Teoria dell Informazione e Crittografia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoria dell Informazione e Crittografia"

Transcript

1 Teoria dell Informazione e Crittografia di Francesco Napoli Claude Shannon C. Shannon è considerato "il padre della teoria dell'informazione. A Mathematical Theory of Communication (1948 Communication Theory of Secrecy Systems (1949 (Bell Systems Technical Journal

2 Shannon a moderna teoria dell informazione è stata originariamente sviluppata da Shannon per lo studio teorico del problema generale della comunicazione efficiente ed affidabile su di un canale reale inaffidabile (rumoroso. Shannon si rende conto che la Crittografia fornisce interessanti applicazioni della sua MTC. Sistema di Comunicazione sorgente canale destinazione rumore

3 Modello dettagliato Sorgente Destinazione Acquisizione Codifica sorgente cifratura Codifica canale Canale discreto distorsione (rumore Ricostruzione Decodifica sorgente decifratura Decodifica canale modulazione Canale continuo demodulazione Crittosistema - Modello Generale Sorgente del messaggio intrusione Destinazione M testo in chiaro cifratura k i C testo cifrato C C' Canale insicuro C' testo cifrato M testo in chiaro decifrazione Sorgente della chiave Canale sicuro k i

4 Struttura Crittosistema Quintupla (P,C,K,E,D: P Sorgente Aleatoria v.a. X K v.a. K v.a. indip. C v.a. Y E : D : y = e k x = d i k i (x (y dk ( ek ( x = i i x Ipotesi Assunzioni: il nemico (il crittoanalista conosce il CS utilizzato. Il nemico è in grado di intercettare il testo cifrato (chipertext attack e dispone di capacità computazionali illimitate. Ipotesi pessimistiche Sicurezza matematicamente trattabile Realistiche con il passare del tempo

5 Informazioni Diverse il decifratore è colui che è autorizzato a leggere il messaggio e quindi conosce la chiave utilizzata. il crittoanalista, invece, conosce solo le probabilità a priori con cui verranno utilizzate le chiavi nel crittosistema e i messaggi nel testo in chiaro. Segretezza Perfetta (1 Definizione: un CS ha segretezza perfetta se la probabilità a posteriori che il testo in chiaro sia x, avendo osservato il testo cifrato y, è identica alla probabilità a priori che il testo in chiaro sia x, cioè: per ogni x in P, y in C. Pr[X=x Y=y] = Pr[X=x] Quando il CS utilizzato ha segretezza perfetta il crittoanalista non può ottenere nessuna informazione sul testo in chiaro osservando il testo cifrato.

6 Segretezza Perfetta ( Grazie al teorema di Bayes si ottiene immediatamente il seguente teorema: Teorema: in un CS perfetto Pr[y] = Pr[y x], per ogni x in P e per ogni y in C. Cioè, in un CS perfetto, il testo in chiaro e il testo cifrato sono descrivibili da due variabili aleatorie (X e Y statisticamente indipendenti. Teorema: in un CS perfetto K P the number of different keys is at least as great as the number of messages Teorema: il cifrario di Vernam è un CS perfetto se la chiave è scelta con probabilità uniforme Pr[k] = 1 / K (One-time-Pad è la versione binaria del CS di Vernam. Questo ovviamente quando ogni nuova chiave è generata casualmente per cifrare ogni nuova stringa di testo in chiaro. Riutilizzo della Chiave Siccome nel caso del CS di Vernam la chiave che bisognerebbe spedire su un canale sicuro è lunga almeno quanto il messaggio, l utilizzo di tale CS diventa non conveniente. Allora non rimane altro che riutilizzare la stessa chiave per cifrare più di un testo in chiaro. Per cifrare un lungo messaggio M = x1 x... xn (M è l intero messaggio e le xi sono gli elementi dell insieme dei testi in chiaro P (caratteri o stringhe di caratteri si cifra ciascun elemento xi in yi = ek(xi con la stessa chiave k e si concatenano i risultati nel messaggio cifrato C = y1 y... yn. Un CS che riutilizza la chiave non è perfetto poiché ci sarà sempre un N per cui il numero di chiavi sarà inferiore al numero di messaggi di lunghezza N ( M > K. In questo modo il crittoanalista può guadagnare informazioni sulla chiave o sul messaggio osservando il testo cifrato. Tuttavia un CS che è giudicato insicuro dal punto di vista della teoria dell informazione può tuttavia essere computazionalmente sicuro e quindi fornire ancora un elevata protezione nei confronti di eventuali chipertext attacks considerando che un opponente reale può disporre solo di una quantità finita di risorse computazionali.

7 Entropia (1 In MTC è stato mostrato che l informazione può essere convenientemente misurata grazie all entropia. Quindi possiamo dare una caratterizzazione di un CS perfetto in termini di entropia. In un CS sono coinvolte due scelte descrivibili secondo una statistica: la scelta del messaggio e la scelta della chiave. Possiamo quindi misurare la quantità d informazione prodotta quando un messaggio è scelto: H Pr( x ( X = Pr( xlog x X essendo la sommatoria estesa a tutti i messaggi. Entropia ( Similarmente, c è un incertezza associata con la scelta della chiave: H Pr( k ( K = Pr( klog k K essendo la sommatoria estesa a tutte le chiavi. Nota: in un CS la quantità d informazione presente nel testo in chiaro è al più pari a log P (quando i testi sono tutti equiprobabili.

8 Entropia (3 Allora, in un CS perfetto ( K >= P = n se le chiavi sono tutte equiprobabili (Pr[k] = 1 / K per ogni k in K si ha: H ( K = log Κ H ( K log n Cioè l informazione portata dal testo in chiaro può essere nascosta al crittoanalista (in un CS perfetto se l incertezza sulla chiave H(K è almeno log n. the amount of uncertainty we can introduce into the solution cannot be greater than the key uncertainty log n H ( X Equivocazione Entropia condizionata o equivovazione: H ( X Y = y x P( x, ylog P( x y Nella MTC l equivocazione del canale è una stima dell informazione perduta in media nel canale rumoroso. Rappresenta l incertezza che rimane in media sul simbolo trasmesso dopo l osservazione del simbolo ricevuto.

9 Equivocazioni Equivocazione della chiave: H ( K Y P( k, y log P( k y = y k Equivocazione del messaggio: H ( X Y P( x, y log P( x y = y x Punto di vista del crittoanalista: un crittosistema è quivalente ad un sistema di comunicazione su di un canale rumoroso. Index of Secrecy Quindi l equivocazione della chiave (k o del messaggio (x misura quanta informazione sulla chiave o sul messaggio non è rivelata dal testo cifrato (y. Maggiore è l equivocazione e maggiore è l incertezza che rimane sulla chiave o sul messaggio quando si osserva il testo cifrato. Shannon propone di utilizzarla come misura della segretezza di un CS (index of secrecy.

10 Informazione Mutua Informazione mutua: I( X ; Y = H ( X H ( X Y Nella MTC è una stima dell informazione media ricevuta dalla sorgente attraverso il canale. Punto di vista del crittoanalista: l informazione mutua misura quanta informazione sul testo in chiaro è possibile dedurre dal testo cifrato. Punto di vista dell utente: rendere l informazione mutua tra X e Y la più piccola possibile. Quindi in un CS perfetto (situazione ideale: I ( X ; Y = 0 H ( X Y = H ( X Il testo cifrato non dà nessuna informazione sul testo in chiaro. unghezza del testo cifrato Più lungo è il testo cifrato, più alta è la probabilità di trovare la chiave H H (K H ( K Y X Y : Messaggio in chiaro di lunghezza : Messaggio cifrato di lunghezza H ( X Y

11 Distanza di Unicità (1 Teorema: H ( K Y H ( K D dove: D = log P H ( X la ridondanza assoluta dei messaggi di lunghezza (ridonadanza della sorgente -estesa le cui realizzazioni sono concatenazioni di realizzazioni della v.a. X dei testi in chiaro. Distanza di Unicità ( H ( X = H ( X In prima approssimazione (random chiper [ H ( X log ] H ( K Y H ( K P H ( K H ( K Y = 0 = log P H ( X H ( K D Distanza di unicità: lunghezza minima di testo cifrato necessaria allo opponente per poter calcolare la chiave univocamente. Ridondanza assoluta dei testi in chiaro (linguaggio utilizzato (ridondanza della sorgente non estesa

12 Distanza di Unicità (3 CS ideale: se D = 0 un attaccante non può identificare il messaggio univocamente. In questo caso ideale, infatti, la distanza di unicità è infinita e l equivocazione della chiave e del messaggio non va a zero all aumentare della lunghezza del testo cifrato osservato. In pratica è possibile comprimere il messaggio, riducendone la ridondanza, e quindi avvicinarsi il più possibile al caso ideale. Si può rendere la distanza di unicità grande a piacere applicando una codifica (Huffman ai testi in chiaro prima della cifratura. Tuttavia i CS che cercano di avvicinarsi molto al caso ideale hanno i seguenti inconvenienti: Maggiore complessità : sono sensibilmente più complesse le operazioni di cifratura e decifratura Propagazione degli errori distruttiva : c è un elevata sensibilità agli errori di cifratura e di trasmissione i quali possono essere amplificati dall operazione di decifrazione e quindi possono portare ad un gran numero di errori nel testo decifrato causando spesso una grave perdita d informazione. Entropia del inguaggio (1 Definiamo entropia del linguaggio H la misura dell informazione media per carattere portata da una stringa del testo in chiaro dotata di significato nel linguaggio considerato. Possiamo considerare come approssimazione del primo ordine di H l entropia H(X dove P = Zm e la distribuzione delle lettere segue la distribuzione delle probabilità del linguaggio considerato. Siccome in un linguaggio le lettere successive sono correlate, sarà necessario considerare approssimazioni di ordine successivo; ciò ovviamente riduce la stima dell entropia. Definiamo quindi la v.a. n-estesa X^n come la v.a. le cui realizzazioni sono stringhe di n caratteri la cui distribuzione di probabilità è quella degli n- grammi della linguaggio considerato.

13 Entropia del inguaggio ( Quindi l entropia del linguaggio è definita come: H = lim n H ( X n n e la ridondanza relativa del linguaggio è definita come: D r = 1 H log P Stima dell entropia (1 Frequenze caratteri P("A" Testo: Amleto (Atto I P("Z" M Amleto Atto I : caratteri Hamlet Act I : 964 caratteri H (testo = "Z" σ = "A" P( σ log 1 P( σ

14 Stima dell entropia ( D r = 1 η η = H ( X log P Ridondanza relativa Efficienza di codifica H ( it = 3,985 H ( en = 4,165 bit / car bit / car η r D D r r ( it = 0.10 ( en = 0.11 =1.01 η( it = 0.90 η( en = Testo italiano 1 Testo inglese frequenze 6 frequenze lettere lettere

15 I caratteri più frequenti Stima dell entropia (3 Frequenze caratteri P("A" Testo: Amleto (Atto I P("Z" M P (" Frequenze digrammi A" " A" P (" B" " A" M P (" Z" " Z" Amleto Atto I : 735 digr Hamlet Act I : 495 digr H ( testo = " ZZ" σ = " AA" P( σ log 1 P( σ

16 Stima dell entropia (4 D r = 1 η η = H ( X log P Ridondanza relativa Efficienza di codifica H ( it = 3,574 H ( en = 3,659 D D r r ( it = 0.18 ( en = 0. η( it = 0.8 η( en = 0.78 η r =1.05 Testo italiano 4 Testo inglese frequenze frequenze lettere lettere

17 Stima dell entropia (5 Frequenze caratteri Frequenze digrammi Frequenze trigrammi Testo: Amleto (Atto I P("A" M P("Z" P (" A" " A" P (" B" " A" M P (" Z" " Z" P (" A" " AA" P (" B" " AA" M P (" Z" " ZZ" Amleto Atto I : 039 trigr Hamlet Act I : trigr H ( testo = " ZZZ" σ = " AAA" P( σ log 1 P( σ Stima dell entropia (6 D r = 1 η η = H ( X log P Ridondanza relativa Efficienza di codifica H ( it = 3,188 H ( en = 3,185 D D r r ( it = 0.7 ( en = 0.3 η( it = 0.73 η( en = 0.68 η r =1.07

18 Testo italiano 3 Testo inglese frequenze 0.6 frequenze lettere lettere Stima dell Entropia con memoria crescente Entropia Memoria H = H = lim n 1 n x = n P( xlog 1 P( x

19 ingua Inglese In Inglese (P = Z6 H = 1.5 bit / car, essendo le lettere correlate (Dr = 0.7, e quindi la ridondanza assoluta sarà: D = log 6 - H = = 3. bit/car Utilizzando il CS additivo, la distanza di unicità diviene: Nel CS a sostituzione invece si ha: N = H(K / 3. = log 6 / 3. = 1.5 = caratteri N = H(K / 3. = log 6! / 3. = 7.6 = 8 caratteri In un linguaggio casuale senza memoria (caratteri successivi indipendenti in cui la distribuzione dei caratteri segue le frequenze dei caratteri della lingua inglese si ha: D = = 0.7 bit/car e le distanze di unicità sono 7 e 16 caratteri, rispettivamente. NB: un linguaggio massimamente casuale costituito da stringhe di caratteri distribuiti uniformemente avrà un entropia massima pari a log 6 = 4.70 bit/car (Dr = 0, D=0 e N=inf. 1 Volgare - Dante Inferno Canti Italiano - Dalla Terra alla una Cap frequenze 6 frequenze lettere lettere atino - De Rerum Natura iber I frequenze entropia lettere tempo

20 Teoria Algoritmica dell Informazione Kolmogorov, Solomonoff, Chaitin ( 60. Data una stringa di bit, si definisce contenuto di informazione algoritmica o Kolmogorov Complexity o complessità algoritmica o entropia algoritmica la lunghezza del programma più corto che è in grado di generare la stringa e poi fermarsi. Nasce dal tentativo di tradurre in linguaggio matematico formale il principio filosofico del rasoio di Occam ("A parità di fattori la spiegazione più semplice tende ad essere quella esatta". Misura assoluta, si concentra sulla singola stringa, non è una teoria probabilistica. TM ( y = x X oggetti (stringhe x K( x min TM ( y = x y y Y descrizioni (programmi Kolmogorov Complexity ed Entropia a Kolmogorov Complexity di una data stringa x finita non è calcolabile. Tuttavia limitando lo spazio dei programmi ammissibili diventa una quantità calcolabile nota come Minimum Description ength (MD. Inoltre è possibile approssimarla tramite l entropia informativa di Shannon. K( x n Teorema: lim = H ( X n (dove X è una v.a. a memoria 0 Cioè per n sufficientemente grande: Casualità Algoritmica (Kolgomorov randomess: una stringa è casuale se e solo se è più corta di ogni programma in grado di generarla come output. Quindi una stringa veramente casuale è incomprimibile. n K( x n n H ( X

21 Entropia Termodinamica e Informazione Entropia termodinamica secondo la Meccanica Statistica (Boltzmann: S = k log W = k log (1 / 1 / W= k log (1 / Pw Ricordando l autoinformazione di un evento casuale nella teoria dell informazione classica, l entropia di un sistema fisico è direttamente proporzionale al numero di bit richiesti per descrivere lo stato dei suoi componenti microscopici Quindi, è proporzionale al numero di bit che porta o registra un suo stato-evento miscoscopico. Un sistema fisico, potendo stare in un numero finito di stati (secondo la teoria quantistica, può quindi registrare una quantità finita di informazione. Sebbene l entropia misuri l informazione (in bit contenuta a livello miscoscopico nei movimenti atomici, in realtà, essendo questi a noi inaccessibili, è una misura dell informazione a noi indisponibile sullo stato miscoscopico del sistema: non sappiamo cosa c è in quei bit. FINE

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI TEORIA DELL INFORMAZIONE ED ENTROPIA DI FEDERICO MARINI 1 OBIETTIVO DELLA TEORIA DELL INFORMAZIONE Dato un messaggio prodotto da una sorgente, l OBIETTIVO è capire come si deve rappresentare tale messaggio

Dettagli

Teoria dell informazione

Teoria dell informazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria dell informazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di

Dettagli

La teoria dell informazione

La teoria dell informazione La teoria dell informazione Perché la teoria dell informazione è importante per la linguistica computazionale 2005 Isabella Chiari 1 Informatica Informazione+automatica = informatica Trattamento automatico

Dettagli

Cenni di teoria dell informazione

Cenni di teoria dell informazione Cenni di teoria dell informazione Gregorio D Agostino 12 Maggio 2017 Cifrario perfetto Un cifrario si dice perfetto se l informazione mutua tra crittogramma e messaggio è nulla: I(M C) = 0 = H(M) H(M

Dettagli

Sorgenti discrete e informazione

Sorgenti discrete e informazione Sorgenti discrete e informazione La definizione formale della quantità di informazione è dovuta a Shannon Nella sua teoria si fa riferimento ad una sorgente di messaggi connessa tramite un canale a un

Dettagli

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano Argomenti della Lezione 1) Entropia di variabili aleatorie continue ) Esempi di variabili aleatorie continue 3) Canali di comunicazione continui 4) Canale Gaussiano 5) Limite di Shannon 1 Entropia di una

Dettagli

I Cifrari Perfetti. Alessio Nunzi Fabiola Genevois Federico Russo

I Cifrari Perfetti. Alessio Nunzi Fabiola Genevois Federico Russo I Cifrari Perfetti Alessio Nunzi Fabiola Genevois Federico Russo Fabiola Genevois Strategie d attacco Sicurezza dei sistemi crittografici Il cifrario Perfetto Enunciato di Shannon Il cifrario di Vernam

Dettagli

Roberto Maieli La trasmissione dell informazione

Roberto Maieli La trasmissione dell informazione Roberto Maieli La trasmissione dell informazione Corso di AIC Sistema di comunicazione Sorgente messaggio Sistema di trasmissione Trasmettitore Canale di trasmissione segnale Ricevitore rumore messaggio

Dettagli

1) Probabilità di errore di trasmissione. 2) Capacità di canale. 3) Esempi di calcolo della capacità. 4) Disuguaglianza di Fano

1) Probabilità di errore di trasmissione. 2) Capacità di canale. 3) Esempi di calcolo della capacità. 4) Disuguaglianza di Fano Argomenti della Lezione 1) Probabilità di errore di trasmissione ) Capacità di canale 3) Esempi di calcolo della capacità 4) Disuguaglianza di Fano 5) Teorema inverso della codifica di canale 1 Probabilità

Dettagli

CRITTOGRAFIA 2014/15 Appello del 13 gennaio Nome: Cognome: Matricola:

CRITTOGRAFIA 2014/15 Appello del 13 gennaio Nome: Cognome: Matricola: CRITTOGRAFIA 2014/15 Appello del 13 gennaio 2015 Esercizio 1 Crittografia ellittica [9 punti] 1. Descrivere l algoritmo di Koblitz per trasformare un messaggio m, codificato come numero intero, in un punto

Dettagli

Crittografia per la sicurezza dei dati

Crittografia per la sicurezza dei dati Crittografia per la sicurezza dei dati Esigenza di sicurezza in rete significa: -garanzia di riservatezza dei dati in rete (e-mail) -garanzia di transazioni sicure (e-commerce, home banking) La crittografia

Dettagli

STII/Teoria dell Informazione

STII/Teoria dell Informazione STII/Teoria dell Informazione Docente: Prof. Luisa Gargano Classe: Matricole Pari Testo principale: T. Cover, J. Thomas, Elements of Information Theory, Wiley. p./28 Un pò di storia La Teoria dell informazione

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Soluzioni di Esercizi di Esame di Segnali Aleatori per Telecomunicazioni

Soluzioni di Esercizi di Esame di Segnali Aleatori per Telecomunicazioni Corso di Laurea in Ingegneria Informatica corso di Telecomunicazioni (Prof. G. Giunta) (editing a cura dell ing. F. Benedetto) Soluzioni di Esercizi di Esame di Segnali Aleatori per Telecomunicazioni Esame

Dettagli

Crittografia classica: la storia

Crittografia classica: la storia Crittografia classica: la storia 1900 ac Egitto: geroglifici non standard 1500 ac Mesopotamia: Formula con molte interpretazioni 500 ac Israele: Codice ATBASH per il libro di Geremia 500 ac Plutarco: Scitale

Dettagli

Definizione. La crittografia serve per: Crittografia deriva dal greco = scrittura nascosta

Definizione. La crittografia serve per: Crittografia deriva dal greco = scrittura nascosta Crittografia Definizione La crittografia serve per: Celare il significato del messaggio Garantire l autenticità del messaggio Identificare l autore del messaggio Firmare e datare il messaggio Crittografia

Dettagli

Comunicazioni Elettriche Esercizi

Comunicazioni Elettriche Esercizi Comunicazioni Elettriche Esercizi Alberto Perotti 9 giugno 008 Esercizio 1 Un processo casuale Gaussiano caratterizzato dai parametri (µ = 0, σ = 0.5) ha spettro nullo al di fuori dellintervallo f [1.5kHz,

Dettagli

..., x M. : codice o sequenza di bit che rappresentano il messaggio x i ; n i : lunghezza in bit del codice C X i

..., x M. : codice o sequenza di bit che rappresentano il messaggio x i ; n i : lunghezza in bit del codice C X i Definizioni X : sorgente di informazione discreta; X k : messaggi prodotti da X ; ogni messaggio è una v.c.d., k è l'indice temporale; alfabeto di X : insieme {x,..., x } degli messaggi che la sorgente

Dettagli

CANALE STAZIONARIO CANALE TEMPO INVARIANTE

CANALE STAZIONARIO CANALE TEMPO INVARIANTE CANALE STAZIONARIO Si parla di un Canale Stazionario quando i fenomeni che avvengono possono essere modellati da processi casuali e le proprietà statistiche di tali processi sono indipendenti dal tempo.

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

10.. Codici correttori d errore. Modulo TLC:TRASMISSIONI Codici correttori d errore

10.. Codici correttori d errore. Modulo TLC:TRASMISSIONI Codici correttori d errore 10.. Codici correttori d errore Codici correttori d errore 2 Obiettivi: correggere o rivelare errori nella trasmissione di sequenze numeriche (sequenze di simboli, usualmente binari) Correzione di errore

Dettagli

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con

Dettagli

CODIFICA CANALE. Comunicazione con successo: ricevitore ottiene output sorgente. Rumore. Sorgente Cofificatore Canale. Decodificatore.

CODIFICA CANALE. Comunicazione con successo: ricevitore ottiene output sorgente. Rumore. Sorgente Cofificatore Canale. Decodificatore. CODIFICA CANALE Sorgente Cofificatore Canale Decodificatore Ricevitore Rumore Comunicazione con successo: ricevitore ottiene output sorgente. p.1/24 CODIFICA CANALE Sorgente Cofificatore Canale Decodificatore

Dettagli

La codifica di sorgente

La codifica di sorgente Tecn_prog_sist_inform Gerboni Roberta è la rappresentazione efficiente dei dati generati da una sorgente discreta al fine poi di trasmetterli su di un opportuno canale privo di rumore. La codifica di canale

Dettagli

Crittografia con Python

Crittografia con Python Crittografia con Python Corso introduttivo Marzo 2015 Con materiale adattato dal libro Hacking Secret Cypher With Python di Al Sweigart (http://inventwithpython.com/hacking/index.html) Attacchi statistici

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica Università di Salerno bmasucci@unisa.it http://www.di.unisa.it/professori/masucci Cifrari simmetrici canale insicuro Bob 1 Distribuzione

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni 1 - INTRODUZIONE Prof. Giovanni Schembra 1 Argomenti della lezione Definizioni: Sorgente di informazione Sistema di comunicazione Segnali trasmissivi determinati

Dettagli

Il cifrario di Vigenère. Bizzoni Stefano De Persiis Angela Freddi Giordana

Il cifrario di Vigenère. Bizzoni Stefano De Persiis Angela Freddi Giordana Il cifrario di Vigenère Bizzoni Stefano De Persiis Angela Freddi Giordana Cifrari monoalfabetico e polialfabetico mono: cifrari a sostituzione o a trasposizione, associano ad ogni lettera dell alfabeto

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Sicurezza delle informazioni

Sicurezza delle informazioni Sicurezza delle informazioni Quando vengono mandati pacchetti di informazioni sui mezzi promiscui (ad es. rete Ethernet) chiunque ha la possibilità di leggere i pacchetti inviati e ricomporre il messaggio

Dettagli

Informatica. Caratterizzazione del canale I simboli emessi dalla sorgente passano attraverso un canale di trasmissione.

Informatica. Caratterizzazione del canale I simboli emessi dalla sorgente passano attraverso un canale di trasmissione. Informatica Pietro Storniolo storniolo@csai.unipa.it http://www.pa.icar.cnr.it/storniolo/info267 Entropia e flusso di informazione di una sorgente La sorgente viene caratterizzata dal valor medio di I(x

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica Università di Salerno bmasucci@unisa.it http://www.di.unisa.it/professori/masucci Sicurezza CCA In un attacco CCA, è capace di

Dettagli

Cifrari asimmetrici. Cifratura. Cifratura. Crittosistema ElGamal. file pubblico utente chiave pubblica. Alice. file pubblico utente chiave pubblica

Cifrari asimmetrici. Cifratura. Cifratura. Crittosistema ElGamal. file pubblico utente chiave pubblica. Alice. file pubblico utente chiave pubblica Crittosistema ElGamal lfredo De Santis Dipartimento di Informatica ed pplicazioni Università di Salerno Marzo 2012 ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Cifrari asimmetrici kpriv kpub

Dettagli

9. Sistemi di Modulazione Numerica in banda traslata. Modulo TLC:TRASMISSIONI Modulazione numerica in banda traslata

9. Sistemi di Modulazione Numerica in banda traslata. Modulo TLC:TRASMISSIONI Modulazione numerica in banda traslata 1 9. Sistemi di Modulazione Numerica in banda traslata Modulazione QAM (analogica) 2 Modulazione QAM (Quadrature Amplitude Modulation; modulazione di ampiezza con portanti in quadratura) è un tipo di modulazione

Dettagli

Conversione Analogico/Digitale

Conversione Analogico/Digitale Conversione Analogico/Digitale 1 Fondamenti di Segnali e Trasmissione Conversione analogico/digitale (A/D) Per rappresentare numericamente un segnale continuo nel tempo e nelle ampiezze è necessario: Campionare

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Introduzione alla codifica entropica

Introduzione alla codifica entropica Compressione senza perdite Il problema Introduzione alla codifica entropica Abbiamo un alfabeto di simboli A (nota: non è detto che gli elementi di A siano numeri) Sappiamo che il simbolo a A si presenta

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

RSA e firma digitale

RSA e firma digitale Università degli Studi di Cagliari Corso di Laurea in Matematica RSA e firma digitale Mara Manca Relatore: prof. Andrea Loi Anno Accademico 2015-2016 Mara Manca Relatore: prof. Andrea Loi RSA e firma digitale

Dettagli

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Il rumore

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 5 Abbiamo visto: Modelli probabilistici nel continuo Distribuzione uniforme continua Distribuzione

Dettagli

Distribuzioni campionarie. Antonello Maruotti

Distribuzioni campionarie. Antonello Maruotti Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

Informazione e sua rappresentazione: codifica

Informazione e sua rappresentazione: codifica Corso di Calcolatori Elettronici I Informazione e sua rappresentazione: codifica ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Il concetto di informazione Qualunque informazione è definita

Dettagli

1 Entropia: Riepilogo

1 Entropia: Riepilogo Corso: Gestione ed elaborazione grandi moli di dati Lezione del: 30 maggio 2006 Argomento: Entropia. Costruzione del modello di una sorgente. Codifica di Huffman. Scribes: Galato Filippo, Pesce Daniele,

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,

Dettagli

Teoria dell Informazione

Teoria dell Informazione Corso di Laurea Magistrale in Scienze dell Informazione Editoriale, Pubblica e Sociale Teoria dell Informazione Cosa è l informazione L informazione è qualcosa che si possiede e si può dare ad un altro

Dettagli

1 Esercizio - caso particolare di ottimalità

1 Esercizio - caso particolare di ottimalità Corso: Gestione ed elaborazione grandi moli di dati Lezione del: 5 giugno 2006 Argomento: Compressione aritmetica e Tecniche di compressione basate su dizionario Scribes: Andrea Baldan, Michele Ruvoletto

Dettagli

Informazione e sua rappresentazione: codifica

Informazione e sua rappresentazione: codifica Corso di Calcolatori Elettronici I A.A. 2011-2012 Informazione e sua rappresentazione: codifica Lezione 2 Prof. Antonio Pescapè Università degli Studi di Napoli Federico II Facoltà di Ingegneria Corso

Dettagli

Confidenzialità e crittografia simmetrica. Contenuto. Scenario tipico. Corso di Sicurezza su Reti Uso della crittografia simmetrica

Confidenzialità e crittografia simmetrica. Contenuto. Scenario tipico. Corso di Sicurezza su Reti Uso della crittografia simmetrica Confidenzialità e crittografia simmetrica Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci Contenuto Uso

Dettagli

Variabili aleatorie. Variabili aleatorie e variabili statistiche

Variabili aleatorie. Variabili aleatorie e variabili statistiche Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa

Dettagli

CODICI. Crittografia e cifrari

CODICI. Crittografia e cifrari CODICI Crittografia e cifrari CRITTOGRAFIA - La crittografia è una scrittura convenzionale segreta, decifrabile solo da chi conosce il codice. - La parola crittografia deriva da 2 parole greche, ovvero

Dettagli

crittografia a chiave pubblica

crittografia a chiave pubblica crittografia a chiave pubblica Whitfield Diffie Martin Hellman New Directions in Cryptography We stand today on the brink of a revolution in cryptography. The development of cheap digital hardware... has

Dettagli

Corso di Fondamenti di Telecomunicazioni 1 - INTRODUZIONE

Corso di Fondamenti di Telecomunicazioni 1 - INTRODUZIONE Corso di Fondamenti di Telecomunicazioni 1 - INTRODUZIONE 1 Argomenti della lezione Definizioni: Sorgente di informazione Sistema di comunicazione Segnali trasmissivi determinati e aleatori Architettura

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Campionamento e quantizzazione

Campionamento e quantizzazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

05. Errore campionario e numerosità campionaria

05. Errore campionario e numerosità campionaria Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,

Dettagli

E03 ESERCIZI SU LIVELLO FISICO

E03 ESERCIZI SU LIVELLO FISICO E03 ESERCIZI SU LIVELLO FISICO Esercizio 1 Un semaforo è una sorgente di informazione a) analogica. b) numerica, con alfabeto di quattro simboli (verde, rosso, giallo, lampeggiante). c) la cui natura dipende

Dettagli

Reti di Calcolatori. Crittografia & Java Cryptographic Architecture (JCA) A.A. 2010/2011 Reti di Calcolatori 1 (Es. 6)

Reti di Calcolatori. Crittografia & Java Cryptographic Architecture (JCA) A.A. 2010/2011 Reti di Calcolatori 1 (Es. 6) Crittografia & Java Cryptographic Architecture (JCA) 1 (Es. 6) La crittografia La crittografia è un particolare processo grazie al quale, per mezzo di sofisticati algoritmi, è possibile trasformare una

Dettagli

Modulazioni di ampiezza

Modulazioni di ampiezza Modulazioni di ampiezza 1) Si consideri un segnale z(t) modulato in ampiezza con soppressione di portante dal segnale di informazione x(t): z(t) = Ax(t)cos(2πf 0 t) Il canale di comunicazione aggiunge

Dettagli

logaritmo discreto come funzione unidirezionale

logaritmo discreto come funzione unidirezionale logaritmo discreto come funzione unidirezionale in generale, lavoreremo con il gruppo U(Z p ) = Z p dati g generatore di Z p e x tale che 1 x p 1, calcolare y = g x è computazionalmente facile (y g x (mod

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 A Garfagnini, M Mazzocco, C Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Teoria della Probabilità L ineliminabile

Dettagli

Teoria della probabilità Variabili casuali

Teoria della probabilità Variabili casuali Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Variabili casuali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Variabile casuale Una variabile

Dettagli

Capitolo 7 Strato Fisico- Codici correttori d errore e capacità di canale

Capitolo 7 Strato Fisico- Codici correttori d errore e capacità di canale Capitolo 7 Strato Fisico- Codici correttori d errore e capacità di canale 1 Obiettivi: Codici correttori d errore correggere o rivelare errori nella trasmissione di segnali numerici (sequenze di simboli,

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Simulazione dei dati

Simulazione dei dati Simulazione dei dati Scopo della simulazione Fasi della simulazione Generazione di numeri casuali Esempi Simulazione con Montecarlo 0 Scopo della simulazione Le distribuzioni di riferimento usate per determinare

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Analisi dei segnali nel dominio del tempo

Analisi dei segnali nel dominio del tempo Laboratorio di Telecomunicazioni - a.a. 200/20 Lezione n. 3 Analisi dei segnali nel dominio del tempo L.Verdoliva In questa seconda lezione determiniamo, con l uso di Matlab, i parametri che caratterizzano

Dettagli

idea della crittografia a chiave pubblica

idea della crittografia a chiave pubblica idea della crittografia a chiave pubblica sviluppare un crittosistema in cui data la funzione di cifratura e k sia computazionalmente difficile determinare d k Bob rende pubblica la sua funzione di cifratura

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Prof. Franco Ferraris - Politecnico di Torino

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Prof. Franco Ferraris - Politecnico di Torino Generalità sulle Misure di Grandezze Fisiche Prof. - Politecnico di Torino - La stima delle incertezze nel procedimento di misurazione -modello deterministico -modello probabilistico - La compatibilità

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

Elementi di crittografia

Elementi di crittografia Elementi di crittografia Francesca Merola a.a. 2010-11 informazioni orario: ma, (me), gio, 14-15.30, aula N1 ricevimento: su appuntamento ma, me, gio, 11.30-12.30 studio 300 dipartimento di matematica

Dettagli

Elaborazione dell informazione. Elaborazione dell informazione. Rappresentazione dei numeri INFORMATICA PER LE DISCIPLINE UMANISTICHE 2 (13042)

Elaborazione dell informazione. Elaborazione dell informazione. Rappresentazione dei numeri INFORMATICA PER LE DISCIPLINE UMANISTICHE 2 (13042) Elaborazione dell informazione INFORMATICA PER LE DISCIPLINE UMANISTICHE 2 (13042) Elaborazione di informazione prevede una codifica come: Dato: insieme di simboli rappresentati su un supporto Negli elaboratori:

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica Università di Salerno bmasucci@unisa.it http://www.di.unisa.it/professori/masucci Costruzioni Vedremo alcune costruzioni basate

Dettagli

Modulazione PAM Multilivello, BPSK e QPSK

Modulazione PAM Multilivello, BPSK e QPSK Modulazione PAM Multilivello, BPSK e QPSK P. Lombardo DIET, Univ. di Roma La Sapienza Modulazioni PAM Multilivello, BPSK e QPSK - 1 Rappresentazione analitica del segnale Sia {b(n)} una qualsiasi sequenza

Dettagli

Codifica di sorgente. esempio di sorgente con memoria

Codifica di sorgente. esempio di sorgente con memoria Codifica di sorgente esercitazione su sorgenti markoviane 1 esempio di sorgente con memoria Esempio di sorgente con memoria markoviana a due stati NB: per la simmetria del sistema, i simboli sono equiprobabili

Dettagli

Fondamenti di Telecomunicazioni Esercizi svolti e da svolgere. 1) A quanto corrisponde su base decimale un guadagno di 31 db? (Risp: = )

Fondamenti di Telecomunicazioni Esercizi svolti e da svolgere. 1) A quanto corrisponde su base decimale un guadagno di 31 db? (Risp: = ) Fondamenti di Telecomunicazioni Esercizi svolti e da svolgere A quanto corrisponde su base decimale un guadagno di 3 db? (Risp: = 259 25 2 A quanti watt corrisponde una potenza di - 25 db m? (Risp: 3,25-6

Dettagli

Tecniche di compressione senza perdita

Tecniche di compressione senza perdita FONDAMENTI DI INFORMATICA Prof. PIER LUCA MONTESSORO Facoltà di Ingegneria Università degli Studi di Udine Tecniche di compressione senza perdita 2000 Pier Luca Montessoro (si veda la nota di copyright

Dettagli

MATEMATICA E STATISTICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI

MATEMATICA E STATISTICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI MATEMATICA E STATISTICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI ESERCITATI CON ME! I ESERCITAZIONE 1) Misure ripetute (materiale secco su vetrino) della lunghezza del diametro maggiore

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

DISTRIBUZIONI DI CAMPIONAMENTO

DISTRIBUZIONI DI CAMPIONAMENTO DISTRIBUZIONI DI CAMPIONAMENTO 12 DISTRIBUZIONE DI CAMPIONAMENTO DELLA MEDIA Situazione reale Della popolazione di tutti i laureati in odontoiatria negli ultimi 10 anni, in tutte le Università d Italia,

Dettagli

01CXGBN Trasmissione numerica. parte 6: calcolo delle probabilità I

01CXGBN Trasmissione numerica. parte 6: calcolo delle probabilità I 01CXGBN Trasmissione numerica parte 6: calcolo delle probabilità I 1 Probabilità di errore BER e SER Per rappresentare la bontà di un sistema di trasmissione numerica in termini di probabilità di errore

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci Cifrari simmetrici canale

Dettagli

NUMERI CASUALI E SIMULAZIONE

NUMERI CASUALI E SIMULAZIONE NUMERI CASUALI E SIMULAZIONE NUMERI CASUALI Usati in: statistica programmi di simulazione... Strumenti: - tabelle di numeri casuali - generatori hardware - generatori software DESCRIZIONE DEL PROBLEMA

Dettagli

Informazione e sua rappresentazione: codifica

Informazione e sua rappresentazione: codifica Corso di Calcolatori Elettronici I A.A. 2010-2011 Informazione e sua rappresentazione: codifica Lezione 1-2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Informazione Quale è il centravanti

Dettagli

Unità 30. Sommario. Bibliografia. Auto-informazione di un evento Auto-informazione di un esperimento aleatorio Esempi. [Bel] -- [Ros] 9.

Unità 30. Sommario. Bibliografia. Auto-informazione di un evento Auto-informazione di un esperimento aleatorio Esempi. [Bel] -- [Ros] 9. Unità 30 Sommario Auto-informazione di un evento Auto-informazione di un esperimento aleatorio Esempi Bibliografia [Bel] -- [Ros] 9.3 [Pap] -- 1 Auto-informazione di un evento Prima di effettuare un esperimento

Dettagli

BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i

BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i BLAND-ALTMAN PLOT Il metodo di J. M. Bland e D. G. Altman è finalizzato alla verifica se due tecniche di misura sono comparabili. Resta da comprendere cosa si intenda con il termine metodi comparabili

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

NOZIONI DI CALCOLO DELLE PROBABILITÀ

NOZIONI DI CALCOLO DELLE PROBABILITÀ NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni

Dettagli

Elementi di Algebra e di Matematica Discreta Cenno di un applicazione alla crittografia

Elementi di Algebra e di Matematica Discreta Cenno di un applicazione alla crittografia Elementi di Algebra e di Matematica Discreta Cenno di un applicazione alla crittografia Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra e di Matematica Discreta

Dettagli

Lunghezza media. Teorema Codice D-ario prefisso per v.c. X soddisfa. L H D (X). Uguaglianza vale sse D l i. = p i. . p.1/27

Lunghezza media. Teorema Codice D-ario prefisso per v.c. X soddisfa. L H D (X). Uguaglianza vale sse D l i. = p i. . p.1/27 Lunghezza media Teorema Codice D-ario prefisso per v.c. X soddisfa L H D (X). Uguaglianza vale sse D l i = p i.. p.1/27 Lunghezza media Teorema Codice D-ario prefisso per v.c. X soddisfa L H D (X). Uguaglianza

Dettagli

Sommario Codifica dei dati Macchina Astratta Definizioni Esempi

Sommario Codifica dei dati Macchina Astratta Definizioni Esempi Sommario Codifica dei dati Macchina Astratta Definizioni Esempi 1 2 Codifica dei dati È possibile introdurre la teoria della computabilità facendo riferimento ad algoritmi che elaborano numeri naturali

Dettagli

Codifica delle sequenze sorgente

Codifica delle sequenze sorgente Codifica delle sequenze sorgente Sorgente emette sequenza di simboli appartenenti ad un alfabeto X che vengono codificati come sequenze di simboli di un alfabeto D-ario.. p.1/?? Codifica delle sequenze

Dettagli

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Campionamento 29/4/2005

Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Campionamento 29/4/2005 Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Campionamento 29/4/2005 Importanza del campionamento Trarre conclusioni o fare previsioni limitando l'osservazione solo a un gruppo dei soggetti che

Dettagli

carattere a b c d e f cod. var

carattere a b c d e f cod. var Codici prefissi Un codice prefisso è un codice in cui nessuna parola codice è prefisso (parte iniziale) di un altra Ogni codice a lunghezza fissa è ovviamente prefisso. Ma anche il codice a lunghezza variabile

Dettagli

Tipi di variabili. Indici di tendenza centrale e di dispersione

Tipi di variabili. Indici di tendenza centrale e di dispersione Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)

Dettagli