proprietà fisiologiche. Attraverso la teoria tensegrale multimodulare è possibile modellizzare anche sistemi più complessi come biofilm, tessuti o organi; i tessuti, in generale, sono costituiti da numerose cellule che si oppongono continuamente alle forze di compressione o trazione generate dalle cellule vicine, ad esse meccanicamente accoppiate. Fig. 1 - Modello di una struttura tensegrale multi modulare del citoscheletro contenente lunghi microtubuli (gialli), che collegano e stabilizzano la continua rete comprendente microfilamenti (blu), tratto da [5] Multimodular tensegrity cytoskeleton model containing long microtubules (yellow), that link and stabilize a continuous network of microfilaments (blu), taken from [5] Diviene, quindi, di grande interesse considerare come mutino le condizioni di un sistema quando, da libero e isolato che lo si consideri inizialmente, viene accoppiato ad altri sistemi simili; utilizzando la teoria tensegrale è possibile applicare modelli matematici semplici a sistemi accoppiati complessi. 4. Icosaedro tensegrale Il modello dell icosaedro tensegrale, o ottaedro espanso, studiato da Ingber è sicuramente quello che meglio approssima la geometria cellulare e per questo il più diffuso per la sua modellizzazione. Questa particolare struttura può essere realizzata mediante sei aste rigide (puntoni), non in contatto tra di loro, e ventiquattro elementi elastici, collegati agli estremi delle aste. Le aste, a due a due parallele a una distanza Vol. 38, N. 2, p. 30

5 eguale, sono disposte suddivise in tre coppie, le aste di ogni coppia essendo ortogonali a quelle delle altre due. A ogni vertice dell icosaedro tensegrale si trova l estremo di un puntone e quattro diversi tiranti ma nessuna asta condivide un vertice con una delle altre aste (Fig. 2). Nel parallelo tra icosaedro tensegrale e cellula, le aste soggette a compressione dell icosaedro rappresentano i microtubuli mentre gli elastici in tensione rappresentano i microfilamenti e i filamenti intermedi. Lo stato di pre-sollecitazione viene realizzato mediante l azione congiunta delle forze di trazione che agiscono sugli elementi elastici. L icosaedro tensegrale rappresenta la struttura di maggiore interesse ai fini della modellizzazione cellulare in quanto rimane uno tra i modelli più semplici, mantenendo le caratteristiche essenziali osservate in strutture con diverso numero di elementi e mimando molti fenomeni osservati nelle cellule viventi, tra i quali l effetto dell adesione al substrato sulla forma della cellula, la polarità cellulare e il conseguente rimodellamento del citoscheletro. Anche per questo viene spesso adottato come modello nella rappresentazione gerarchica di moduli tensegrali di diversa dimensione Fig. 2 - T-icosaedro - T-icosahedron 5. Simulazione e analisi sperimentale Si è analizzata la risposta in frequenza di un singolo icosaedro e di un sistema di oscillatori accoppiati costituiti da due icosaedri tensegrali connessi tra loro, utilizzando due differenti approcci, uno sperimentale e l altro numerico basato su una modellizzazione agli elementi finiti. I parametri caratterizzanti i modelli sopraelencati sono stati scelti in maniera tale da permettere il confronto dei risultati ottenuti mediante simulazioni numeriche con quelli ottenuti mediante misure sperimentali. 5.1 Singolo icosaedro La modellizzazione agli elementi finiti dell icosaedro tensegrale è stata realizzata utilizzando il software di simulazione COMSOL Multiphysics. Sulla base del modello sperimentale è stata riprodotta la geometria della struttura pre-sollecitata descritta precedentemente. I materiali utilizzati sono stati appositamente caratterizzati sulla base delle proprietà meccaniche dei materiali costituenti il modello reale secondo quanto riportato nella tabella 2. Vol. 38, N. 2, p. 31

6 Tab. 2 - Proprietà fisiche e meccaniche dei materiali - Physical and mechanical properties of materials Caratteristiche fisiche e meccaniche Aste: PVC Elastici: Gomma E (modulo di Young) ν (coefficiente di Poisson) ρ (densità) m (massa) α (coeff. di espansione termica) l (lunghezza) r (raggio) 3, Pa 0, kg/m 3 0,026 kg K -1 0,24 m 0,005 m 1, Pa 0, kg/m 3 0,0006 kg 1, K -1 0,15 m 0,001 m In particolare il cavo elastico utilizzato è costituito da una serie di sottili elastici aggregati tenuti assieme da una sottile guaina. Realizzato il modello numerico viene applicata una coppia di forze di eccitazione lungo y simmetricamente disposte a risultante nulla (per evitare traslazioni del centro di massa del modello) e si ricava l ampiezza dello spostamento lungo y di un punto della struttura. L analisi della risposta in frequenza consente di individuare un massimo di vibrazione alla frequenza f 1 = 7.6 Hz che corrisponde alla frequenza di risonanza del sistema (Fig. 3). a) b) Fig. 3 - Simulazione agli elementi finiti dell oscillazione del T-icosaedro alla frequenza f 1 = 7.6 Hz (Fig.3a) e ampiezza dello spostamento lungo y di un punto dell icosaedro (Fig.3b) - Finite Element simulation of T- icosahedron vibration on frequency f 1 = 7.6 Hz (Fig.3a) and T- icosahedron amplitude displacement onto the y axis (Fig.3b) In corrispondenza della frequenza di risonanza la struttura presenta un caratteristico moto di vibrazione in cui le aste di ciascuna coppia si muovono in controfase allontanandosi e avvicinandosi l una all altra; gli elevati valori dell ampiezza di spostamento degli elementi elastici rilevati tramite simulazioni numeriche sono dovuti a un cambio del fattore di scala nella rappresentazione grafica. Dal punto di vista sperimentale, per studiare i modi di vibrazione del T-icosaedro sono state riprodotte le stesse condizioni imposte nell analisi agli elementi finiti. La struttura è sospesa al centro di una delle sei aste, nel punto in cui viene applicata una Vol. 38, N. 2, p. 32

7 forzante sinusoidale esterna realizzata tramite un oscillatore meccanico. L oscillatore è alimentato da un generatore di segnale sinusoidale alla frequenza voluta, opportunamente amplificato. È stato poi inserito un traguardo ottico inserito sull asta parallela a quella eccitata, prendendo in considerazione lo stesso punto usato nella simulazione numerica. Una radiazione laser colpisce un sottile ago (traguardo ottico) solidale con l asta di cui si vuole misurare la vibrazione. L ago sporge da una delle estremità dell asta e quando la struttura è ferma, impedisce al raggio laser di colpire uno schermo disposto frontalmente al laser e dietro al T-icosaedro (posizione di riferimento). Quando la struttura è in moto, l ago permette periodicamente al raggio laser di colpire lo schermo. Grazie a un traslatore micrometrico cui è connesso il laser, si riporta quest ultimo nella posizione in cui la radiazione laser è nuovamente coperta dall ago; lo spostamento necessario letto sul micrometro costituisce una misura dell ampiezza di vibrazione di picco dell asta. Con tale apparato, si effettua una scansione iniziale in frequenza per individuare le frequenze di risonanza della struttura; nell intorno di questa frequenza ( Hz) l icosaedro viene eccitato con diversi valori dell ampiezza della forzante ricavando, per ciascun valore di eccitazione, il picco di risonanza corrispondente. In questo modo si ottiene lo spettro di oscillazione del T-icosaedro per valori dell ampiezza di oscillazione nell intervallo mv pp (Fig. 4). Lo spostamento e la flessione del picco all aumentare dell ampiezza di eccitazione è indice di non linearità della struttura; la complessità della struttura non permette di ricavare il ciclo di isteresi caratteristico della bistabilità, ma la graduale perdita di simmetria della curva di risonanza all aumentare dell ampiezza di eccitazione prelude un comportamento bistabile della struttura. Fig. 4 - Misura sperimentale dell oscillazione del T-icosaedro in funzione della frequenza per diversi valori dell eccitazione - Laboratory measurement of T-icosahedron oscillation depending on frequency for different loads 5.2 Sistema di due icosaedri accoppiati Analogamente a quanto fatto per la struttura T-icosaedro, anche lo studio del sistema di due icosaedri accoppiati è stato effettuato sia per via numerica sia per via Vol. 38, N. 2, p. 33

8 sperimentale. Il modello è stato costruito accoppiando due moduli, ciascuno dei quali presenta stesse caratteristiche geometriche, fisiche e meccaniche dell icosaedro singolo descritto precedentemente; i due moduli sono stati affiancati l un l altro lungo l asse y e collegati agli estremi di una coppia di cavi elastici. Anche in questo caso viene applicato un carico simmetrico ad una coppia di aste parallele di uno solo dei due icosaedri lungo la direzione dei cavi di collegamento, normalmente all asta pilotata. Si è ricavata l ampiezza della vibrazione lungo y di un punto su ciascuna delle due aste eccitate (Fig. 5). Fig. 5 - Ampiezza dello spostamento lungo y di un punto del sistema di due icosaedri tensegrali accoppiati - Displacement amplitude onto the y axis of two coupled T-icosahedra system In questo caso la curva presenta due massimi di vibrazione: uno in corrispondenza della frequenza f 1 = 7.6 Hz, la stessa emersa per il singolo icosaedro e una in corrispondenza della frequenza f 2 = 12 Hz. A ciascuna delle due frequenze proprie corrisponde un diverso modo proprio dell insieme; in particolare, a 7.6 Hz le aste a cui sono vincolati gli elastici di accoppiamento si muovono in fase così da mantenere invariata la lunghezza dei connettori mentre a 12 Hz le stesse aste si muovono in controfase e i connettori risultano massimamente deformati (Fig. 6). a) b) Fig. 6 - Posizione delle aste del sistema di due icosaedri accoppiati alla frequenza 7.6 Hz (Fig.6a) e 12 Hz (Fig.6b) (piano y - z) - Location of two coupled icosahedra system bars at frequencies 7.6 Hz (Fig.6a) and 12 Hz (Fig.6b) (y-z plane) Vol. 38, N. 2, p. 34

9 Il valore della seconda frequenza propria dipende dalle condizioni di accoppiamento; in particolare aumentando il valore del modulo di Young degli elastici connettori il secondo modo proprio si ritrova in corrispondenza di valori sempre maggiori di frequenza (Fig. 7). Infatti (1) f 2 ( E + E ) 1 cosaedro connettori A = [Hz] 2 π ml i 2 dove: m è la massa dell icosaedro [kg]; A è la sezione degli elastici connettori [m 2 ]; l è la lunghezza degli elastici connettori [m]; E icosaedro è il modulo di Young che caratterizza gli elastici interni all icosaedro [Pa]; E connettori è il modulo di Young che caratterizza gli elastici connettori [Pa]. Fig. 7 - Aumento della seconda frequenza propria del sistema di due icosaedri accoppiati al variare del modulo di Young degli elastici connettori Increase of the second eigenfrequency of two coupled icosahedra upon varying of connectors Young s modulus L apparato adottato per eseguire le prove sperimentali sui due icosaedri accoppiati è lo stesso usato per il singolo icosaedro. Coerentemente con le simulazioni numeriche anche il modello sperimentale presenta due frequenze proprie. In questo caso, si valuta il massimo di oscillazione della struttura per entrambe le frequenze proprie all aumentare dell ampiezza del segnale di eccitazione, nell intervallo di frequenze Hz per la prima frequenza propria e Hz per la seconda frequenza propria (Fig. 8). Anche in questo caso non si è rilevato alcun ciclo di isteresi ma la flessione del picco di risonanza induce a pensare ad un comportamento bistabile della struttura. Vol. 38, N. 2, p. 35

10 a) b) Fig. 8 - Variazione della prima (Fig.8a) e della seconda (Fig.8b) frequenza propria del sistema di due icosaedri accoppiati per diversi valori dell ampiezza di eccitazione - Variation of the first (Fig.8a) and second (Fig.8b) eigenfrequency values in the case of a two coupled icosahedra system for different values of the load amplitude Conclusioni Sono state eseguite un analisi numerica agli elementi finiti ed un analisi sperimentale su due modelli differenti: un singolo icosaedro tensegrale e due icosaedri tensegrali accoppiati. Le misurazioni teoriche condotte sui modelli hanno fornito per un singolo icosaedro il valore della frequenza di risonanza pari a 7.6 Hz mentre per due icosaedri accoppiati la prima frequenza propria è risultata pari a f 1 = 7.6 Hz, la seconda frequenza propria si è rilevata per f 2 = 12 Hz. L analisi sperimentale ha messo in evidenza la natura non lineare dei modelli studiati, mostrando una dipendenza della frequenza di risonanza dall ampiezza di eccitazione e preludendo un comportamento bistabile degli stessi. Summary The purpose of this work is to perform a Finite Element and laboratory analysis on two different models (a single T-icosahedron and a system of two coupled icosahedra) in order to find their eigenfrequencies. The measurements conducted on theoretical models have provided for a single icosahedron the value of eigenfrequency on 7.6 Hz, while for two coupled icosahedra the first eigenfrequency is on 7.6 Hz, the second one is 12 Hz. The laboratory analysis has highlighted the dependence of resonance frequency on loads amplitude. This behavior is a sign of structures non-linear and bi-stable nature. Bibliografia [1] Alippi A., Biagioni A., Conclusio D., D Orazio A., Nonlinear Phenomena in Vibrating Tensegrity Structures, in Proceedings of Internoise 2010, International Congress and Exposition on Noise Control Engineering, Lisbon, June 2010, id [2] Ingber D.E., Tensegrity I. Cell structure and hierarchical systems biology, Journal of Cell Science, 116 (2013), pp [3] Ingber D.E., Dike L, Hansen L., Karp S., Liley H., Maniotis A., McNamee H., Vol. 38, N. 2, p. 36

11 Mooney D.,Plopper G., Sims J., Wang N., Cellular Tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration and tissue pattern during morphogenesis, International Review of Cytology, 150 (1994), pp [4] Ingber D.E., Tensegrity-based mechanosensing from macro to micro, Progress in Biophysics & Molecular Biology, 97(2-3) (2008), pp [5] Ingber D.E., Heidemann S.R., Lamoureux P., Buxbaum R.E., Opposing views on tensegrity as structural framework for understanding cell mechanics., Journal of applied physiology, 89(4) (2000), pp Vol. 38, N. 2, p. 37

Principali prove meccaniche su materiali polimerici

Principali prove meccaniche su materiali polimerici modulo: Proprietà viscoelastiche e proprietà meccaniche dei polimeri Principali prove meccaniche su materiali polimerici R. Pantani Scheda tecnica di un materiale polimerico Standard per prove meccaniche

Dettagli

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO Mariano Paganelli Expert System Solutions S.r.l. L'Expert System Solutions ha recentemente sviluppato nuove tecniche di laboratorio

Dettagli

ncdna Per ncdna si intende il DNA intronico, intergenico e altre zone non codificanti del genoma.

ncdna Per ncdna si intende il DNA intronico, intergenico e altre zone non codificanti del genoma. ncdna Per ncdna si intende il DNA intronico, intergenico e altre zone non codificanti del genoma. ncdna è caratteristico degli eucarioti: Sequenze codificanti 1.5% del genoma umano Introni in media 95-97%

Dettagli

Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale.

Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale. Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale. L analisi modale è un approccio molto efficace al comportamento dinamico delle strutture, alla verifica di modelli di calcolo

Dettagli

Data Alignment and (Geo)Referencing (sometimes Registration process)

Data Alignment and (Geo)Referencing (sometimes Registration process) Data Alignment and (Geo)Referencing (sometimes Registration process) All data aquired from a scan position are refered to an intrinsic reference system (even if more than one scan has been performed) Data

Dettagli

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica).

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica). 3.4. I LIVELLI I livelli sono strumenti a cannocchiale orizzontale, con i quali si realizza una linea di mira orizzontale. Vengono utilizzati per misurare dislivelli con la tecnica di livellazione geometrica

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

EFFETTI FISIOPATOLOGICI DELLA CORRENTE ELETTRICA SUL CORPO UMANO

EFFETTI FISIOPATOLOGICI DELLA CORRENTE ELETTRICA SUL CORPO UMANO EFFETTI FISIOPATOLOGICI DELLA CORRENTE ELETTRICA SUL CORPO UMANO Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 2005/2006 Facoltà d

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

modulo: CHIMICA DEI POLIMERI

modulo: CHIMICA DEI POLIMERI CORSO PON Esperto nella progettazione, caratterizzazione e lavorazione di termoplastici modulo: CHIMICA DEI POLIMERI Vincenzo Venditto influenza delle caratteristiche strutturali, microstrutturali e morfologiche

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

Elaborato di Meccanica delle Strutture

Elaborato di Meccanica delle Strutture Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Elaborato di Meccanica delle Strutture Docente

Dettagli

SUPERAVVOLGIMENTO DEL DNA (ORGANIZZAZIONE TERZIARIA DEL DNA)

SUPERAVVOLGIMENTO DEL DNA (ORGANIZZAZIONE TERZIARIA DEL DNA) SUPERAVVOLGIMENTO DEL DNA (ORGANIZZAZIONE TERZIARIA DEL DNA) ORGANIZZAZIONE TERZIARIA DEL DNA Il DNA cellulare contiene porzioni geniche e intergeniche, entrambe necessarie per le funzioni vitali della

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

Diversità tra i viventi

Diversità tra i viventi Diversità tra i viventi PROPRIETÀ della VITA La CELLULA CLASSIFICAZIONE dei VIVENTI Presentazione sintetica Alunni OIRM Torino Tutti i viventi possiedono delle caratteristiche comuni Ciascun vivente nasce,

Dettagli

2. FONDAMENTI DELLA TECNOLOGIA

2. FONDAMENTI DELLA TECNOLOGIA 2. FONDAMENTI DELLA TECNOLOGIA 2.1 Principio del processo La saldatura a resistenza a pressione si fonda sulla produzione di una giunzione intima, per effetto dell energia termica e meccanica. L energia

Dettagli

Acustica con una Bic e uno smartphone

Acustica con una Bic e uno smartphone 1 Acustica con una Bic e uno smartphone L. Galante #, 1, A. M. Lombardi*, 2 # LSS G. Bruno, Torino, Italy. * ITCS Primo Levi, Bollate (MI), Italy. Abstract. A smartphone, with its integrated sensors and

Dettagli

COMPLESSO xxxxxxxxxxx

COMPLESSO xxxxxxxxxxx PROVE DI CARICO SU PALI E INDAGINI SIT COMPLESSO xxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx PROVE N 131/132/133/134/135 /FI 8, 9, 10, 11 Giugno 2009 Committente: Direttore Lavori: Relatore: xxxxxxxxxxxxxxxx

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Motori Elettrici Principi fisici Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Legge di Biot-Savart: un conduttore percorso da corrente di intensità

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - II AGGIORNAMENTO 12/12/2014 Fondazioni dirette e indirette Le strutture di fondazione trasmettono

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

TIP AND TRICKS 01 DEFINIZIONE DEI PARAMETRI DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA

TIP AND TRICKS 01 DEFINIZIONE DEI PARAMETRI DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA TIP AND TRICKS 01 DEFINIZIONE DEI PARAMETRI DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA TECNICA DI DEFINIZIONE DELLE PROPRIETA' DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA Descrizione

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

BOZZA. a min [mm] A min =P/σ adm [mm 2 ]

BOZZA. a min [mm] A min =P/σ adm [mm 2 ] ezione n. 6 e strutture in acciaio Verifica di elementi strutturali in acciaio Il problema della stabilità dell equilibrio Uno degli aspetti principali da tenere ben presente nella progettazione delle

Dettagli

M A G N E T I C I G E N E R A L I T A'

M A G N E T I C I G E N E R A L I T A' S C H E R M I M A G N E T I C I G E N E R A L I T A' Gli schermi magnetici hanno la funzione di proteggere oggetti sensibili dall'aggressione magnetica esterna. Questi schermi possono essere suddivisi

Dettagli

LE CAPRIATE Sviluppo delle strutture lignee di copertura

LE CAPRIATE Sviluppo delle strutture lignee di copertura LE CAPRIATE Sviluppo delle strutture lignee di copertura Premessa Fra le strutture di legno, le capriate reticolari costituiscono un tipo di costruzione diffuso che sfruttano pienamente i vantaggi potenziali

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

FENICE ARREDI. Via Bertolini 49/51 27029 Vigevano (PV) Relazione tecnica

FENICE ARREDI. Via Bertolini 49/51 27029 Vigevano (PV) Relazione tecnica FENICE ARREDI Via Bertolini 49/51 27029 Vigevano (PV) Prove di vibrazione su sistemi per pavimenti tecnici sopraelevati - Four x Four Relazione tecnica Via Ferrata 1, 27100 Pavia, Italy Tel. +39.0382.516911

Dettagli

Gi-Gi Art. 859 - User's Guide Istruzioni d'uso

Gi-Gi Art. 859 - User's Guide Istruzioni d'uso doc.4.12-06/03 Gi-Gi Art. 859 - User's Guide Istruzioni d'uso A belaying plate that can be used in many different conditions Una piastrina d'assicurazione che può essere utilizzata in condizioni diverse.

Dettagli

group HIGH CURRENT MULTIPLEX NODE

group HIGH CURRENT MULTIPLEX NODE HIGH CURRENT MULTIPLEX NODE edizione/edition 04-2010 HIGH CURRENT MULTIPLEX NODE DESCRIZIONE GENERALE GENERAL DESCRIPTION L'unità di controllo COBO è una centralina elettronica Multiplex Slave ; la sua

Dettagli

www.pisante.com edifici esistenti in muratura verifiche di vulnerabilità sismica analisi cinematiche

www.pisante.com edifici esistenti in muratura verifiche di vulnerabilità sismica analisi cinematiche www.pisante.com edifici esistenti in muratura verifiche di vulnerabilità sismica analisi cinematiche ANALISI CINEMATICA DEI CORPI RIGIDI 8.7.1 COSTRUZIONI IN MURATURA (D.M. 14/01/2008) Nelle costruzioni

Dettagli

La dissomiglianza tra due distribuzioni normali

La dissomiglianza tra due distribuzioni normali Annali del Dipartimento di Scienze Statistiche Carlo Cecchi Università degli Studi di Bari Aldo Moro - Vol. X (2011): 43-50 Editore CLEUP, Padova - ISBN: 978-88-6129-833-0 La dissomiglianza tra due distribuzioni

Dettagli

Analisi termografica su celle litio-ione sottoposte ad esperienze di "second life" Francesco D'Annibale, Francesco Vellucci. Report RdS/PAR2013/191

Analisi termografica su celle litio-ione sottoposte ad esperienze di second life Francesco D'Annibale, Francesco Vellucci. Report RdS/PAR2013/191 Agenzia nazionale per le nuove tecnologie, l energia e lo sviluppo economico sostenibile MINISTERO DELLO SVILUPPO ECONOMICO Analisi termografica su celle litio-ione sottoposte ad esperienze di "second

Dettagli

SISTEMA CIRCOLATORIO. Permette, attraverso il sangue, il trasporto di O 2. , sostanze nutritizie ed ormoni ai tessuti e la rimozione di CO 2

SISTEMA CIRCOLATORIO. Permette, attraverso il sangue, il trasporto di O 2. , sostanze nutritizie ed ormoni ai tessuti e la rimozione di CO 2 SISTEMA CIRCOLATORIO Permette, attraverso il sangue, il trasporto di O 2, sostanze nutritizie ed ormoni ai tessuti e la rimozione di CO 2 e cataboliti, per mantenere costante la composizione del liquido

Dettagli

9. La fatica nei compositi

9. La fatica nei compositi 9.1. Generalità 9. La fatica nei compositi Similmente a quanto avviene nei materiali metallici, l'applicazione ad un composito di carichi variabili ciclicamente può dar luogo a rottura anche quando la

Dettagli

WWW.TINYLOC.COM CUSTOMER SERVICE GPS/ RADIOTRACKING DOG COLLAR. T. (+34) 937 907 971 F. (+34) 937 571 329 sales@tinyloc.com

WWW.TINYLOC.COM CUSTOMER SERVICE GPS/ RADIOTRACKING DOG COLLAR. T. (+34) 937 907 971 F. (+34) 937 571 329 sales@tinyloc.com WWW.TINYLOC.COM CUSTOMER SERVICE T. (+34) 937 907 971 F. (+34) 937 571 329 sales@tinyloc.com GPS/ RADIOTRACKING DOG COLLAR MANUALE DI ISTRUZIONI ACCENSIONE / SPEGNERE DEL TAG HOUND Finder GPS Il TAG HOUND

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO..

4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO.. E. Cosenza NORME TECNICHE Costruzioni di calcestruzzo Edoardo Cosenza Dipartimento di Ingegneria Strutturale Università di Napoli Federico II 4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO..

Dettagli

La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di

La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di un solido (polvere) che diverrà il ceramico, con un

Dettagli

Il giardino nella macchina

Il giardino nella macchina Idee per una rilettura Il giardino nella macchina La nuova scienza della vita artificiale Claus Emmeche Bollati Boringhieri, 1996 È possibile la vita artificiale? In che modo gli strumenti offerti dalla

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

1 LEZIONE CHE COS E L ALLENAMENTO

1 LEZIONE CHE COS E L ALLENAMENTO 1 LEZIONE CHE COS E L ALLENAMENTO Sono molte le definizioni di allenamento: Definizione generale: E un processo che produce nell organismo un cambiamento di stato che può essere fisico, motorio, psicologico.

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

CHE COS E UN ARTICOLO SCIENTIFICO

CHE COS E UN ARTICOLO SCIENTIFICO CHE COS E UN ARTICOLO SCIENTIFICO è il resoconto di uno studio completo e originale, con struttura ben definita e costante: rappresenta il punto finale di una ricerca (in inglese: paper, article) STRUTTURA

Dettagli

1 Introduzione alla dinamica dei telai

1 Introduzione alla dinamica dei telai 1 Introduzione alla dinamica dei telai 1.1 Rigidezza di un telaio elementare Il telaio della figura 1.1 ha un piano solo e i telai che hanno un piano solo, sono chiamati, in questo testo, telai elementari.

Dettagli

Altre novità della nostra ampia gamma di strumenti!

Altre novità della nostra ampia gamma di strumenti! L innovazione ad un prezzo interessante Altre novità della nostra ampia gamma di strumenti! Exacta+Optech Labcenter SpA Via Bosco n.21 41030 San Prospero (MO) Italia Tel: 059-808101 Fax: 059-908556 Mail:

Dettagli

Fenomeni di trasporto. Fenomeni di trasporto

Fenomeni di trasporto. Fenomeni di trasporto La comprensione dei processi fisici, chimici e biologici che governano il trasporto di materia e la trasmissione delle forze è di fondamentale importanza per lo studio della fisiologia cellulare e l ingegnerizzazione

Dettagli

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014 Prof.ssa Piacentini Veronica La corrente elettrica La corrente elettrica è un flusso di elettroni

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura GEOTECNICA 13. OPERE DI SOSTEGNO DEFINIZIONI Opere di sostegno rigide: muri a gravità, a mensola, a contrafforti.. Opere di sostegno flessibili: palancole metalliche, diaframmi in cls (eventualmente con

Dettagli

14. Controlli non distruttivi

14. Controlli non distruttivi 14.1. Generalità 14. Controlli non distruttivi La moderna progettazione meccanica, basata sempre più sull uso di accurati codici di calcolo e su una accurata conoscenza delle caratteristiche del materiale

Dettagli

10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A.

10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A. 10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A. Il capitolo fa riferimento alla versione definitiva dell'eurocodice 2, parte 1.1, UNI EN 1992-1-1, recepito e reso applicabile in Italia dal DM del

Dettagli

Lo schema a blocchi di uno spettrofotometro

Lo schema a blocchi di uno spettrofotometro Prof.ssa Grazia Maria La Torre è il seguente: Lo schema a blocchi di uno spettrofotometro SORGENTE SISTEMA DISPERSIVO CELLA PORTACAMPIONI RIVELATORE REGISTRATORE LA SORGENTE delle radiazioni elettromagnetiche

Dettagli

Lezione 12: La visione robotica

Lezione 12: La visione robotica Robotica Robot Industriali e di Servizio Lezione 12: La visione robotica L'acquisizione dell'immagine L acquisizione dell immagine Sensori a tubo elettronico (Image-Orthicon, Plumbicon, Vidicon, ecc.)

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

ANALISI PUSHOVER Statica Lineare Dinamica Lineare Statica Non Lineare Dinamica Non Lineare PUSH-OVER

ANALISI PUSHOVER Statica Lineare Dinamica Lineare Statica Non Lineare Dinamica Non Lineare PUSH-OVER ANALISI PUSHOVER - Analisi sismica Statica Lineare - Analisi sismica Dinamica Lineare - Analisi sismica Statica Non Lineare - Analisi sismica Dinamica Non Lineare Con il nome di analisi PUSH-OVER si indica

Dettagli

7 PROGETTAZIONE PER AZIONI SISMICHE

7 PROGETTAZIONE PER AZIONI SISMICHE 7 PROGETTAZIONE PER AZIONI SISMICHE Il presente capitolo disciplina la progettazione e la costruzione delle nuove opere soggette anche all azione sismica. Le sue indicazioni sono da considerare aggiuntive

Dettagli

Edifici in muratura in zona sismica

Edifici in muratura in zona sismica Collegio dei Geometri e dei Geometri Laureati Reggio Emilia - 26 novembre 2010 Edifici in muratura in zona sismica Dott. Ing. Nicola GAMBETTI, Libero Professionista EDIFICI IN MURATURA IN ZONA SISMICA

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

Modelli di dimensionamento

Modelli di dimensionamento Introduzione alla Norma SIA 266 Modelli di dimensionamento Franco Prada Studio d ing. Giani e Prada Lugano Testo di: Joseph Schwartz HTA Luzern Documentazione a pagina 19 Norma SIA 266 - Costruzioni di

Dettagli

strutture legate non autoportanti

strutture legate non autoportanti Il comportamento sotto sisma delle strutture metalliche dedicate a vano corsa ascensore, legate ad edifici esistenti: problemi e soluzioni. - 1 a parte - abstract Le strutture metalliche che costituiscono

Dettagli

Apparato scheletrico. Le funzioni dello scheletro

Apparato scheletrico. Le funzioni dello scheletro Apparato scheletrico Le funzioni dello scheletro Lo scheletro ha la funzione molto importante di sostenere l organismo e di dargli una forma; con l aiuto dei muscoli, a cui offre un attacco, permette al

Dettagli

Editoriale VALUTAZIONE PER L E.C.M.: ANALISI DEI QUESTIONARI DI GRADIMENTO

Editoriale VALUTAZIONE PER L E.C.M.: ANALISI DEI QUESTIONARI DI GRADIMENTO Lo Spallanzani (2007) 21: 5-10 C. Beggi e Al. Editoriale VALUTAZIONE PER L E.C.M.: ANALISI DEI QUESTIONARI DI GRADIMENTO IL GRADIMENTO DEI DISCENTI, INDICATORE DI SODDISFAZIONE DELLE ATTIVITÀ FORMATIVE

Dettagli

CATENE E COMPONENTI DI GRADO 8-10-INOX, BRACHE DI POLIESTERE E ANCORAGGI, BRACHE DI FUNE

CATENE E COMPONENTI DI GRADO 8-10-INOX, BRACHE DI POLIESTERE E ANCORAGGI, BRACHE DI FUNE CATENE E COMPONENTI DI GRADO 8-10-INOX, BRACHE DI POLIESTERE E ANCORAGGI, BRACHE DI FUNE L esperienza e la passione per l ingegneria sono determinanti per la definizione della nostra politica di prodotto,

Dettagli

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei L OSCILLOSCOPIO L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei circuiti elettronici. Nel suo uso abituale esso ci consente di vedere le forme d onda

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

IL FATTORE DI STRUTTURA PER LE COSTRUZIONI IN ACCIAIO. Domenico Leone

IL FATTORE DI STRUTTURA PER LE COSTRUZIONI IN ACCIAIO. Domenico Leone IL FATTORE DI STRUTTURA PER LE COSTRUZIONI IN ACCIAIO Domenico Leone IL FATTORE DI STRUTTURA PER LE COSTRUZIONI IN ACCIAIO Domenico Leone Il prof. Domenico Leone vanta un esperienza più che trentennale

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

CAPITOLO 1. Motore a corrente continua ad eccitazione indipendente

CAPITOLO 1. Motore a corrente continua ad eccitazione indipendente CAPITOLO Motore a corrente continua ad eccitazione indipendente. - Struttura e principio di funzionamento Una rappresentazione schematica della struttura di un motore a corrente continua a due poli è mostrata

Dettagli

PROGETTO E SIMULAZIONI DEL SISTEMA PROPRIETARIO DI LINEE DI TRASMISSIONE. (DDDL= Dual Drive Dual Line) Implementato per il modello CANTICO CX8.

PROGETTO E SIMULAZIONI DEL SISTEMA PROPRIETARIO DI LINEE DI TRASMISSIONE. (DDDL= Dual Drive Dual Line) Implementato per il modello CANTICO CX8. 1 PROGETTO E SIMULAZIONI DEL SISTEMA PROPRIETARIO DI LINEE DI TRASMISSIONE D3L (DDDL= Dual Drive Dual Line) Implementato per il modello CANTICO CX8. CX via ottavio rinuccini, 3 milano info@labirintiacustici.it

Dettagli

Fonica: Scheda 2. Il suono. Il rumore. (a cura di Pietro Di Mascolo)

Fonica: Scheda 2. Il suono. Il rumore. (a cura di Pietro Di Mascolo) Fonica: Scheda 2 (a cura di Pietro Di Mascolo) Il suono Possiamo definire il suono come una particolare sensazione percepita dall organo dell udito eccitato da un agente esterno. Esso ha origine dal movimento

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Teoria della misurazione e misurabilità di grandezze non fisiche

Teoria della misurazione e misurabilità di grandezze non fisiche Teoria della misurazione e misurabilità di grandezze non fisiche Versione 12.6.05 Teoria della misurazione e misurabilità di grandezze non fisiche 1 Il contesto del discorso (dalla lezione introduttiva)

Dettagli

Verifica sismica di dighe a gravità in calcestruzzo

Verifica sismica di dighe a gravità in calcestruzzo Verifica sismica di dighe a gravità in calcestruzzo Keywords: dighe a gravità in calcestruzzo, verifica sismica, metodi semplificati, programmi di calcolo. Autore: L. Furgoni, Relatore: Prof. C. Nuti,

Dettagli

Livellazione Geometrica Strumenti per la misura dei dislivelli

Livellazione Geometrica Strumenti per la misura dei dislivelli Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento Livellazione Geometrica Strumenti per la misura dei dislivelli Nota bene: Questo documento rappresenta unicamente

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura.

Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura. ONDE Quando suoniamo un campanello oppure accendiamo la radio, il suono è sentito in punti distanti. Il suono si trasmette attraverso l aria. Se siamo sulla spiaggia e una barca veloce passa ad una distanza

Dettagli

Interruttori di posizione precablati serie FA

Interruttori di posizione precablati serie FA Interruttori di posizione precablati serie FA Diagramma di selezione 01 08 10 11 1 15 1 0 guarnizione guarnizione esterna in esterna in gomma gomma AZIONATORI 1 51 5 54 55 56 5 leva leva regolabile di

Dettagli

Progetto di un alimentatore con Vo = +5 V e Io = 1 A

Progetto di un alimentatore con Vo = +5 V e Io = 1 A Progetto di un alimentatore con o +5 e Io A U LM7805/TO IN OUT S F T 5 4 8 - ~ ~ + + C GND + C + C3 3 R D LED Si presuppongono noti i contenuti dei documenti Ponte di Graetz Circuito raddrizzatore duale

Dettagli

English as a Second Language

English as a Second Language 1. sviluppo della capacità di usare l inglese per comunicare 2. fornire le competenze di base richieste per gli studi successivi 3. sviluppo della consapevolezza della natura del linguaggio e dei mezzi

Dettagli

L=F x s lavoro motore massimo

L=F x s lavoro motore massimo 1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza

Dettagli

a state of complete physical, men al , an social well ll-bei ng an not merely the absence of disease or infirmity

a state of complete physical, men al , an social well ll-bei ng an not merely the absence of disease or infirmity SALUTE: definizione Nel 1948, la World Health Assembly ha definito la salute come a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity. Nel1986

Dettagli